Araştırma Makalesi
BibTex RIS Kaynak Göster

CONSTRUCTION, ASSEMBLY AND SYSTEM DEPLOYMENT OF A FISH CAGE WITH COPPER ALLOY MESH PEN: CHALLENGING WORK LOAD AND ESTIMATION OF MAN-POWER

Yıl 2018, Cilt: 1 Sayı: 1, 38 - 49, 31.01.2018
https://doi.org/10.3153/AR18005

Öz

In the present study, a 150 cubic m net pen was designed as part of a
collaborative research effort between the International Copper Association
(ICA-USA), the University of New Hampshire (UNH-USA) and Cannakale Onsekiz Mart
University (COMU-Turkey) in August 2011. The fish cage was developed to support
the creation of a small scale demonstration farm, located in the Strait of
Canakkale, off the coast of Guzelyali town in Turkey. The surface gravity-type,
octagonal shaped fish cage was designed to have a diameter of 6 m and a copper
alloy mesh chamber depth of 5 m. The present study details the cage
construction and system deployment of one fish cage utilized a chain link mesh
net chamber with a copper alloy developed by Wieland-Werke in Germany, with
reference to work load challenge and estimation of man-power necessary for the
partial and total work efforts. As a conclusion, one cage equipped with
copper-alloy mesh pen was brought to a final shape with the net chamber
assembled and attached to the cage frame in 3 days and 90 man-hours. The HDPE
(high density polythylene) cage frame was assembled by an outside company,
therefore detail of the main cage frame is not discussed in this paper.

Kaynakça

  • Aufrecht, J., Grohbauer, A., Hofmann, U., Drach, A., Tsukrov, I, et al. (2013) Corrosion, antifouling properties, fatigue and wear of copper alloys for seawater applications. Copper 2013 International Conference, Santiago, Chile.
  • Ayer, N., Martin, S., Dwyer, R.L., Gace, L., Laurin, L. (2016). Environmental performance of copper alloy Net-pens: Life cycle assessment of Atlantic salmon grow-out in copperalloy and nylon net pens. Aquaculture, 453, 93-103.
  • Berillis P., Mente E. and Kormas K.A. (2017). The Use of Copper Alloy in Aquaculture Fish Net Pens: Mechanical, Economic and Environmental Advantages. Journal of FisheriesSciences.com, 11(4), 1-3.
  • Bloecher N., Olsen Y., Guenther J. (2013). Variability of Biofouling Bommunities on Fish Cage Nets: A 1-year Field Study at a Norwegian Salmon Farm. Aquaculture, 416-417, 302-309.
  • Braithwaite R.A., M.C.C. Carrascosa, McEvoy L.A. (2007). Biofouling of Salmon Cage Netting and the Efficacy of a Typical Copper-Based Antifoulant. Aquaculture, 262, 219-226.
  • Braithwaite, R.A., McEvoy, L.A. (2005). Marine bio-fouling on fish farms and its remediation. Advance in Marine Biololgy 47, 215-252.
  • Burridge L., Weis J.S., Cabello F., Pizarro J., Bostick K. (2010). Chemical Use in Salmon Aquaculture: A Review of Current Practices and Possible Environmental Effects. Aquaculture, 306, 7-23.
  • Buyukates Y., Celikkol B., Yigit M., DeCew J., Bulut M. (2017). Environmental Monitoring Around an Offshore Fish Farm with Copper Alloy Mesh Pens in the Northern Aegean Sea. American Journal of Environmental Protection, 6, 50-61.
  • Castritsi-Catharios J., Neofitou N., Vorloou A.A. (2015). Comparison of Heavy Metal Concentrations in Fish Samples From Three Fish Farms (Eastern Mediterranean) Utilizing Antifouling Paints. Toxicological and Environmental Chemistry, 97, 116-123.
  • Chambers, M., Bunker, J., Watson III, W.H., Howell III, W.H. (2012). Comparative growth and survival of juvenile Atlantic Cod (Gadus morhua) cultured in copper and nylon net pens. Journal of Aquaculture Research and Development 3, 137-142.
  • Drach, A. (2013). Utilization of Copper Alloys for Marine Applications. Doctoral dissertation, University of New Hampshire.
  • Dwyer, R.L., Stillman, H. (2009). Environmental Performance of Copper Alloy Mesh in Marine Fish Farming: The Case for Using Solid Copper Alloy Mesh. EcoSea Innovation in Aquaculture, International Copper Association pp: 18.
  • Efstathiou, P.A., Kouskouni, E., Karlovasiti, V., Manolidou, Z., Efstathiou, A.P. (2016). Use of copper alloy cage in floating fsh culture for the farming of Mediterranean marine fsh. 2nd International Congress on Applied Ichthyology & Aquatic Environment 10-12 November 2016, Messolonghi, Greece.
  • FAO, 2016. FAO Statistical Query Results, Fisheries and Aquaculture Information and Statistics Branch - 05/12/2016 http://www.fao.org/figis/servlet/SQServlet?file=/work/FIGIS/prod/webapps/figis/temp/hqp_585971118044155575.xml&outtype=html
  • Fitridge, I., Dempster, T., Guenther, J., de Nys, R., (2012). The impact and control of biofouling in marine aquaculture: a review. Biofouling Journal of Bioadhesion Biofilm Research, 28(7), 649-669.
  • Gonzalez, E.P., Hurtado, C.F., Gace, L., Augsburger, A., (2013). Economic impacts of adopting copper alloy mesh in trout aquaculture: Chilean example. Aquaculture Economics & Management, 17(1), 71-86.
  • Ingram D., (2018). How to estimate man-hour productivity in construction. Cited 12.01.2018. http://smallbusiness.chron.com/estimate-manhour-productivity-construction-80878.html
  • Jackson, D., Drumm, A., McEvoy, S., Jensen, O., Mendiola, D., Gabina, G., Borg, J.A., Papageorgiou, N., Karakassis, Y., Black, K.D. (2015). A pan-European valuation of the extent, causes and cost of escape events from sea cage fish farming. Aquaculture, 436, 21-26.
  • Kalantzi, I., Zeri, C., Catsiki, V.A., Tsangaris, C., Strogyloudi, E, et al. (2016). Assessment of the use of copper alloy aquaculture nets: Potential impacts on the marine environment and on the farmed fish. Aquaculture, 465, 209-222.
  • Katranitsas A., Castritsi-Catharios J., Persoone G. (2003). The Effects of a Copper-based Antifouling Paint on Mortality and Enzymatic Activity of a Non-Target Marine Organism. Marine Pollution Bullettin, 46, 1491-1494.
  • Klebert, P., Lader, P., Gansel, L., Oppedal, F. (2013). Hydrodynamic interactions on net panel and aquaculture fish cages: a review. Ocean Engineering, 58, 260-274.
  • Lader, P., Dempster, T., Fredheim, A., Jensen, O. (2008). Current induced net deformations in full-scale cages for Atlantic salmon (Salmo salar). Aquacultre Engineering, 38, 52-65.
  • Nys R.D., Guenther J. (2009). The Impact and Control of Biofouling in Marine Finfish Aquaculture. In: Hellio C, Yebra D (eds) Advances in Marine Antifouling Coatings and Technologies. Woodhead Publishing Limited, Cambridge, UK, pp 177-221. ISBN 1845693868
  • Solberg, C., Saethreb, L., Julshamn, K. (2002). The effect ofcopper-treated net pens on farmed salmon (Salmo salar) and other marine organisms and sediments. Marine Pollution Bullettin, 45, 126-132.
  • Yigit M., Celikkol B., Bulut M., DeCew J., Ozalp B., Yilmaz S., Kaya H., Kizilkaya B., Hisar O., Yildiz H., Yigit U., Sahinyilmaz M., Dwyer R.L. (2016).
  • Monitoring of Trace Metals, Biochemical Composition and Growth of Axillary Seabream (Pagellus acarne Risso, 1827) in Offshore Copper Alloy Mesh Cages. Mediterranean Marine Science, 17(2), 396-403.
  • Yigit, M., Celikkol, B., Bulut, M., DeCew, J., Ozalp, B. (2016). Monitoring of trace metals, biochemical composition and growth of Axillary seabream (Pagellus acarne Risso, 1827) in offshore copper alloy mesh cages. Mediterranean Marine Science, 17, 396-403.
  • Yigit Ü, Ergün S, Celikkol B, Bulut M, Yigit M. (2017). Bio-economic efficiency of copper alloy mesh technology in offshore cage systems for European seabass aquaculture. Indian Journal of Geo-Marine Sciences, 46(10), 2017-2024.
  • Yigit M., Celikkol B., Yilmaz S., Bulut M., Özalp H.B., Dwyer B., Maita M., Kizilkaya B., Yiğit Ü., Ergün S., Gürses K., Büyükateş Y. (2018). Bioaccumulation of trace metals in Mediterranean mussels (Mytilus galloprovincialis) from a fish farm with copper-alloy mesh pens and potential risk assessment. Human and Ecological Risk Assessment: An International Journal, 24(2), 465-481.
Yıl 2018, Cilt: 1 Sayı: 1, 38 - 49, 31.01.2018
https://doi.org/10.3153/AR18005

Öz

Kaynakça

  • Aufrecht, J., Grohbauer, A., Hofmann, U., Drach, A., Tsukrov, I, et al. (2013) Corrosion, antifouling properties, fatigue and wear of copper alloys for seawater applications. Copper 2013 International Conference, Santiago, Chile.
  • Ayer, N., Martin, S., Dwyer, R.L., Gace, L., Laurin, L. (2016). Environmental performance of copper alloy Net-pens: Life cycle assessment of Atlantic salmon grow-out in copperalloy and nylon net pens. Aquaculture, 453, 93-103.
  • Berillis P., Mente E. and Kormas K.A. (2017). The Use of Copper Alloy in Aquaculture Fish Net Pens: Mechanical, Economic and Environmental Advantages. Journal of FisheriesSciences.com, 11(4), 1-3.
  • Bloecher N., Olsen Y., Guenther J. (2013). Variability of Biofouling Bommunities on Fish Cage Nets: A 1-year Field Study at a Norwegian Salmon Farm. Aquaculture, 416-417, 302-309.
  • Braithwaite R.A., M.C.C. Carrascosa, McEvoy L.A. (2007). Biofouling of Salmon Cage Netting and the Efficacy of a Typical Copper-Based Antifoulant. Aquaculture, 262, 219-226.
  • Braithwaite, R.A., McEvoy, L.A. (2005). Marine bio-fouling on fish farms and its remediation. Advance in Marine Biololgy 47, 215-252.
  • Burridge L., Weis J.S., Cabello F., Pizarro J., Bostick K. (2010). Chemical Use in Salmon Aquaculture: A Review of Current Practices and Possible Environmental Effects. Aquaculture, 306, 7-23.
  • Buyukates Y., Celikkol B., Yigit M., DeCew J., Bulut M. (2017). Environmental Monitoring Around an Offshore Fish Farm with Copper Alloy Mesh Pens in the Northern Aegean Sea. American Journal of Environmental Protection, 6, 50-61.
  • Castritsi-Catharios J., Neofitou N., Vorloou A.A. (2015). Comparison of Heavy Metal Concentrations in Fish Samples From Three Fish Farms (Eastern Mediterranean) Utilizing Antifouling Paints. Toxicological and Environmental Chemistry, 97, 116-123.
  • Chambers, M., Bunker, J., Watson III, W.H., Howell III, W.H. (2012). Comparative growth and survival of juvenile Atlantic Cod (Gadus morhua) cultured in copper and nylon net pens. Journal of Aquaculture Research and Development 3, 137-142.
  • Drach, A. (2013). Utilization of Copper Alloys for Marine Applications. Doctoral dissertation, University of New Hampshire.
  • Dwyer, R.L., Stillman, H. (2009). Environmental Performance of Copper Alloy Mesh in Marine Fish Farming: The Case for Using Solid Copper Alloy Mesh. EcoSea Innovation in Aquaculture, International Copper Association pp: 18.
  • Efstathiou, P.A., Kouskouni, E., Karlovasiti, V., Manolidou, Z., Efstathiou, A.P. (2016). Use of copper alloy cage in floating fsh culture for the farming of Mediterranean marine fsh. 2nd International Congress on Applied Ichthyology & Aquatic Environment 10-12 November 2016, Messolonghi, Greece.
  • FAO, 2016. FAO Statistical Query Results, Fisheries and Aquaculture Information and Statistics Branch - 05/12/2016 http://www.fao.org/figis/servlet/SQServlet?file=/work/FIGIS/prod/webapps/figis/temp/hqp_585971118044155575.xml&outtype=html
  • Fitridge, I., Dempster, T., Guenther, J., de Nys, R., (2012). The impact and control of biofouling in marine aquaculture: a review. Biofouling Journal of Bioadhesion Biofilm Research, 28(7), 649-669.
  • Gonzalez, E.P., Hurtado, C.F., Gace, L., Augsburger, A., (2013). Economic impacts of adopting copper alloy mesh in trout aquaculture: Chilean example. Aquaculture Economics & Management, 17(1), 71-86.
  • Ingram D., (2018). How to estimate man-hour productivity in construction. Cited 12.01.2018. http://smallbusiness.chron.com/estimate-manhour-productivity-construction-80878.html
  • Jackson, D., Drumm, A., McEvoy, S., Jensen, O., Mendiola, D., Gabina, G., Borg, J.A., Papageorgiou, N., Karakassis, Y., Black, K.D. (2015). A pan-European valuation of the extent, causes and cost of escape events from sea cage fish farming. Aquaculture, 436, 21-26.
  • Kalantzi, I., Zeri, C., Catsiki, V.A., Tsangaris, C., Strogyloudi, E, et al. (2016). Assessment of the use of copper alloy aquaculture nets: Potential impacts on the marine environment and on the farmed fish. Aquaculture, 465, 209-222.
  • Katranitsas A., Castritsi-Catharios J., Persoone G. (2003). The Effects of a Copper-based Antifouling Paint on Mortality and Enzymatic Activity of a Non-Target Marine Organism. Marine Pollution Bullettin, 46, 1491-1494.
  • Klebert, P., Lader, P., Gansel, L., Oppedal, F. (2013). Hydrodynamic interactions on net panel and aquaculture fish cages: a review. Ocean Engineering, 58, 260-274.
  • Lader, P., Dempster, T., Fredheim, A., Jensen, O. (2008). Current induced net deformations in full-scale cages for Atlantic salmon (Salmo salar). Aquacultre Engineering, 38, 52-65.
  • Nys R.D., Guenther J. (2009). The Impact and Control of Biofouling in Marine Finfish Aquaculture. In: Hellio C, Yebra D (eds) Advances in Marine Antifouling Coatings and Technologies. Woodhead Publishing Limited, Cambridge, UK, pp 177-221. ISBN 1845693868
  • Solberg, C., Saethreb, L., Julshamn, K. (2002). The effect ofcopper-treated net pens on farmed salmon (Salmo salar) and other marine organisms and sediments. Marine Pollution Bullettin, 45, 126-132.
  • Yigit M., Celikkol B., Bulut M., DeCew J., Ozalp B., Yilmaz S., Kaya H., Kizilkaya B., Hisar O., Yildiz H., Yigit U., Sahinyilmaz M., Dwyer R.L. (2016).
  • Monitoring of Trace Metals, Biochemical Composition and Growth of Axillary Seabream (Pagellus acarne Risso, 1827) in Offshore Copper Alloy Mesh Cages. Mediterranean Marine Science, 17(2), 396-403.
  • Yigit, M., Celikkol, B., Bulut, M., DeCew, J., Ozalp, B. (2016). Monitoring of trace metals, biochemical composition and growth of Axillary seabream (Pagellus acarne Risso, 1827) in offshore copper alloy mesh cages. Mediterranean Marine Science, 17, 396-403.
  • Yigit Ü, Ergün S, Celikkol B, Bulut M, Yigit M. (2017). Bio-economic efficiency of copper alloy mesh technology in offshore cage systems for European seabass aquaculture. Indian Journal of Geo-Marine Sciences, 46(10), 2017-2024.
  • Yigit M., Celikkol B., Yilmaz S., Bulut M., Özalp H.B., Dwyer B., Maita M., Kizilkaya B., Yiğit Ü., Ergün S., Gürses K., Büyükateş Y. (2018). Bioaccumulation of trace metals in Mediterranean mussels (Mytilus galloprovincialis) from a fish farm with copper-alloy mesh pens and potential risk assessment. Human and Ecological Risk Assessment: An International Journal, 24(2), 465-481.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Hidrobiyoloji
Bölüm Articles
Yazarlar

Murat Yiğit 0000-0001-8086-9125

Michael Osienski 0000-0001-6312-886X

Judson Decew 0000-0001-8743-4095

Barbaros Çelikkol 0000-0002-4442-8530

Osman S. Kesbiç 0000-0002-1576-1836

Mustafa Karga 0000-0003-0398-3236

Ümit Acar 0000-0003-2515-5490

Evrim Kurtay 0000-0002-7234-8407

Musa Bulut 0000-0002-4997-8208

Barış Özalp 0000-0003-2640-8912

Ümüt Yiğit 0000-0002-1378-2422

Nic Taylor 0000-0001-8034-5815

Robert L. Dwyer 0000-0002-5021-5531

Yayımlanma Tarihi 31 Ocak 2018
Gönderilme Tarihi 15 Aralık 2017
Yayımlandığı Sayı Yıl 2018Cilt: 1 Sayı: 1

Kaynak Göster

APA Yiğit, M., Osienski, M., Decew, J., Çelikkol, B., vd. (2018). CONSTRUCTION, ASSEMBLY AND SYSTEM DEPLOYMENT OF A FISH CAGE WITH COPPER ALLOY MESH PEN: CHALLENGING WORK LOAD AND ESTIMATION OF MAN-POWER. Aquatic Research, 1(1), 38-49. https://doi.org/10.3153/AR18005

16291

is licensed under a CreativeCommons Attribtion-ShareAlike 4.0 International Licence 14628   1325927040

Diamond Open Access refers to a scholarly publication model in which journals and platforms do not charge fees to either authors or readers.

Open Access Statement:

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.

Archiving Policy:

Archiving is done according to TÜBİTAK ULAKBİM "DergiPark" publication policy (LOCKSS).