Research Article
BibTex RIS Cite

Heat inactivation of Escherichia coli O157:H7 and Salmonella Enteritidis in sous vide-cooked anchovy enriched with ascorbic acid at low temperature

Year 2025, Volume: 8 Issue: 2, 130 - 139, 28.03.2025
https://doi.org/10.3153/AR25013

Abstract

Low-temperature cooking during the sous vide process enhances sensory properties, particularly in heat-sensitive foods. While enhancing efficiency, it also raises the risk of foodborne pathogen persistence. In this study, butterfly anchovy fillets were inoculated with a low dose of Escherichia coli O157:H7 or Salmonella Enteritidis. To amplify the effect of heat treatment, ascorbic acid (AA) was incorporated into sous vide anchovies before thermal processing at 55°C. Sampling was conducted at 5-minute intervals up to 30 min, followed by longer intervals. The initial E. coli load was 4.49 log CFU/g. The addition of AA significantly reduced (P<0.05) bacterial counts at and after the 45th min compared to the untreated control (C) group. The lowest count, 1.30 log CFU/g, was observed in the AA group at 120 min of cooking. A tailing effect was noted after 30 min of heating in both groups. On the other hand, Salmonella counts gradually declined without statistically significant differences (P>0.05) between groups. No colonies (<1.00 log/g) were detected after the 30th and 45th min in the AA and C samples, respectively. Salmonella exhibited greater heat sensitivity than E. coli. Further research is needed to assess the safety of incorporating AA into low-temperature cooked sous vide seafood.

Ethical Statement

Ethics committee approval is not required for this study.

References

  • Ansorena, D., Guembe, A., Mendizábal, T., Astiasarán, I. (2010). Effect of fish and oil nature on frying process and nutritional product quality. Journal of Food Science, 75(2), H62-H67. https://doi.org/10.1111/j.1750-3841.2009.01472.x
  • Becker, A., Boulaaba, A., Pingen, S., Krischek, C., Klein, G. (2016). Low temperature cooking of pork meat-Physicochemical and sensory aspects. Meat Science, 118, 82-88. https://doi.org/10.1016/j.meatsci.2016.03.026
  • Betteridge, D.J. (2000). What is oxidative stress?. Metabolism, 49(2), 3-8. https://doi.org/10.1016/s0026-0495(00)80077-3
  • Brashears, M.M., Amezquita, A., Stratton, J. (2001). Validation of methods used to recover Escherichia coli O157: H7 and Salmonella spp. subjected to stress conditions. Journal of Food Protection, 64(10), 1466-1471. https://doi.org/10.4315/0362-028X-64.10.1466
  • Chiasson, F., Borsa, J., Ouattara, B., Lacroix, M. (2004). Radiosensitization of Escherichia coli and Salmonella Typhi in ground beef. Journal of Food Protection, 67(6), 1157-1162. https://doi.org/10.4315/0362-028X-67.6.1157
  • Christensen, L., Gunvig, A., Tørngren, M. A., Aaslyng, M. D., Knøchel, S., Christensen, M. (2012). Sensory characteristics of meat cooked for prolonged times at low temperature. Meat Science, 90(2), 485-489. https://doi.org/10.1016/j.meatsci.2011.09.012
  • Chuah, A.M., Lee, Y.C., Yamaguchi, T., Takamura, H., Yin, L.J., Matoba, T. (2008). Effect of cooking on the antioxidant properties of coloured peppers. Food Chemistry, 111(1), 20-28. https://doi.org/10.1016/j.foodchem.2008.03.022
  • Codex Alimentarius Commission. (2024). Ascorbic acid, L- (300). 47th Session of the Codex Alimentarius Commission, FAO/WHO. https://www.fao.org/gsfaonline/additives/details.html?id=241 (accessed 15.12.2024).
  • Coşansu, S. (2018). Survival kinetics of heat-stressed Escherichia coli O157: H7 and Listeria monocytogenes cells as post-fermentation contaminants in kefir during refrigerated storage. LWT, 98, 635-641. https://doi.org/10.1016/j.lwt.2018.08.057
  • Coşansu, S., Mol, S., Haskaraca, G. (2022). Sous-vide cooking: Effects on seafood quality and combination with other hurdles. International Journal of Gastronomy and Food Science, 29, 100586. https://doi.org/10.1016/j.ijgfs.2022.100586
  • Davey, M.W., Montagu, M.V., Inze, D., Sanmartin, M., Kanellis, A., Smirnoff, N., Benzie, I.J.J., Strain, J.J., Favell, D., Fletcher, J. (2000). Plant L‐ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. Journal of the Science of Food and Agriculture, 80(7), 825-860. https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<825::AID-JSFA598>3.0.CO;2-6
  • Deng, J.C., Watson, M., Bates, R.P., Schroeder, E. (1978). Ascorbic acid as an antioxidant in fish flesh and its degradation. Journal of Food Science, 43(2), 457-460. https://doi.org/10.1111/j.1365-2621.1978.tb02329.x
  • Dogruyol, H., Mol, S., & Cosansu, S. (2020). Increased thermal sensitivity of Listeria monocytogenes in sous-vide salmon by oregano essential oil and citric acid. Food Microbiology, 90, 103496. https://doi.org/10.1016/j.fm.2020.103496
  • Elafify, M., Darwish, W.S., El-Toukhy, M., Badawy, B.M., Mohamed, R.E., Shata, R.R. (2022). Prevalence of multidrug resistant Salmonella spp. in dairy products with the evaluation of the inhibitory effects of ascorbic acid, pomegranate peel extract, and D-tryptophan against Salmonella growth in cheese. International Journal of Food Microbiology, 364, 109534. https://doi.org/10.1016/j.ijfoodmicro.2022.109534
  • FSIC (2014). Temperature danger zone. Food Safety Information Council. https://www.foodsafety.asn.au/topic/temperature-danger-zone/ (accessed 20.11.2024).
  • Gao, Z., Shao, J., Sun, H., Zhong, W., Zhuang, W., Zhang, Z. (2012). Evaluation of different kinds of organic acids and their antibacterial activity in Japanese Apricot fruits. African Journal of Agricultural Research, 7(35), 4911-4918. https://doi.org/10.5897/AJAR12.1347
  • Giannuzzi, L., Zaritzky, N.E. (1996). Effect of ascorbic acid in comparison to citric and lactic acid on Listeria monocytogenes inhibition at refrigeration temperatures. Lebensmittel-Wissenschaft und-Technologie (LWT), 29, 278e285. https://doi.org/10.1006/fstl.1996.0041
  • Giroux, M., Ouattara, B., Yefsah, R., Smoragiewicz, W., Saucier, L., Lacroix, M. (2001). Combined effect of ascorbic acid and gamma irradiation on microbial and sensorial characteristics of beef patties during refrigerated storage. Journal of Agricultural and Food Chemistry, 49(2), 919-925. https://doi.org/10.1021/jf000544k
  • Hamre, K., Lie, Ø., Sandnes, K. (2003). Development of lipid oxidation and flesh colour in frozen stored fillets of Norwegian spring-spawning herring (Clupea harengus L.). Effects of treatment with ascorbic acid. Food Chemistry, 82(3), 447-453. https://doi.org/10.1016/S0308-8146(03)00070-0
  • Heiman, K.E., Mody, R.K., Johnson, S.D., Griffin, P.M., Gould, L.H. (2015). Escherichia coli O157 outbreaks in the United States, 2003–2012. Emerging Infectious Diseases, 21(8), 1293. https://doi.org/10.3201/eid2108.141364
  • Hunt, H.B., Watson, S.C., Chaves, B.D., Cavender, G.A., Sullivana, G.A. (2021). Fate of Escherichia coli in Nonintact beef steaks during sous-vide cooking at different holding time and temperature combinations. Food Protection Trends, 41(6), 569-573.
  • Hunt, H.B., Watson, S.C., Chaves, B.D., Sullivan, G.A. (2023). Inactivation of Salmonella in nonintact beef during low-temperature sous vide cooking. Journal of Food Protection, 86(1), 100010. https://doi.org/10.1016/j.jfp.2022.11.003
  • Institute of Medicine. (2000). Dietary reference intakes for vitamin c, vitamin e, selenium, and carotenoids. National Academy Press: Washington, DC, USA, 528 p. ISBN: 978-0-309-06935-9 https://doi.org/10.17226/9810
  • Interagency Food Safety Analytics Collaboration (2022). Foodborne illness source attribution estimates for 2020 for Salmonella, Escherichia coli O157, and Listeria monocytogenes using multi-year outbreak surveillance data, United States. GA and D.C.: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Food and Drug Administration, U.S. Department of Agriculture’s Food Safety and Inspection Service.
  • Juneja, V.K. (2007). Thermal inactivation of Salmonella spp. in ground chicken breast or thigh meat. International Journal of Food Science and Technology, 42(12), 1443–1448. https://doi.org/10.1111/j.1365-2621.2006.01362.x
  • Juneja, V.K., Bari, M.L, Inatsu, Y., Kawamoto, S., Friedman, M. (2009). Thermal destruction of Escherichia coli O157:H7 in sous-vide cooked ground beef as affected by tea leaf and apple skin powders. Journal of Food Protection, 72(4), 860-865. https://doi.org/10.4315/0362-028X-72.4.860
  • Kang, J.W., Lee, H.Y., & Kang, D.H. (2021). Synergistic bactericidal effect of hot water with citric acid against Escherichia coli O157: H7 biofilm formed on stainless steel. Food Microbiology, 95, 103676. https://doi.org/10.1016/j.fm.2020.103676
  • Karyotis, D., Skandamis, P.N., Juneja, V.K. (2017). Thermal inactivation of Listeria monocytogenes and Salmonella spp. in sous-vide processed marinated chicken breast. Food Research International, 100(Part 1), 894-898. https://doi.org/10.1016/j.foodres.2017.07.078
  • Lee, S.Y., Kang, D.H. (2009). Combined effects of heat, acetic acid, and salt for inactivating Escherichia coli O157:H7 in laboratory media. Food Control, 20(11), 1006-1012. https://doi.org/10.1016/j.foodcont.2008.12.002
  • Ma, S., Zhou, N., Fu, Y., & Wang, J. (2024). Combined ascorbic acid and mild heat treatment to improve the quality of fresh-cut carrots. Foods, 13(12), 1904. https://doi.org/10.3390/foods13121904
  • Misu, G.A., Canja, C.M., Lupu, M., Matei, F. (2024). Advances and drawbacks of sous-vide technique—a critical review. Foods, 13(14), 2217. https://doi.org/10.3390/foods13142217
  • Mol, S., Coşansu, S. (2022). Seafood safety, potential hazards and future perspective. Turkish Journal of Fisheries and Aquatic Sciences, 22(6), TRJFAS20533. https://doi.org/10.4194/TRJFAS20533
  • Mortensen, L.M., Frøst, M.B., Skibsted, L.H., Risbo, J. (2012). Effect of time and temperature on sensory properties in low-temperature long-time sous-vide cooking of beef. Journal of Culinary Science & Technology, 10(1), 75–90. https://doi.org/10.1080/15428052.2012.651024
  • Naidu, K.A. (2003). Vitamin C in human health and disease is still a mystery? An overview. Nutrition Journal, 2(7), 1-10. https://doi.org/10.1186/1475-2891-2-7
  • Newell, D.G., Koopmans, M., Verhoef, L., Duizer, E., Aidara-Kane, A., Sprong, H., Opsteegh, M., Langelaar, M., Threfall, J., Scheutz, F., van der Giessen, J., Kruse, H. (2010). Food-borne diseases—the challenges of 20 years ago still persist while new ones continue to emerge. International Journal of Food Microbiology, 139, S3-S15. https://doi.org/10.1016/j.ijfoodmicro.2010.01.021
  • Ogden, S.K., Taylor, A.J., Dodd, C.E., Guerrero, I., Buendia, H.E., Gallardo, F. (1996). The effect of combining propionic and ascorbic acid on the keeping qualities of fresh minced pork during storage. LWT-Food Science and Technology, 29(3), 227-233. https://doi.org/10.1006/fstl.1996.0033
  • Ouattara, B., Giroux, M., Smoragiewicz, W., Saucier, L., Lacroix, M. (2002). Combined effect of gamma irradiation, ascorbic acid, and edible coating on the improvement of microbial and biochemical characteristics of ground beef. Journal of Food Protection, 65(6), 981-987. https://doi.org/10.4315/0362-028X-65.6.981
  • Patil, K., Adhikari, M., Rubinelli, P., Desiree, K., Vierck, K.R., Acuff, J.C. (2024). Evaluating the safety of sous-vide cooking for beef products inoculated with single strains of Salmonella enterica and Escherichia coli O157. Journal of Food Protection, 87(5), 100252. https://doi.org/10.1016/j.jfp.2024.100252
  • Przekwas, J., Wiktorczyk, N., Budzyńska, A., Wałecka Zacharska, E., Gospodarek-Komkowska, E. (2020). Ascorbic acid changes growth of food-borne pathogens in the early stage of biofilm formation. Microorganisms, 8(4), 553. https://doi.org/10.3390/microorganisms8040553
  • Sangcharoen, N., Klaypradit, W., Wilaipun, P. (2017). Antimicrobial activity optimization of nisin, ascorbic acid and ethylenediamine tetraacetic acid disodium salt (EDTA) against Salmonella Enteritidis ATCC 13076 using response surface methodology. Agriculture and Natural Resources, 51(5), 355-364. https://doi.org/10.1016/j.anres.2017.12.005
  • Sanjuás‐Rey, M., Gallardo, J.M., Barros‐Velázquez, J., Aubourg, S.P. (2012). Microbial activity inhibition in chilled mackerel (Scomber scombrus) by employment of an organic acid‐icing system. Journal of Food Science, 77(5), M264-M269. https://doi.org/10.1111/j.1750-3841.2012.02672.x
  • Selim, S.A., El Alfy, S.M., Abdel Aziz, M.H., Mashait, M.S., Warrad, M.F. (2012). Evolution of bactericidal activity of selected food additives against food borne microbial pathogens. Biosciences Biotechnology Research Asia, 9(1), 7-17. https://doi.org/10.13005/bbra/961
  • Tajkarimi, M., Ibrahim, S.A. (2011). Antimicrobial activity of ascorbic acid alone or in combination with lactic acid on Escherichia coli O157: H7 in laboratory medium and carrot juice. Food Control, 22(6), 801-804. https://doi.org/10.1016/j.foodcont.2010.11.030
  • TUIK (2024). Su ürünleri, 2023. Türkiye İstatistik Kurumu. https://data.tuik.gov.tr/Bulten/Index?p=Su-Urunleri-2023-53702 (accessed 31.12.2024).
  • Uran, H., Gokoglu, N. (2014). Effects of cooking methods and temperatures on nutritional and quality characteristics of anchovy (Engraulis encrasicholus). Journal of Food Science and Technology, 51, 722-728. https://doi.org/10.1007/s13197-011-0551-5
  • USDA (2017). Danger zone. US Department of Agriculture https://www.fsis.usda.gov/food-safety/safe-food-handling-and-preparation/food-safety-basics/danger-zone-40f-140f (accessed 20.11.2024).
  • Üçok Alakavuk, D., Ulusoy, Ş., Coşansu, S., Mol, S. (2021). Reduction of Salmonella Enteritidis in fish by microwave cooking. Turkish Journal of Fisheries and Aquatic Sciences, 21(11), 535-540. http://doi.org/10.4194/1303-2712-v21_11_01
  • Vencia, W., Gariano, G.R., Bianchi, D.M., Zuccon, F., Sommariva, M., Nguon, B., Malabaila, A., Gallina, S., Decastelli, L. (2015). A Salmonella enterica subsp. enterica serovar Enteritidis foodborne outbreak after consumption of homemade lasagne. Italian Journal of Food Safety, 4(4), 5127. https://doi.org/10.4081/ijfs.2015.5127
  • Verghese, R.J., Mathew, S.K., David, A. (2017a). Antimicrobial activity of Vitamin C demonstrated uropathogenic Escherichia coli and Klebsiella pneumoniae. Journal of Current Research in Scientific Medicine, 3(2), 88-93. https://doi.org/10.4103/jcrsm.jcrsm_35_17
  • Verghese, R.J., Ramya, S., Kanungo, R. (2017b). In vitro antibacterial activity of vitamin C and in combination with ciprofloxacin against uropathogenic Escherichia coli. Journal of Clinical and Diagnostic Research, 11(12), 1-5. https://doi.org/10.7860/JCDR/2017/31251.10960
  • Zambuchini, B., Fiorini, D., Verdenelli, M.C., Orpianesi, C., Ballini, R. (2008). Inhibition of microbiological activity during sole (Solea solea L.) chilled storage by applying ellagic and ascorbic acids. LWT-Food Science and Technology, 41(9), 1733-1738. https://doi.org/10.1016/j.lwt.2007.11.004
Year 2025, Volume: 8 Issue: 2, 130 - 139, 28.03.2025
https://doi.org/10.3153/AR25013

Abstract

References

  • Ansorena, D., Guembe, A., Mendizábal, T., Astiasarán, I. (2010). Effect of fish and oil nature on frying process and nutritional product quality. Journal of Food Science, 75(2), H62-H67. https://doi.org/10.1111/j.1750-3841.2009.01472.x
  • Becker, A., Boulaaba, A., Pingen, S., Krischek, C., Klein, G. (2016). Low temperature cooking of pork meat-Physicochemical and sensory aspects. Meat Science, 118, 82-88. https://doi.org/10.1016/j.meatsci.2016.03.026
  • Betteridge, D.J. (2000). What is oxidative stress?. Metabolism, 49(2), 3-8. https://doi.org/10.1016/s0026-0495(00)80077-3
  • Brashears, M.M., Amezquita, A., Stratton, J. (2001). Validation of methods used to recover Escherichia coli O157: H7 and Salmonella spp. subjected to stress conditions. Journal of Food Protection, 64(10), 1466-1471. https://doi.org/10.4315/0362-028X-64.10.1466
  • Chiasson, F., Borsa, J., Ouattara, B., Lacroix, M. (2004). Radiosensitization of Escherichia coli and Salmonella Typhi in ground beef. Journal of Food Protection, 67(6), 1157-1162. https://doi.org/10.4315/0362-028X-67.6.1157
  • Christensen, L., Gunvig, A., Tørngren, M. A., Aaslyng, M. D., Knøchel, S., Christensen, M. (2012). Sensory characteristics of meat cooked for prolonged times at low temperature. Meat Science, 90(2), 485-489. https://doi.org/10.1016/j.meatsci.2011.09.012
  • Chuah, A.M., Lee, Y.C., Yamaguchi, T., Takamura, H., Yin, L.J., Matoba, T. (2008). Effect of cooking on the antioxidant properties of coloured peppers. Food Chemistry, 111(1), 20-28. https://doi.org/10.1016/j.foodchem.2008.03.022
  • Codex Alimentarius Commission. (2024). Ascorbic acid, L- (300). 47th Session of the Codex Alimentarius Commission, FAO/WHO. https://www.fao.org/gsfaonline/additives/details.html?id=241 (accessed 15.12.2024).
  • Coşansu, S. (2018). Survival kinetics of heat-stressed Escherichia coli O157: H7 and Listeria monocytogenes cells as post-fermentation contaminants in kefir during refrigerated storage. LWT, 98, 635-641. https://doi.org/10.1016/j.lwt.2018.08.057
  • Coşansu, S., Mol, S., Haskaraca, G. (2022). Sous-vide cooking: Effects on seafood quality and combination with other hurdles. International Journal of Gastronomy and Food Science, 29, 100586. https://doi.org/10.1016/j.ijgfs.2022.100586
  • Davey, M.W., Montagu, M.V., Inze, D., Sanmartin, M., Kanellis, A., Smirnoff, N., Benzie, I.J.J., Strain, J.J., Favell, D., Fletcher, J. (2000). Plant L‐ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. Journal of the Science of Food and Agriculture, 80(7), 825-860. https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<825::AID-JSFA598>3.0.CO;2-6
  • Deng, J.C., Watson, M., Bates, R.P., Schroeder, E. (1978). Ascorbic acid as an antioxidant in fish flesh and its degradation. Journal of Food Science, 43(2), 457-460. https://doi.org/10.1111/j.1365-2621.1978.tb02329.x
  • Dogruyol, H., Mol, S., & Cosansu, S. (2020). Increased thermal sensitivity of Listeria monocytogenes in sous-vide salmon by oregano essential oil and citric acid. Food Microbiology, 90, 103496. https://doi.org/10.1016/j.fm.2020.103496
  • Elafify, M., Darwish, W.S., El-Toukhy, M., Badawy, B.M., Mohamed, R.E., Shata, R.R. (2022). Prevalence of multidrug resistant Salmonella spp. in dairy products with the evaluation of the inhibitory effects of ascorbic acid, pomegranate peel extract, and D-tryptophan against Salmonella growth in cheese. International Journal of Food Microbiology, 364, 109534. https://doi.org/10.1016/j.ijfoodmicro.2022.109534
  • FSIC (2014). Temperature danger zone. Food Safety Information Council. https://www.foodsafety.asn.au/topic/temperature-danger-zone/ (accessed 20.11.2024).
  • Gao, Z., Shao, J., Sun, H., Zhong, W., Zhuang, W., Zhang, Z. (2012). Evaluation of different kinds of organic acids and their antibacterial activity in Japanese Apricot fruits. African Journal of Agricultural Research, 7(35), 4911-4918. https://doi.org/10.5897/AJAR12.1347
  • Giannuzzi, L., Zaritzky, N.E. (1996). Effect of ascorbic acid in comparison to citric and lactic acid on Listeria monocytogenes inhibition at refrigeration temperatures. Lebensmittel-Wissenschaft und-Technologie (LWT), 29, 278e285. https://doi.org/10.1006/fstl.1996.0041
  • Giroux, M., Ouattara, B., Yefsah, R., Smoragiewicz, W., Saucier, L., Lacroix, M. (2001). Combined effect of ascorbic acid and gamma irradiation on microbial and sensorial characteristics of beef patties during refrigerated storage. Journal of Agricultural and Food Chemistry, 49(2), 919-925. https://doi.org/10.1021/jf000544k
  • Hamre, K., Lie, Ø., Sandnes, K. (2003). Development of lipid oxidation and flesh colour in frozen stored fillets of Norwegian spring-spawning herring (Clupea harengus L.). Effects of treatment with ascorbic acid. Food Chemistry, 82(3), 447-453. https://doi.org/10.1016/S0308-8146(03)00070-0
  • Heiman, K.E., Mody, R.K., Johnson, S.D., Griffin, P.M., Gould, L.H. (2015). Escherichia coli O157 outbreaks in the United States, 2003–2012. Emerging Infectious Diseases, 21(8), 1293. https://doi.org/10.3201/eid2108.141364
  • Hunt, H.B., Watson, S.C., Chaves, B.D., Cavender, G.A., Sullivana, G.A. (2021). Fate of Escherichia coli in Nonintact beef steaks during sous-vide cooking at different holding time and temperature combinations. Food Protection Trends, 41(6), 569-573.
  • Hunt, H.B., Watson, S.C., Chaves, B.D., Sullivan, G.A. (2023). Inactivation of Salmonella in nonintact beef during low-temperature sous vide cooking. Journal of Food Protection, 86(1), 100010. https://doi.org/10.1016/j.jfp.2022.11.003
  • Institute of Medicine. (2000). Dietary reference intakes for vitamin c, vitamin e, selenium, and carotenoids. National Academy Press: Washington, DC, USA, 528 p. ISBN: 978-0-309-06935-9 https://doi.org/10.17226/9810
  • Interagency Food Safety Analytics Collaboration (2022). Foodborne illness source attribution estimates for 2020 for Salmonella, Escherichia coli O157, and Listeria monocytogenes using multi-year outbreak surveillance data, United States. GA and D.C.: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Food and Drug Administration, U.S. Department of Agriculture’s Food Safety and Inspection Service.
  • Juneja, V.K. (2007). Thermal inactivation of Salmonella spp. in ground chicken breast or thigh meat. International Journal of Food Science and Technology, 42(12), 1443–1448. https://doi.org/10.1111/j.1365-2621.2006.01362.x
  • Juneja, V.K., Bari, M.L, Inatsu, Y., Kawamoto, S., Friedman, M. (2009). Thermal destruction of Escherichia coli O157:H7 in sous-vide cooked ground beef as affected by tea leaf and apple skin powders. Journal of Food Protection, 72(4), 860-865. https://doi.org/10.4315/0362-028X-72.4.860
  • Kang, J.W., Lee, H.Y., & Kang, D.H. (2021). Synergistic bactericidal effect of hot water with citric acid against Escherichia coli O157: H7 biofilm formed on stainless steel. Food Microbiology, 95, 103676. https://doi.org/10.1016/j.fm.2020.103676
  • Karyotis, D., Skandamis, P.N., Juneja, V.K. (2017). Thermal inactivation of Listeria monocytogenes and Salmonella spp. in sous-vide processed marinated chicken breast. Food Research International, 100(Part 1), 894-898. https://doi.org/10.1016/j.foodres.2017.07.078
  • Lee, S.Y., Kang, D.H. (2009). Combined effects of heat, acetic acid, and salt for inactivating Escherichia coli O157:H7 in laboratory media. Food Control, 20(11), 1006-1012. https://doi.org/10.1016/j.foodcont.2008.12.002
  • Ma, S., Zhou, N., Fu, Y., & Wang, J. (2024). Combined ascorbic acid and mild heat treatment to improve the quality of fresh-cut carrots. Foods, 13(12), 1904. https://doi.org/10.3390/foods13121904
  • Misu, G.A., Canja, C.M., Lupu, M., Matei, F. (2024). Advances and drawbacks of sous-vide technique—a critical review. Foods, 13(14), 2217. https://doi.org/10.3390/foods13142217
  • Mol, S., Coşansu, S. (2022). Seafood safety, potential hazards and future perspective. Turkish Journal of Fisheries and Aquatic Sciences, 22(6), TRJFAS20533. https://doi.org/10.4194/TRJFAS20533
  • Mortensen, L.M., Frøst, M.B., Skibsted, L.H., Risbo, J. (2012). Effect of time and temperature on sensory properties in low-temperature long-time sous-vide cooking of beef. Journal of Culinary Science & Technology, 10(1), 75–90. https://doi.org/10.1080/15428052.2012.651024
  • Naidu, K.A. (2003). Vitamin C in human health and disease is still a mystery? An overview. Nutrition Journal, 2(7), 1-10. https://doi.org/10.1186/1475-2891-2-7
  • Newell, D.G., Koopmans, M., Verhoef, L., Duizer, E., Aidara-Kane, A., Sprong, H., Opsteegh, M., Langelaar, M., Threfall, J., Scheutz, F., van der Giessen, J., Kruse, H. (2010). Food-borne diseases—the challenges of 20 years ago still persist while new ones continue to emerge. International Journal of Food Microbiology, 139, S3-S15. https://doi.org/10.1016/j.ijfoodmicro.2010.01.021
  • Ogden, S.K., Taylor, A.J., Dodd, C.E., Guerrero, I., Buendia, H.E., Gallardo, F. (1996). The effect of combining propionic and ascorbic acid on the keeping qualities of fresh minced pork during storage. LWT-Food Science and Technology, 29(3), 227-233. https://doi.org/10.1006/fstl.1996.0033
  • Ouattara, B., Giroux, M., Smoragiewicz, W., Saucier, L., Lacroix, M. (2002). Combined effect of gamma irradiation, ascorbic acid, and edible coating on the improvement of microbial and biochemical characteristics of ground beef. Journal of Food Protection, 65(6), 981-987. https://doi.org/10.4315/0362-028X-65.6.981
  • Patil, K., Adhikari, M., Rubinelli, P., Desiree, K., Vierck, K.R., Acuff, J.C. (2024). Evaluating the safety of sous-vide cooking for beef products inoculated with single strains of Salmonella enterica and Escherichia coli O157. Journal of Food Protection, 87(5), 100252. https://doi.org/10.1016/j.jfp.2024.100252
  • Przekwas, J., Wiktorczyk, N., Budzyńska, A., Wałecka Zacharska, E., Gospodarek-Komkowska, E. (2020). Ascorbic acid changes growth of food-borne pathogens in the early stage of biofilm formation. Microorganisms, 8(4), 553. https://doi.org/10.3390/microorganisms8040553
  • Sangcharoen, N., Klaypradit, W., Wilaipun, P. (2017). Antimicrobial activity optimization of nisin, ascorbic acid and ethylenediamine tetraacetic acid disodium salt (EDTA) against Salmonella Enteritidis ATCC 13076 using response surface methodology. Agriculture and Natural Resources, 51(5), 355-364. https://doi.org/10.1016/j.anres.2017.12.005
  • Sanjuás‐Rey, M., Gallardo, J.M., Barros‐Velázquez, J., Aubourg, S.P. (2012). Microbial activity inhibition in chilled mackerel (Scomber scombrus) by employment of an organic acid‐icing system. Journal of Food Science, 77(5), M264-M269. https://doi.org/10.1111/j.1750-3841.2012.02672.x
  • Selim, S.A., El Alfy, S.M., Abdel Aziz, M.H., Mashait, M.S., Warrad, M.F. (2012). Evolution of bactericidal activity of selected food additives against food borne microbial pathogens. Biosciences Biotechnology Research Asia, 9(1), 7-17. https://doi.org/10.13005/bbra/961
  • Tajkarimi, M., Ibrahim, S.A. (2011). Antimicrobial activity of ascorbic acid alone or in combination with lactic acid on Escherichia coli O157: H7 in laboratory medium and carrot juice. Food Control, 22(6), 801-804. https://doi.org/10.1016/j.foodcont.2010.11.030
  • TUIK (2024). Su ürünleri, 2023. Türkiye İstatistik Kurumu. https://data.tuik.gov.tr/Bulten/Index?p=Su-Urunleri-2023-53702 (accessed 31.12.2024).
  • Uran, H., Gokoglu, N. (2014). Effects of cooking methods and temperatures on nutritional and quality characteristics of anchovy (Engraulis encrasicholus). Journal of Food Science and Technology, 51, 722-728. https://doi.org/10.1007/s13197-011-0551-5
  • USDA (2017). Danger zone. US Department of Agriculture https://www.fsis.usda.gov/food-safety/safe-food-handling-and-preparation/food-safety-basics/danger-zone-40f-140f (accessed 20.11.2024).
  • Üçok Alakavuk, D., Ulusoy, Ş., Coşansu, S., Mol, S. (2021). Reduction of Salmonella Enteritidis in fish by microwave cooking. Turkish Journal of Fisheries and Aquatic Sciences, 21(11), 535-540. http://doi.org/10.4194/1303-2712-v21_11_01
  • Vencia, W., Gariano, G.R., Bianchi, D.M., Zuccon, F., Sommariva, M., Nguon, B., Malabaila, A., Gallina, S., Decastelli, L. (2015). A Salmonella enterica subsp. enterica serovar Enteritidis foodborne outbreak after consumption of homemade lasagne. Italian Journal of Food Safety, 4(4), 5127. https://doi.org/10.4081/ijfs.2015.5127
  • Verghese, R.J., Mathew, S.K., David, A. (2017a). Antimicrobial activity of Vitamin C demonstrated uropathogenic Escherichia coli and Klebsiella pneumoniae. Journal of Current Research in Scientific Medicine, 3(2), 88-93. https://doi.org/10.4103/jcrsm.jcrsm_35_17
  • Verghese, R.J., Ramya, S., Kanungo, R. (2017b). In vitro antibacterial activity of vitamin C and in combination with ciprofloxacin against uropathogenic Escherichia coli. Journal of Clinical and Diagnostic Research, 11(12), 1-5. https://doi.org/10.7860/JCDR/2017/31251.10960
  • Zambuchini, B., Fiorini, D., Verdenelli, M.C., Orpianesi, C., Ballini, R. (2008). Inhibition of microbiological activity during sole (Solea solea L.) chilled storage by applying ellagic and ascorbic acids. LWT-Food Science and Technology, 41(9), 1733-1738. https://doi.org/10.1016/j.lwt.2007.11.004
There are 51 citations in total.

Details

Primary Language English
Subjects Food Microbiology
Journal Section Research Articles
Authors

Hande Doğruyol 0000-0002-0856-3823

Early Pub Date March 16, 2025
Publication Date March 28, 2025
Submission Date January 21, 2025
Acceptance Date March 6, 2025
Published in Issue Year 2025Volume: 8 Issue: 2

Cite

APA Doğruyol, H. (2025). Heat inactivation of Escherichia coli O157:H7 and Salmonella Enteritidis in sous vide-cooked anchovy enriched with ascorbic acid at low temperature. Aquatic Research, 8(2), 130-139. https://doi.org/10.3153/AR25013

16291

is licensed under a CreativeCommons Attribtion-ShareAlike 4.0 International Licence 14628   1325927040

Diamond Open Access refers to a scholarly publication model in which journals and platforms do not charge fees to either authors or readers.

Open Access Statement:

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.

Archiving Policy:

Archiving is done according to TÜBİTAK ULAKBİM "DergiPark" publication policy (LOCKSS).