Research Article
BibTex RIS Cite

Ultraviyole radyasyonunun istilacı Grateloupia turuturu üzerine fizyolojik etkileri

Year 2025, Volume: 8 Issue: 2, 120 - 129, 28.03.2025
https://doi.org/10.3153/AR25012

Abstract

İstilacı türler, antropolojik faaliyetler sonucunda bir ekosisteme giren organizmalardır. Bu türler yerleştikleri ortamdaki yerel türlerle rekabete girerek, ekolojik yapı üzerinde tehdit oluşturmakta ve biyoçeşitliliği değiştirebilmektedir. İstilacı bir tür olarak bilinen Grateloupia turuturu türü Türkiye'den ilk kez Mayıs 2015 tarihinde Bandırma kıyılarından rapor edilmiş ve günümüzde Erdek ve Mudanya kıyılarında da yayılış gösterdiği belirlenmiştir. Genel olarak istilacı türlerin ekolojik değişkenlere karşı geniş bir toleransa sahip olduğu bilinmektedir. Bu nedenle, bu çalışmada UVR’nin G. turuturu türü üzerine fizyolojik etkilerinin belirlenmesi ve G. turuturu türünün UVR’ye karşı cevaplarının araştırılması hedeflenmiştir. Bu amaçla G. turuturu örnekleri 3 farklı ışık rejiminde (fotosentetik aktif radyasyon, UVA ve UVB) kültüre alınmış ve fizyolojik cevapları araştırılmıştır. Elde edilen veriler UVR’ye maruz kalan örneklerin fotosentetik etkinliğinde ve nitrat redüktaz enzim aktivitelerinde artış olduğunu, buna karşın aksesuar pigment içeriklerinin değişmediğini göstermiştir. Sonuç olarak, G. turuturu türünün UVA enerjisini fotosentezde ışık kaynağı olarak kullanabildiği, UVR’ye karşı hassas olmayıp toleranslı olduğu anlaşılmaktadır. Bu nedenle G. turuturu türünün yerel türlerle rekabette avantajlı olabileceği düşünülmektedir.

Ethical Statement

Çalışma etik izin gerektirmemektedir.

Supporting Institution

Bursa Uludağ Üniversitesi, Bilimsel Araştırma Projeleri Birimi (BAP)

Project Number

FGA-2021-500

References

  • Bárbara, I., Cremades, J. (2004). Grateloupia lanceola versus Grateloupia turuturu (Gigartinales, Rhodophyta) en la Península Ibérica. Anales del Jardin Botanico de Madrid, 61(2), 103-118. https://doi.org/10.3989/ajbm.2004.v61.i2.38
  • Barıche, M., Al-Mabruk, S., Ateş, M.A., Büyük, A., Crocetta, F., Drıtsas, M., Edde, D., Fortıč, A., Gavrııl, E., Gerovasıleıou, V., Gökoğlu, M., Huseyınoglu, F., Karachle, P., Kleıtou, P., Terbıyık Kurt, T., Langeneck, J., Lardıccı, C., Lıpej, L., Pavloudı, C., Pınna, M., Rızgalla, J., Rüştü Özen, M., Sedano, F., Taşkın, E., Yıldız, G., Zangaro, F. (2020). New alien Mediterranean biodiversity records (March 2020). Mediterranean Marine Science, 21(1), 129-145. https://doi.org/10.12681/mms.21987
  • Beer, S., Eshel, A. (1985). Determining phycoerythrin and phycocyanin concentrations in aqueous crude extracts of red algae. Australian Journal of Marine and Freshwater Research, 36, 785-792. https://doi.org/10.1071/mf9850785
  • Bischof, K., Krabs, G., Hanelt, D., Wiencke, C. (2000). Photosynthetic characteristics and mycosporine-like amino acids under UV radiation: a competitive advantage of Mastocarpus stellatus over Chondrus crispus at the Helgoland shoreline? Helgol Mar Res, 54, 47–52. https://doi.org/10.1007/s101520050035
  • Bischof, K., Gomez, I., Molis, M., Hanelt, D., Karsten, U., Lüder, U., Roleda, M.Y., Zacher, K., Wiencke, C. (2006). “Ultraviolet radiation shapes seaweed communities”, Reviews in Environmental Science and Biotechnology, 5, 141-166. https://doi.org/10.1007/s11157-006-0002-3
  • Bommarito, C., Noe, S., Diaz-Morales, D.M., Lukic, I., Hiebenthal, C., Rilov, G., Guy-Haim, T., Wahl, M. (2024). Co-occurrence of native and invasive macroalgae might be facilitated under global warming. Science of The Total Environment, 912, 169087. https://doi.org/10.1016/j.scitotenv.2023.169087
  • Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72, 248-54. https://doi.org/10.1016/0003-2697(76)90527-3
  • Braune, W., Döhler, G. (1996). Impact of UV-B radiation on 15N-Ammonium and 15N-Nitrate uptake by Haematococcus lacustris (volvocales) II. The influence of a recovery period, Journal of Plant Physiology, 149(3–4), 349-357. https://doi.org/10.1016/S0176-1617(96)80133-7
  • Büchel, C., Wilhelm, C. (1993). In vivo analysis of slow chlorophyll fluorescence induction kinetics in algae: Progress, problems and perspectives. Photochem. Photobiology, 58, 137-148. https://doi.org/10.1111/j.1751-1097.1993.tb04915.x
  • Chaloub, R.M., Reinert, F., Nassar, C.A.G., Fleury, B.G., Mantuano, D.G., Larkum, A.W.D. (2010). Photosynthetic properties of three Brazilian seaweeds. Brazilian Journal of Botony, 33(2), 371-374. https://doi.org/10.1590/S0100-84042010000200017
  • Corzo, A. Niell, F.X. (1991). Determination of nitrate reductase activity in Ulva rigida C. Agardh by the in situ method. Journal of Experimental Marine Biology and Ecology, 146(2), 181-191. https://doi.org/10.1016/0022-0981(91)90024-Q
  • Çinar, M.E., Bilecenoğlu, M., Yokeş, M.B., Öztürk, B., Taşkin, E., Bakir, K., Doğan, A., Açik, Ş. (2021). Current status (as of end of 2020) of marine alien species in Turkey. PLOS ONE, 16(5), e0251086. https://doi.org/10.1371/journal.pone.0251086
  • de Azevedo, C.A.A., Cassano, V., Júnior, P.A.H., Batista, M.B., de Oliveira, M.C. (2015). Detecting the non-native Grateloupia turuturu (Halymeniales, Rhodophyta) in southern Brazil. Phycologia, 54(5), 451–454. https://doi.org/10.2216/15-25.1
  • Dobretsov, S., Veliz, K., Romero, M.S., Tala, F., Thiel, M. (2020). Impact of UV radiation on the red seaweed Gelidium lingulatum and its associated bacteria. European Journal of Phycology, 56(2), 129-141. https://doi.org/10.1080/09670262.2020.1775309
  • Dring, M. J., Wagner, A., Boeskov, J., Lüning, K. (1996). Sensitivity of intertidal and subtidal red algae to UVA and UVB radiation, as monitored by chlorophyll fluorescence measurements: influence of collection depth and season, and length of irradiation. European Journal of Phycology, 31, 293-302. https://doi.org/10.1080/09670269600651511
  • Eilers, P.H.C., Peeters, J.C.H. (1988). A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecological Modelling, 42(3-4), 199-215. https://doi.org/10.1016/0304-3800(88)90057-9
  • Farnham, W.F. (1980). Studies on aliens in the marine flora of southern England, In: Price, J. H., Irvine, D.E.G., Farnham, W. F.(Eds.) The Shore Environment. , London. Pp. 875-914.
  • Flores-Moya, A., Gomez, I., Vinegla, B., Altamirano, M., Perez-Rodriguez, E., Maestre, C., Caballero, R.M., Figueroa, F.L. 1998. “Effects of solar radiation on the endemic Mediterranean red alga Rissoella verruculosa: photosytnthetic performance, pigment content and the activities of enzymes related to nutrient uptake”, New Phytologist, 139, 673-683. https://doi.org/10.1046/j.1469-8137.1998.00233.x
  • Gao, K., Xu, J. (2008). Effects of solar UV radiation on diurnal photosynthetic performance and growth of Gracilaria lemaneiformis (Rhodophta). European Journal of Phycology, 43, 297-307. https://doi.org/10.1080/09670260801986837
  • Goulletquer, P., Bachelet, G., Sauriau, P.G., Noel, P. (2002). Open Atlantic Coast of Europe- A century of introduced species into French waters. In: Leppäkoski, E., Gollasch, S., Olenin, S. (Eds) Invasive Aquatic Species of Europe. Distribution, Impacts and Management. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9956-6_30
  • Guiry, M.D., Guiry, G.M. (2024). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org (Erişim 15 Kasım 2024).
  • Hurd, C.L., Harrison, P.J., Bischof, K., Lobban, C.S. (2014). Seaweed Ecology and Physiology 2nd edition. Cambridge University. Press, 566p. ISBN 978-0-521-14595-4. https://doi.org/10.1017/CBO9781139192637
  • Inskeep, W.P., Bloom, P.R. (1985). Extinction coefficients of chlorophyll a and b in n,n-dimethylformamide and 80% acetone. Plant Physiology, 77(2), 483-5. https://doi.org/10.1104/pp.77.2.483
  • Jofre, J., Celis-Pla, P.S.M., Figueroa, F.L., Navarro, N.P. (2020). Seasonal variation of Mycosporine-Like Amino Acids in three subantarctic red seaweeds. Marine Drugs, 24, 18(2), 75. https://doi.org/10.3390/md18020075
  • Katsanevakıs, S., Acar, Ü., Ammar, I., Balcı, B.A., Bekas, P., Belmonte, M., Chıntıroglou, C.C., Consolı, P., Dımıza, M., Fryganıotıs, K., Gerovasıleıou, V., Gnıscı, V., Gülşahın, N., Hoffman, R., Issarıs, Y., Izquıerdo-Gomez, D., Izquıerdo-Munoz, A., Kavadas, S., Koehler, L., Konstantınıdıs, E., Mazza, G., Nowell, G., Önal, U., Özen, M.R., Pafılıs, P., Pastore, M., Perdıkarıs, C., Poursanıdıs, D., Prato, E., Russo, F., Sıcuro, B., Tarkan, A.N., Thessalou-Legakı, M., Tıralongo, F., Trıantaphyllou, M., Tsıamıs, K., Tunҫer S., Turan, C., Türker, A., Yapıcı, S. (2014). New Mediterranean biodiversity records (October, 2014). Mediterranean Marine Science, 15(3), 675–695. https://doi.org/10.12681/mms.1123
  • Li, B., Xu, Z., Jiang, X., Wu, H., Bao, M., Zang, S., Yan, F., Yuan, T. (2024). Diverse nitrogen enrichments enhance photosynthetic resistance of Sargassum horneri to ultraviolet radiation. Frontiers Marine Science, 11, 1420839. https://doi.org/10.3389/fmars.2024.1420839
  • Miller, K.A., Aguilar-Rosas, L.E., Pedroche, F.F. (2011). A review of non-native seaweeds from California, USA and Baja California, Mexico. Hidrobiológi-ca, 21(3), 365-379.
  • Polo, L.K., Chow, F. (2020). Physiological performance by growth rate, pigment and protein content of the brown seaweed Sargassum filipendula (Ochrophyta: Fucales) induced by moderate UV radiation exposure in the laboratory. Scientina Marina, 84(1), 50-70. https://doi.org/10.3989/scimar.04982.22A
  • Provasoli, L. (1968). Media and prospects for the cultivation of marine algae. In: Proceedings of the US-Japan Conference, Japanese Society of Plant Physiology, Hakone, 12–15 September 1966, pp 63–75.
  • Rex M.C., Mukherjee, A. (2023). The comparative effects of visible light and UV-A radiation on the combined toxicity of P25 TiO2 nanoparticles and polystyrene microplastics on Chlorella sp.. Environmental Science and Pollution Research, 30, 122700–122716. https://doi.org/10.1007/s11356-023-30910-0
  • Roleda, M.Y., Wiencke, C., Lüder, U.H. (2006). Impact of ultraviolet radiation on cell structure, UV-absorbing compounds, photosynthesis, DNA damage, and germination in zoospores of Arctic Saccorhiza dermatodea. Journal of Experimental Botany, 57(14), 3847–3856. https://doi.org/10.1093/jxb/erl154
  • Rosenberg, G., Ramus J. (1984). Uptake of inorganic nitrogen and seaweed surface area: Volume ratios, Aquatic Botany, 19(1–2), 65-72. https://doi.org/10.1016/0304-3770(84)90008-1
  • Rothäusler, E., Dobretsov, S., Gómez, M.F., Jofré-Madariaga, D., Thiel, M., Véliz, K., Tala, F. (2022). Effect of UV-radiation on the physiology of the invasive green seaweed Codium fragile and its associated bacteria. Marine Environmental Research, 180, 105708. https://doi.org/10.1016/j.marenvres.2022.105708
  • Sakai, A.K., Allendorf, F.W., Holt, J.S., Lodge, D.M., Molofsky, J., With, K.A., Baughman, S., Cabin, R.J., Cohen, J.E., Ellstrand, N.C., McCauley, D.E., O’Neil, P., Parker, I.M., Thompson, J.N., Weller, S.G. (2001). The population biology of invasive species. Annual Review of Ecology, Evolution and Systematics, 32, 305–332. https://doi.org/10.1146/annurev.ecolsys.32.081501.114037
  • Schneider, G., Figueroa, F.F., Vega, J., Aviles, A., Antunes Horta, P., Korbee, N., Bonomi-Barufi, J. (2022). Effects of UV–visible radiation on growth, photosynthesis, pigment accumulation and UV-absorbing compounds in the red macroalga Gracilaria cornea (Gracilariales, Rhodophyta). Algal Research, 64, 102702. https://doi.org/10.1016/j.algal.2022.102702
  • Sinha, R. P., Singh, N., Kumar, A., Kumar, H. D., Hader, M., Hader, D.P. (1995). Effects of UV irradiation on certain physiological and biochemical processes in cyanobacteria, Journal of Photochemistry and Photobiology B: Biology, 30, 107–113. https://doi.org/10.1016/1011-1344(95)07205-5
  • Taşkın, E., Çakır, M., Akçalı, B. (2017). Occurrence of the alien marine red alga Galaxaura rugosa in Turkey. Black Sea/Mediterranean Environment, 23(2), 156-161.
  • Tolomio, C. (1993). First record of Grateloupia doryphora (Mont.) howe (Rhodophyceae) from the Lagoon of Venice. Lavori – Societa` Veneto Di Scienze Naturali, 5–220.
  • Turan, G., Tekoğul, H., Cirik, S., Meinesz, A. (2011). First record of the invasive green seaweed Caulerpa taxifolia (Bryopsidales) on the coast of Turkey. Cryptogamie, Algologie, 32, 379-382. https://doi.org/10.7872/crya.v32.iss4.2011.379
  • Vega, J., Schneider, G., Moreira, B. R., Herrera, C., Bonomi-Barufi, J., Figueroa, F. L. (2021). Mycosporine-Like Amino Acids from red macroalgae: UV-Photoprotectors with potential cosmeceutical applications. Applied Sciences, 11, 5112. https://doi.org/10.3390/app11115112
  • Villalard-Bohnsack, M., Harlin, M.M. (1997). Appearance of Grateloupia doryphora (Halymeniaceae, Rhodophyta) on the northeast coast of North America. Phycologia, 36(4), 324-328. https://doi.org/10.2216/i0031-8884-40-4-372.1
  • Vinegla, B., Segovia, M., Figueroa, F.L., (2006). Effect of artificial UV radiation on carbon and nitrogen metabolism in the macroalgae Fucus spiralis L. and Ulva olivascens Dangeart. Hydrobiologia, 560, 31-42. https://doi.org/10.1007/s10750-005-1097-1
  • Wiencke, C., Gomez, I., Pakker, H., Flores-Moya, A., Altamirano, M., Hanelt, D., Bishof, K., Figueroa, F.L. (2000). Impact of UV-Radiation on viability, photosynthetic characteristics and DNA of brown algal zoospores: implications for depth zonation. Marine Ecology Progress Series, 197, 217-229. https://doi.org/10.3354/meps197217
  • Xu, J., Gao, K. (2016). Photosynthetic contribution of UV-A to carbon fixation by macroalgae. Phycologia, 55(3), 318–322. https://doi.org/10.2216/15-91.1
  • Xu, Z., Li, B., Li, L., Wang, N., Wang, Y., Wang, H., Yan, F., Bao, M., Zang, S., Wu, H., Sun, S. (2023). Effects of UV radiation on photosynthesis of Sargassum muticum. Journal of Experimental Marine Biology and Ecology, 569, 151961. https://doi.org/10.1016/j.jembe.2023.151961
  • Xu, Z., Li, L., Jiang, H., Yan, F., Liu, L., Zang, S., Ma, Y., Wu, H. (2022). Photosynthetic responses of a golden tide alga (Sargassum horneri) to ultraviolet radiation. Frontiers in Marine Science, 9, 978376. https://doi.org/10.3389/fmars.2022.978376 Yamada, Y. (1941). Notes on some Japanese algae IX. Scientific Papers of the Institute of Algological Research, Faculty of Science, Hokkaido Imperial University. 2, 195-215.

Physiological effects of ultraviolet radiation on invasive Grateloupia turuturu

Year 2025, Volume: 8 Issue: 2, 120 - 129, 28.03.2025
https://doi.org/10.3153/AR25012

Abstract

Invasive species are organisms that enter an ecosystem as a result of anthropological activities. These species compete with native species in the environment where they settle, threatening the ecological structure and changing biodiversity. Grateloupia turuturu, known as an invasive species, was reported for the first time in May 2015 from the coast of Bandırma in Turkey and it was determined that it is now distributed in Erdek and Mudanya coasts. In general, invasive species are known to have a wide tolerance to ecological variables. Therefore, the aim of this study was to determine the physiological effects of UVR on G. turuturu species and to investigate the responses of G. turuturu species to UVR. For this purpose, G. turuturu samples were cultured in 3 different light regimes (photosynthetically active radiation, UVA and UVB) and their physiological responses were investigated. The data obtained showed that the photosynthetic activity and nitrate reductase enzyme activities of the samples exposed to UVR increased, whereas the accessory pigment content did not change. In conclusion, G. turuturu is able to utilize UVA energy as light sources in photosynthesis and is tolerant but not sensitive to UVR. Therefore, it is thought that G. turuturu may be advantageous in competition with local species.

Ethical Statement

Ethics committee approval is not required for this study.

Supporting Institution

Bursa Uludağ Üniversitesi, Bilimsel Araştırma Projeleri Birimi (BAP)

Project Number

FGA-2021-500

References

  • Bárbara, I., Cremades, J. (2004). Grateloupia lanceola versus Grateloupia turuturu (Gigartinales, Rhodophyta) en la Península Ibérica. Anales del Jardin Botanico de Madrid, 61(2), 103-118. https://doi.org/10.3989/ajbm.2004.v61.i2.38
  • Barıche, M., Al-Mabruk, S., Ateş, M.A., Büyük, A., Crocetta, F., Drıtsas, M., Edde, D., Fortıč, A., Gavrııl, E., Gerovasıleıou, V., Gökoğlu, M., Huseyınoglu, F., Karachle, P., Kleıtou, P., Terbıyık Kurt, T., Langeneck, J., Lardıccı, C., Lıpej, L., Pavloudı, C., Pınna, M., Rızgalla, J., Rüştü Özen, M., Sedano, F., Taşkın, E., Yıldız, G., Zangaro, F. (2020). New alien Mediterranean biodiversity records (March 2020). Mediterranean Marine Science, 21(1), 129-145. https://doi.org/10.12681/mms.21987
  • Beer, S., Eshel, A. (1985). Determining phycoerythrin and phycocyanin concentrations in aqueous crude extracts of red algae. Australian Journal of Marine and Freshwater Research, 36, 785-792. https://doi.org/10.1071/mf9850785
  • Bischof, K., Krabs, G., Hanelt, D., Wiencke, C. (2000). Photosynthetic characteristics and mycosporine-like amino acids under UV radiation: a competitive advantage of Mastocarpus stellatus over Chondrus crispus at the Helgoland shoreline? Helgol Mar Res, 54, 47–52. https://doi.org/10.1007/s101520050035
  • Bischof, K., Gomez, I., Molis, M., Hanelt, D., Karsten, U., Lüder, U., Roleda, M.Y., Zacher, K., Wiencke, C. (2006). “Ultraviolet radiation shapes seaweed communities”, Reviews in Environmental Science and Biotechnology, 5, 141-166. https://doi.org/10.1007/s11157-006-0002-3
  • Bommarito, C., Noe, S., Diaz-Morales, D.M., Lukic, I., Hiebenthal, C., Rilov, G., Guy-Haim, T., Wahl, M. (2024). Co-occurrence of native and invasive macroalgae might be facilitated under global warming. Science of The Total Environment, 912, 169087. https://doi.org/10.1016/j.scitotenv.2023.169087
  • Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72, 248-54. https://doi.org/10.1016/0003-2697(76)90527-3
  • Braune, W., Döhler, G. (1996). Impact of UV-B radiation on 15N-Ammonium and 15N-Nitrate uptake by Haematococcus lacustris (volvocales) II. The influence of a recovery period, Journal of Plant Physiology, 149(3–4), 349-357. https://doi.org/10.1016/S0176-1617(96)80133-7
  • Büchel, C., Wilhelm, C. (1993). In vivo analysis of slow chlorophyll fluorescence induction kinetics in algae: Progress, problems and perspectives. Photochem. Photobiology, 58, 137-148. https://doi.org/10.1111/j.1751-1097.1993.tb04915.x
  • Chaloub, R.M., Reinert, F., Nassar, C.A.G., Fleury, B.G., Mantuano, D.G., Larkum, A.W.D. (2010). Photosynthetic properties of three Brazilian seaweeds. Brazilian Journal of Botony, 33(2), 371-374. https://doi.org/10.1590/S0100-84042010000200017
  • Corzo, A. Niell, F.X. (1991). Determination of nitrate reductase activity in Ulva rigida C. Agardh by the in situ method. Journal of Experimental Marine Biology and Ecology, 146(2), 181-191. https://doi.org/10.1016/0022-0981(91)90024-Q
  • Çinar, M.E., Bilecenoğlu, M., Yokeş, M.B., Öztürk, B., Taşkin, E., Bakir, K., Doğan, A., Açik, Ş. (2021). Current status (as of end of 2020) of marine alien species in Turkey. PLOS ONE, 16(5), e0251086. https://doi.org/10.1371/journal.pone.0251086
  • de Azevedo, C.A.A., Cassano, V., Júnior, P.A.H., Batista, M.B., de Oliveira, M.C. (2015). Detecting the non-native Grateloupia turuturu (Halymeniales, Rhodophyta) in southern Brazil. Phycologia, 54(5), 451–454. https://doi.org/10.2216/15-25.1
  • Dobretsov, S., Veliz, K., Romero, M.S., Tala, F., Thiel, M. (2020). Impact of UV radiation on the red seaweed Gelidium lingulatum and its associated bacteria. European Journal of Phycology, 56(2), 129-141. https://doi.org/10.1080/09670262.2020.1775309
  • Dring, M. J., Wagner, A., Boeskov, J., Lüning, K. (1996). Sensitivity of intertidal and subtidal red algae to UVA and UVB radiation, as monitored by chlorophyll fluorescence measurements: influence of collection depth and season, and length of irradiation. European Journal of Phycology, 31, 293-302. https://doi.org/10.1080/09670269600651511
  • Eilers, P.H.C., Peeters, J.C.H. (1988). A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecological Modelling, 42(3-4), 199-215. https://doi.org/10.1016/0304-3800(88)90057-9
  • Farnham, W.F. (1980). Studies on aliens in the marine flora of southern England, In: Price, J. H., Irvine, D.E.G., Farnham, W. F.(Eds.) The Shore Environment. , London. Pp. 875-914.
  • Flores-Moya, A., Gomez, I., Vinegla, B., Altamirano, M., Perez-Rodriguez, E., Maestre, C., Caballero, R.M., Figueroa, F.L. 1998. “Effects of solar radiation on the endemic Mediterranean red alga Rissoella verruculosa: photosytnthetic performance, pigment content and the activities of enzymes related to nutrient uptake”, New Phytologist, 139, 673-683. https://doi.org/10.1046/j.1469-8137.1998.00233.x
  • Gao, K., Xu, J. (2008). Effects of solar UV radiation on diurnal photosynthetic performance and growth of Gracilaria lemaneiformis (Rhodophta). European Journal of Phycology, 43, 297-307. https://doi.org/10.1080/09670260801986837
  • Goulletquer, P., Bachelet, G., Sauriau, P.G., Noel, P. (2002). Open Atlantic Coast of Europe- A century of introduced species into French waters. In: Leppäkoski, E., Gollasch, S., Olenin, S. (Eds) Invasive Aquatic Species of Europe. Distribution, Impacts and Management. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9956-6_30
  • Guiry, M.D., Guiry, G.M. (2024). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org (Erişim 15 Kasım 2024).
  • Hurd, C.L., Harrison, P.J., Bischof, K., Lobban, C.S. (2014). Seaweed Ecology and Physiology 2nd edition. Cambridge University. Press, 566p. ISBN 978-0-521-14595-4. https://doi.org/10.1017/CBO9781139192637
  • Inskeep, W.P., Bloom, P.R. (1985). Extinction coefficients of chlorophyll a and b in n,n-dimethylformamide and 80% acetone. Plant Physiology, 77(2), 483-5. https://doi.org/10.1104/pp.77.2.483
  • Jofre, J., Celis-Pla, P.S.M., Figueroa, F.L., Navarro, N.P. (2020). Seasonal variation of Mycosporine-Like Amino Acids in three subantarctic red seaweeds. Marine Drugs, 24, 18(2), 75. https://doi.org/10.3390/md18020075
  • Katsanevakıs, S., Acar, Ü., Ammar, I., Balcı, B.A., Bekas, P., Belmonte, M., Chıntıroglou, C.C., Consolı, P., Dımıza, M., Fryganıotıs, K., Gerovasıleıou, V., Gnıscı, V., Gülşahın, N., Hoffman, R., Issarıs, Y., Izquıerdo-Gomez, D., Izquıerdo-Munoz, A., Kavadas, S., Koehler, L., Konstantınıdıs, E., Mazza, G., Nowell, G., Önal, U., Özen, M.R., Pafılıs, P., Pastore, M., Perdıkarıs, C., Poursanıdıs, D., Prato, E., Russo, F., Sıcuro, B., Tarkan, A.N., Thessalou-Legakı, M., Tıralongo, F., Trıantaphyllou, M., Tsıamıs, K., Tunҫer S., Turan, C., Türker, A., Yapıcı, S. (2014). New Mediterranean biodiversity records (October, 2014). Mediterranean Marine Science, 15(3), 675–695. https://doi.org/10.12681/mms.1123
  • Li, B., Xu, Z., Jiang, X., Wu, H., Bao, M., Zang, S., Yan, F., Yuan, T. (2024). Diverse nitrogen enrichments enhance photosynthetic resistance of Sargassum horneri to ultraviolet radiation. Frontiers Marine Science, 11, 1420839. https://doi.org/10.3389/fmars.2024.1420839
  • Miller, K.A., Aguilar-Rosas, L.E., Pedroche, F.F. (2011). A review of non-native seaweeds from California, USA and Baja California, Mexico. Hidrobiológi-ca, 21(3), 365-379.
  • Polo, L.K., Chow, F. (2020). Physiological performance by growth rate, pigment and protein content of the brown seaweed Sargassum filipendula (Ochrophyta: Fucales) induced by moderate UV radiation exposure in the laboratory. Scientina Marina, 84(1), 50-70. https://doi.org/10.3989/scimar.04982.22A
  • Provasoli, L. (1968). Media and prospects for the cultivation of marine algae. In: Proceedings of the US-Japan Conference, Japanese Society of Plant Physiology, Hakone, 12–15 September 1966, pp 63–75.
  • Rex M.C., Mukherjee, A. (2023). The comparative effects of visible light and UV-A radiation on the combined toxicity of P25 TiO2 nanoparticles and polystyrene microplastics on Chlorella sp.. Environmental Science and Pollution Research, 30, 122700–122716. https://doi.org/10.1007/s11356-023-30910-0
  • Roleda, M.Y., Wiencke, C., Lüder, U.H. (2006). Impact of ultraviolet radiation on cell structure, UV-absorbing compounds, photosynthesis, DNA damage, and germination in zoospores of Arctic Saccorhiza dermatodea. Journal of Experimental Botany, 57(14), 3847–3856. https://doi.org/10.1093/jxb/erl154
  • Rosenberg, G., Ramus J. (1984). Uptake of inorganic nitrogen and seaweed surface area: Volume ratios, Aquatic Botany, 19(1–2), 65-72. https://doi.org/10.1016/0304-3770(84)90008-1
  • Rothäusler, E., Dobretsov, S., Gómez, M.F., Jofré-Madariaga, D., Thiel, M., Véliz, K., Tala, F. (2022). Effect of UV-radiation on the physiology of the invasive green seaweed Codium fragile and its associated bacteria. Marine Environmental Research, 180, 105708. https://doi.org/10.1016/j.marenvres.2022.105708
  • Sakai, A.K., Allendorf, F.W., Holt, J.S., Lodge, D.M., Molofsky, J., With, K.A., Baughman, S., Cabin, R.J., Cohen, J.E., Ellstrand, N.C., McCauley, D.E., O’Neil, P., Parker, I.M., Thompson, J.N., Weller, S.G. (2001). The population biology of invasive species. Annual Review of Ecology, Evolution and Systematics, 32, 305–332. https://doi.org/10.1146/annurev.ecolsys.32.081501.114037
  • Schneider, G., Figueroa, F.F., Vega, J., Aviles, A., Antunes Horta, P., Korbee, N., Bonomi-Barufi, J. (2022). Effects of UV–visible radiation on growth, photosynthesis, pigment accumulation and UV-absorbing compounds in the red macroalga Gracilaria cornea (Gracilariales, Rhodophyta). Algal Research, 64, 102702. https://doi.org/10.1016/j.algal.2022.102702
  • Sinha, R. P., Singh, N., Kumar, A., Kumar, H. D., Hader, M., Hader, D.P. (1995). Effects of UV irradiation on certain physiological and biochemical processes in cyanobacteria, Journal of Photochemistry and Photobiology B: Biology, 30, 107–113. https://doi.org/10.1016/1011-1344(95)07205-5
  • Taşkın, E., Çakır, M., Akçalı, B. (2017). Occurrence of the alien marine red alga Galaxaura rugosa in Turkey. Black Sea/Mediterranean Environment, 23(2), 156-161.
  • Tolomio, C. (1993). First record of Grateloupia doryphora (Mont.) howe (Rhodophyceae) from the Lagoon of Venice. Lavori – Societa` Veneto Di Scienze Naturali, 5–220.
  • Turan, G., Tekoğul, H., Cirik, S., Meinesz, A. (2011). First record of the invasive green seaweed Caulerpa taxifolia (Bryopsidales) on the coast of Turkey. Cryptogamie, Algologie, 32, 379-382. https://doi.org/10.7872/crya.v32.iss4.2011.379
  • Vega, J., Schneider, G., Moreira, B. R., Herrera, C., Bonomi-Barufi, J., Figueroa, F. L. (2021). Mycosporine-Like Amino Acids from red macroalgae: UV-Photoprotectors with potential cosmeceutical applications. Applied Sciences, 11, 5112. https://doi.org/10.3390/app11115112
  • Villalard-Bohnsack, M., Harlin, M.M. (1997). Appearance of Grateloupia doryphora (Halymeniaceae, Rhodophyta) on the northeast coast of North America. Phycologia, 36(4), 324-328. https://doi.org/10.2216/i0031-8884-40-4-372.1
  • Vinegla, B., Segovia, M., Figueroa, F.L., (2006). Effect of artificial UV radiation on carbon and nitrogen metabolism in the macroalgae Fucus spiralis L. and Ulva olivascens Dangeart. Hydrobiologia, 560, 31-42. https://doi.org/10.1007/s10750-005-1097-1
  • Wiencke, C., Gomez, I., Pakker, H., Flores-Moya, A., Altamirano, M., Hanelt, D., Bishof, K., Figueroa, F.L. (2000). Impact of UV-Radiation on viability, photosynthetic characteristics and DNA of brown algal zoospores: implications for depth zonation. Marine Ecology Progress Series, 197, 217-229. https://doi.org/10.3354/meps197217
  • Xu, J., Gao, K. (2016). Photosynthetic contribution of UV-A to carbon fixation by macroalgae. Phycologia, 55(3), 318–322. https://doi.org/10.2216/15-91.1
  • Xu, Z., Li, B., Li, L., Wang, N., Wang, Y., Wang, H., Yan, F., Bao, M., Zang, S., Wu, H., Sun, S. (2023). Effects of UV radiation on photosynthesis of Sargassum muticum. Journal of Experimental Marine Biology and Ecology, 569, 151961. https://doi.org/10.1016/j.jembe.2023.151961
  • Xu, Z., Li, L., Jiang, H., Yan, F., Liu, L., Zang, S., Ma, Y., Wu, H. (2022). Photosynthetic responses of a golden tide alga (Sargassum horneri) to ultraviolet radiation. Frontiers in Marine Science, 9, 978376. https://doi.org/10.3389/fmars.2022.978376 Yamada, Y. (1941). Notes on some Japanese algae IX. Scientific Papers of the Institute of Algological Research, Faculty of Science, Hokkaido Imperial University. 2, 195-215.
There are 46 citations in total.

Details

Primary Language Turkish
Subjects Algology, Marine and Estuarine Ecology, Hydrobiology
Journal Section Research Articles
Authors

Gamze Yıldız 0000-0001-6461-0850

Özden Dere 0009-0005-6659-5988

Project Number FGA-2021-500
Early Pub Date March 16, 2025
Publication Date March 28, 2025
Submission Date December 24, 2024
Acceptance Date March 6, 2025
Published in Issue Year 2025Volume: 8 Issue: 2

Cite

APA Yıldız, G., & Dere, Ö. (2025). Ultraviyole radyasyonunun istilacı Grateloupia turuturu üzerine fizyolojik etkileri. Aquatic Research, 8(2), 120-129. https://doi.org/10.3153/AR25012

16291

is licensed under a CreativeCommons Attribtion-ShareAlike 4.0 International Licence 14628   1325927040

Diamond Open Access refers to a scholarly publication model in which journals and platforms do not charge fees to either authors or readers.

Open Access Statement:

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.

Archiving Policy:

Archiving is done according to TÜBİTAK ULAKBİM "DergiPark" publication policy (LOCKSS).