Growth variability of selected Vibrio parahaemolyticus strains isolated from seafood
Year 2025,
Volume: 8 Issue: 1, 60 - 65, 07.01.2025
Deyan Stratev
,
Rumyana Fasulkova
Aelita Zabulionė
Vasilis Valdramidis
Abstract
The aim of this study was to quantify the growth and assess the variability of V. parahaemolyticus strains isolated from seafood. A total of 35 V. parahaemolyticus strains were assessed, and their maximum specific growth rate (µmax) was estimated by the Time-to-Detection Method by regression analysis using the Generalized Reduced Gradient algorithm. The highest µmax (h-1) value was 2.33 for V. parahaemolyticus isolated from Atlantic salmon, followed by 2.30 for Mediterranean horse mackerel and European seabass, 2.26 for Mediterranean mussels, 2.20 for veined rapa whelk, 1.88 for the pandemic strain O3:K6, 1.57 for oysters, 1.43 for bluefish, and 1.29 for Gilthead bream. This study provides useful information for the quantitative characterisation of V. parahaemolyticus growth, which can be a main input for microbial exposure assessments.
Ethical Statement
This study does not require an ethics committee or special permission.
References
-
Cuppers, H.G.A.M., & Smelt, J.P.P.M. (1993). Time to turbidity measurement as a tool for modeling spoilage by Lactobacillus. Journal of Industrial Microbiology, 12(3–5), 168–171. https://doi.org/10.1007/BF01584186
-
Dalgaard, P., & Koutsoumanis, K. (2001). Comparison of maximum specific growth rates and lag times estimated from absorbance and viable count data by different mathematical models. Journal of Microbiological Methods, 43(3), 183–196. https://doi.org/10.1016/S0167-7012(00)00219-0
-
Flynn, A., Davis, B.J.K., Atherly, E., Olson, G., Bowers, J. C., DePaola, A., & Curriero, F.C. (2019). Associations of environmental conditions and Vibrio parahaemolyticus genetic markers in Washington State Pacific Oysters. Frontiers in Microbiology, 10, 2797. https://doi.org/10.3389/fmicb.2019.02797
-
Hanna, S., Carpenter, A., Garman, K., & Dunn, J.R. (2022). Comparison of confirmed and probable cases of vibriosis, Tennessee, 2017–2021. Open Forum Infectious Diseases, 9(Supplement_2), ofac492.1628. https://doi.org/10.1093/ofid/ofac492.1628
-
Hu, H., Wu, Y., Jin, X., Shu, T., & Ruan, H. (2017). Quantitative Risk Assessment of Vibrio parahaemolyticus in Mytilus edulis in China. Advance Journal of Food Science and Technology, 13(2), 72–76. https://doi.org/10.19026/ajfst.13.3768
-
Lianou, A., & Koutsoumanis, K.P. (2011). Effect of the growth environment on the strain variability of Salmonella enterica kinetic behavior. Food Microbiology, 28(4), 828–837. https://doi.org/10.1016/j.fm.2010.04.006
-
Lianou, A., & Koutsoumanis, K.P. (2013). Evaluation of the strain variability of Salmonella enterica acid and heat resistance. Food Microbiology, 34(2), 259–267. https://doi.org/10.1016/j.fm.2012.10.009
-
Liu, B., Liu, H., Pan, Y., Xie, J., & Zhao, Y. (2016). Comparison of the effects of environmental parameters on the growth variability of Vibrio parahaemolyticus coupled with strain sources and genotypes analyses. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.00994
-
Ma, J.-Y., Zhu, X.-K., Hu, R.-G., Qi, Z.-Z., Sun, W.-C., Hao, Z.-P., Cong, W., & Kang, Y.-H. (2023). A systematic review, meta-analysis and meta-regression of the global prevalence of foodborne Vibrio spp. infection in fishes: A persistent public health concern. Marine Pollution Bulletin, 187, 114521. https://doi.org/10.1016/j.marpolbul.2022.114521
-
Mai, A.T., Chung, D., Ngo, L., Huynh, K.H., & Dinh, L.T. (2022). Multiorgan dysfunction with severe cardiac injury secondary to septic cellulitis due to Vibrio parahaemolyticus. Cureus, 14(11), e31673. https://doi.org/10.7759/cureus.31673
-
McMeekin, T.A. (1997). Quantitative microbiology: A Basis for food safety. Emerging Infectious Diseases, 3(4), 541–549. https://doi.org/10.3201/eid0304.970419
-
Membre, J.M., Leporq, B., Vialette, M., Mettler, E., Perrier, L., & Zwietering, M. (2002). Experimental protocols and strain variability of cardinal values (pH and aw) of bacteria using Bioscreen C: Microbial and statistical aspects. Conference Proceedings. Matforsk Norwegian Food Research Institute, 143–146.
-
Mok, J.S., Cho, S.R., Park, Y.J., Jo, M.R., Ha, K.S., Kim, P.H., & Kim, M.J. (2021). Distribution and antimicrobial resistance of Vibrio parahaemolyticus isolated from fish and shrimp aquaculture farms along the Korean coast. Marine Pollution Bulletin, 171, 112785. https://doi.org/10.1016/j.marpolbul.2021.112785
-
Narayanan, S.V., Joseph, T.C., Peeralil, S., Mothadaka, M.P., & Lalitha, K.V. (2020). Prevalence, virulence characterization, amr pattern and genetic relatedness of Vibrio parahaemolyticus isolates from retail seafood of Kerala, India. Frontiers in Microbiology, 11, 592. https://doi.org/10.3389/fmicb.2020.00592
-
Ndraha, N., & Hsiao, H.-I. (2021). Influence of climatic factors on the temporal occurrence and distribution of total and pathogenic Vibrio parahaemolyticus in oyster culture environments in Taiwan. Food Microbiology, 98, 103765. https://doi.org/10.1016/j.fm.2021.103765
-
Odeyemi, O.A. (2016). Incidence and prevalence of Vibrio parahaemolyticus in seafood: A systematic review and meta-analysis. SpringerPlus, 5(1), 464. https://doi.org/10.1186/s40064-016-2115-7
-
Potter, M.E., & Brudney, J.L. (1994). Risk assessment for infectious foodborne diseases: A priority with problems. Journal of Agromedicine, 1(3), 11–22. https://doi.org/10.1300/J096v01n03_03
-
Shi, J., Zhao, W., Xie, J., Zhu, Y., Pan, Y., Ou, J., Zhao, Y., & Liu, H. (2021). Comparison on the growth heterogeneity of Vibrio parahaemolyticus coupled with strain source and genotype analyses in different oligotrophic conditions. Journal of Food Protection, 84(11), 1904–1910. https://doi.org/10.4315/JFP-21-089
-
Stratev, D., Fasulkova, R., & Krumova-Valcheva, G. (2023). Incidence, virulence genes and antimicrobial resistance of Vibrio parahaemolyticus isolated from seafood. Microbial Pathogenesis, 177, 106050. https://doi.org/10.1016/j.micpath.2023.106050
-
Tan, C.W., Rukayadi, Y., Hasan, H., Thung, T.Y., Lee, E., Rollon, W.D., Hara, H., Kayali, A.Y., Nishibuchi, M., & Radu, S. (2020). Prevalence and antibiotic resistance patterns of Vibrio parahaemolyticus isolated from different types of seafood in Selangor, Malaysia. Saudi Journal of Biological Sciences, 27(6), 1602–1608. https://doi.org/10.1016/j.sjbs.2020.01.002
-
Vu, T.T.T., Hoang, T.T.H., Fleischmann, S., Pham, H.N., Lai, T.L H., Cam, T.T.H., Truong, L.O., Le Dac Cam Phung, V.P., & Alter, T. (2022). Quantification and antimicrobial resistance of Vibrio parahaemolyticus in retail seafood in Hanoi, Vietnam. Journal of Food Protection, 85(5), 786–791. https://doi.org/10.4315/JFP-21-444
-
Wang, D., Flint, S.H., Palmer, J.S., Gagic, D., Fletcher, G.C., & On, S.L.W. (2022). Global expansion of Vibrio parahaemolyticus threatens the seafood industry: Perspective on controlling its biofilm formation. LWT, 158, 113182. https://doi.org/10.1016/j.lwt.2022.113182
-
Wang, R., Deng, Y., Deng, Q., Sun, D., Fang, Z., Sun, L., Wang, Y., & Gooneratne, R. (2020a). Vibrio parahaemolyticus infection in mice reduces protective gut microbiota, augmenting disease pathways. Frontiers in Microbiology, 11, 73. https://doi.org/10.3389/fmicb.2020.00073
-
Wang, Y., Zhao, Y., Pan, Y., & Liu, H. (2020b). Comparison on the growth variability of Vibrio parahaemolyticus coupled with strain sources and genotypes analyses in simulated gastric digestion fluids. Frontiers in Microbiology, 11, 212. https://doi.org/10.3389/fmicb.2020.00212
-
Whiting, R.C., & Golden, M.H. (2002). Variation among Escherichia coli O157:H7 strains relative to their growth, survival, thermal inactivation, and toxin production in broth. International Journal of Food Microbiology, 75(1–2), 127–133. https://doi.org/10.1016/S0168-1605(02)00003-X
-
Wu, Y., Wen, J., Ma, Y., Ma, X., & Chen, Y. (2014). Epidemiology of foodborne disease outbreaks caused by Vibrio parahaemolyticus, China, 2003–2008. Food Control, 46, 197–202. https://doi.org/10.1016/j.foodcont.2014.05.023
Growth variability of selected Vibrio parahaemolyticus strains isolated from seafood
Year 2025,
Volume: 8 Issue: 1, 60 - 65, 07.01.2025
Deyan Stratev
,
Rumyana Fasulkova
Aelita Zabulionė
Vasilis Valdramidis
Abstract
The aim of this study was to quantify the growth and assess the variability of V. parahaemolyticus strains isolated from seafood. A total of 35 V. parahaemolyticus strains were assessed, and their maximum specific growth rate (µmax) was estimated by the Time-to-Detection Method by regression analysis using the Generalized Reduced Gradient algorithm. The highest µmax (h-1) value was 2.33 for V. parahaemolyticus isolated from Atlantic salmon, followed by 2.30 for Mediterranean horse mackerel and European seabass, 2.26 for Mediterranean mussels, 2.20 for veined rapa whelk, 1.88 for the pandemic strain O3:K6, 1.57 for oysters, 1.43 for bluefish, and 1.29 for Gilthead bream. This study provides useful information for the quantitative characterisation of V. parahaemolyticus growth, which can be a main input for microbial exposure assessments.
Ethical Statement
This study does not require an ethics committee or special permission.
References
-
Cuppers, H.G.A.M., & Smelt, J.P.P.M. (1993). Time to turbidity measurement as a tool for modeling spoilage by Lactobacillus. Journal of Industrial Microbiology, 12(3–5), 168–171. https://doi.org/10.1007/BF01584186
-
Dalgaard, P., & Koutsoumanis, K. (2001). Comparison of maximum specific growth rates and lag times estimated from absorbance and viable count data by different mathematical models. Journal of Microbiological Methods, 43(3), 183–196. https://doi.org/10.1016/S0167-7012(00)00219-0
-
Flynn, A., Davis, B.J.K., Atherly, E., Olson, G., Bowers, J. C., DePaola, A., & Curriero, F.C. (2019). Associations of environmental conditions and Vibrio parahaemolyticus genetic markers in Washington State Pacific Oysters. Frontiers in Microbiology, 10, 2797. https://doi.org/10.3389/fmicb.2019.02797
-
Hanna, S., Carpenter, A., Garman, K., & Dunn, J.R. (2022). Comparison of confirmed and probable cases of vibriosis, Tennessee, 2017–2021. Open Forum Infectious Diseases, 9(Supplement_2), ofac492.1628. https://doi.org/10.1093/ofid/ofac492.1628
-
Hu, H., Wu, Y., Jin, X., Shu, T., & Ruan, H. (2017). Quantitative Risk Assessment of Vibrio parahaemolyticus in Mytilus edulis in China. Advance Journal of Food Science and Technology, 13(2), 72–76. https://doi.org/10.19026/ajfst.13.3768
-
Lianou, A., & Koutsoumanis, K.P. (2011). Effect of the growth environment on the strain variability of Salmonella enterica kinetic behavior. Food Microbiology, 28(4), 828–837. https://doi.org/10.1016/j.fm.2010.04.006
-
Lianou, A., & Koutsoumanis, K.P. (2013). Evaluation of the strain variability of Salmonella enterica acid and heat resistance. Food Microbiology, 34(2), 259–267. https://doi.org/10.1016/j.fm.2012.10.009
-
Liu, B., Liu, H., Pan, Y., Xie, J., & Zhao, Y. (2016). Comparison of the effects of environmental parameters on the growth variability of Vibrio parahaemolyticus coupled with strain sources and genotypes analyses. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.00994
-
Ma, J.-Y., Zhu, X.-K., Hu, R.-G., Qi, Z.-Z., Sun, W.-C., Hao, Z.-P., Cong, W., & Kang, Y.-H. (2023). A systematic review, meta-analysis and meta-regression of the global prevalence of foodborne Vibrio spp. infection in fishes: A persistent public health concern. Marine Pollution Bulletin, 187, 114521. https://doi.org/10.1016/j.marpolbul.2022.114521
-
Mai, A.T., Chung, D., Ngo, L., Huynh, K.H., & Dinh, L.T. (2022). Multiorgan dysfunction with severe cardiac injury secondary to septic cellulitis due to Vibrio parahaemolyticus. Cureus, 14(11), e31673. https://doi.org/10.7759/cureus.31673
-
McMeekin, T.A. (1997). Quantitative microbiology: A Basis for food safety. Emerging Infectious Diseases, 3(4), 541–549. https://doi.org/10.3201/eid0304.970419
-
Membre, J.M., Leporq, B., Vialette, M., Mettler, E., Perrier, L., & Zwietering, M. (2002). Experimental protocols and strain variability of cardinal values (pH and aw) of bacteria using Bioscreen C: Microbial and statistical aspects. Conference Proceedings. Matforsk Norwegian Food Research Institute, 143–146.
-
Mok, J.S., Cho, S.R., Park, Y.J., Jo, M.R., Ha, K.S., Kim, P.H., & Kim, M.J. (2021). Distribution and antimicrobial resistance of Vibrio parahaemolyticus isolated from fish and shrimp aquaculture farms along the Korean coast. Marine Pollution Bulletin, 171, 112785. https://doi.org/10.1016/j.marpolbul.2021.112785
-
Narayanan, S.V., Joseph, T.C., Peeralil, S., Mothadaka, M.P., & Lalitha, K.V. (2020). Prevalence, virulence characterization, amr pattern and genetic relatedness of Vibrio parahaemolyticus isolates from retail seafood of Kerala, India. Frontiers in Microbiology, 11, 592. https://doi.org/10.3389/fmicb.2020.00592
-
Ndraha, N., & Hsiao, H.-I. (2021). Influence of climatic factors on the temporal occurrence and distribution of total and pathogenic Vibrio parahaemolyticus in oyster culture environments in Taiwan. Food Microbiology, 98, 103765. https://doi.org/10.1016/j.fm.2021.103765
-
Odeyemi, O.A. (2016). Incidence and prevalence of Vibrio parahaemolyticus in seafood: A systematic review and meta-analysis. SpringerPlus, 5(1), 464. https://doi.org/10.1186/s40064-016-2115-7
-
Potter, M.E., & Brudney, J.L. (1994). Risk assessment for infectious foodborne diseases: A priority with problems. Journal of Agromedicine, 1(3), 11–22. https://doi.org/10.1300/J096v01n03_03
-
Shi, J., Zhao, W., Xie, J., Zhu, Y., Pan, Y., Ou, J., Zhao, Y., & Liu, H. (2021). Comparison on the growth heterogeneity of Vibrio parahaemolyticus coupled with strain source and genotype analyses in different oligotrophic conditions. Journal of Food Protection, 84(11), 1904–1910. https://doi.org/10.4315/JFP-21-089
-
Stratev, D., Fasulkova, R., & Krumova-Valcheva, G. (2023). Incidence, virulence genes and antimicrobial resistance of Vibrio parahaemolyticus isolated from seafood. Microbial Pathogenesis, 177, 106050. https://doi.org/10.1016/j.micpath.2023.106050
-
Tan, C.W., Rukayadi, Y., Hasan, H., Thung, T.Y., Lee, E., Rollon, W.D., Hara, H., Kayali, A.Y., Nishibuchi, M., & Radu, S. (2020). Prevalence and antibiotic resistance patterns of Vibrio parahaemolyticus isolated from different types of seafood in Selangor, Malaysia. Saudi Journal of Biological Sciences, 27(6), 1602–1608. https://doi.org/10.1016/j.sjbs.2020.01.002
-
Vu, T.T.T., Hoang, T.T.H., Fleischmann, S., Pham, H.N., Lai, T.L H., Cam, T.T.H., Truong, L.O., Le Dac Cam Phung, V.P., & Alter, T. (2022). Quantification and antimicrobial resistance of Vibrio parahaemolyticus in retail seafood in Hanoi, Vietnam. Journal of Food Protection, 85(5), 786–791. https://doi.org/10.4315/JFP-21-444
-
Wang, D., Flint, S.H., Palmer, J.S., Gagic, D., Fletcher, G.C., & On, S.L.W. (2022). Global expansion of Vibrio parahaemolyticus threatens the seafood industry: Perspective on controlling its biofilm formation. LWT, 158, 113182. https://doi.org/10.1016/j.lwt.2022.113182
-
Wang, R., Deng, Y., Deng, Q., Sun, D., Fang, Z., Sun, L., Wang, Y., & Gooneratne, R. (2020a). Vibrio parahaemolyticus infection in mice reduces protective gut microbiota, augmenting disease pathways. Frontiers in Microbiology, 11, 73. https://doi.org/10.3389/fmicb.2020.00073
-
Wang, Y., Zhao, Y., Pan, Y., & Liu, H. (2020b). Comparison on the growth variability of Vibrio parahaemolyticus coupled with strain sources and genotypes analyses in simulated gastric digestion fluids. Frontiers in Microbiology, 11, 212. https://doi.org/10.3389/fmicb.2020.00212
-
Whiting, R.C., & Golden, M.H. (2002). Variation among Escherichia coli O157:H7 strains relative to their growth, survival, thermal inactivation, and toxin production in broth. International Journal of Food Microbiology, 75(1–2), 127–133. https://doi.org/10.1016/S0168-1605(02)00003-X
-
Wu, Y., Wen, J., Ma, Y., Ma, X., & Chen, Y. (2014). Epidemiology of foodborne disease outbreaks caused by Vibrio parahaemolyticus, China, 2003–2008. Food Control, 46, 197–202. https://doi.org/10.1016/j.foodcont.2014.05.023