Research Article
BibTex RIS Cite

Monitoring of growth and biochemical composition of Dunaliella salina and Dunaliella polymorpha in different photobioreactors

Year 2022, Volume: 5 Issue: 2, 136 - 145, 01.04.2022
https://doi.org/10.3153/AR22013

Abstract

In this study, the isolation of green algae were collected from two different stations of Aegean Sea and Seyfe Lake. The molecular identification of Dunaliella species using their 18S ribosomal DNA genes were sequenced and investigated with the BLAST program in the NCBI database. After the morphological and molecular identification, two different Dunaliella species were deposited in Ege University Microalgae Culture Collection. D. salina and D. polymorpha cells were firstly produce in both bubble column to monitor the growth profiles and then the species were cultivated in bubble column and stirred column photobioreactors (PBRs) under both high light intensity and different mixing conditions to investigate the total protein, carbohydrate, lipids and carotenoid concentrations. Moreover, this study aims to evaluate the production of β-carotene using two different PBRs. As a result of this study, D. salina in stirred PBR obtained the highest lipid (334.79 ±0.02 mg/L), total carotenoid (96.7 ±0.02 mg/L), and β-carotene content (21.18 ±0.03 µg/mL), while the maximum dry cell mass of 0.906 g/L was reached by D. polymorpha in bubble column PBR. The aim of this study was to investigate the nutritional values and β-carotene content of Dunaliella salina and D. polymorpha isolated from Turkey.

Thanks

The Author thanks Dr. Zinar Pinar Gumus for performing the HPLC-DAD analysis.

References

  • Abaci-Bayar, A., Yilmaz, K., Bayar Y. (2020). Orta Kızılırmak bölümündeki Seyfe Gölü sulak alanında oluşan toprakların bazı özelliklerinin incelenmesi. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13(2), 677-692. https://doi.org/10.18185/erzifbed.695963
  • Ahmed, R.A., He, M., Aftab, R.A., Zheng, S., Nagi, M., Bakri, R., Wang, C. (2017). Bioenergy application of Dunaliella salina SA 134 grown at various salinity levels for lipid production. Scientific Reports, 7(1), 1-10. https://doi.org/10.1038/s41598-017-07540-x
  • Ajala, S., Alexander, M.L. (2020). Evaluating the effects of agitation by shaking, stirring and air sparging on growth and accumulation of biochemical compounds in microalgae cells. Biofuels, 1, 11. https://doi.org/10.1080/17597269.2020.1714161
  • Andersen, R.A. (2005). Algal Culturing Techniques. Elsevier Academic Press, New York. ISBN: 0-12-088426-7
  • Bligh, E.G., Dyer, W.J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911-917. https://doi.org/10.1139/o59-099
  • Bonnefond, H., Moelants, N., Talec, A., Mayzaud, P., Bernard, O., Sciandra, A. (2017). Coupling and uncoupling of triglyceride and beta-carotene production by Dunaliella salina under nitrogen limitation and starvation. Biotechnology for Biofuels and Bioproducts, 10(1), 1-10. https://doi.org/10.1186/s13068-017-0713-4
  • Borowitzka, M.A., Siva, C.J. (2007). The taxonomy of the genus Dunaliella (Chlorophyta, Dunaliellales) with emphasis on the marine and halophilic species. Journal of Applied Phycology, 19(5), 567-590. https://doi.org/10.1007/s10811-007-9171-x
  • Borowitzka, M.A., Borowitzka, L.J., Kessly, D. (1990). Effects of salinity increase on carotenoid accumulation in the green alga Dunaliella salina. Journal of Applied Phycology, 2(2), 111-119. https://doi.org/10.1007/BF00023372
  • Carvalho, A.P., Meireles, L.A., Malcata, F.X. (2008). Microalgal reactors: a review of enclosed system designs and performances. Biotechnology Progress, 22, 1490-1506. https://doi.org/10.1021/bp060065r
  • Colusse, G. A., Mendes, C.R.B., Duarte, M.E.R., de Carvalho, J.C., Noseda, M.D. (2020). Effects of different culture media on physiological features and laboratory scale production cost of Dunaliella salina. Biotechnology Reports, 27, e00508. https://doi.org/10.1016/j.btre.2020.e00508
  • da Silva, M.R.O.B., Moura, Y.A.S., Converti, A., Porto, A.L.F., Marques, D.D.A.V., Bezerra, R.P. (2021). Assessment of the potential of Dunaliella microalgae for different biotechnological applications: a systematic review. Algal Research, 58, 102396. https://doi.org/10.1016/j.algal.2021.102396
  • Day, J.G., Stacey, G. (2007). Cryopreservation and Freeze-Drying Protocols. Humana Press. https://doi.org/10.1007/978-1-59745-362-2
  • Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.T., Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analiytical Chemistry, 28(3), 350-356. https://doi.org/10.1021/ac60111a017
  • Elleuch, F., Hlima, H.B., Barkallah, M., Baril, P., Abdelkafi, S., Pichon, C., Fendri, I. (2019). Carotenoids overproduction in Dunaliella sp.: transcriptional changes and new insights through lycopene β cyclase regulation. Applied Sciences, 9(24), 5389. https://doi.org/10.3390/app9245389
  • Emami, K., Hack, E., Nelson, A., Brain, C.M., Lyne, F.M., Mesbahi, E., Day, J.G., Caldwell, G.S. (2015). Proteomic-based biotyping reveals hidden diversity within a microalgae culture collection: an example using Dunaliella. Scientific Reports, 5(1), 1-15. https://doi.org/10.1038/srep10036
  • Gharajeh, N.H., Valizadeh, M., Dorani, E., Hejazi, M.A. (2020). Biochemical profiling of three indigenous Dunaliella isolates with main focus on fatty acid composition towards potential biotechnological application. Biotechnology Reports, 26, e00479. https://doi.org/10.1016/j.btre.2020.e00479
  • Gomez, P.I., Barriga, A., Cifuentes, A.S., Gonzalez, M.A. (2003). Effect of salinity on the quantity and quality of carotenoids accumulated by Dunaliella salina (strain CONC-007) and Dunaliella bardawil (strain ATCC 30861) Chlorophyta. Biological Research, 36(2), 185-192. https://doi.org/10.4067/S0716-97602003000200008
  • Hosseini Tafreshi, A., Shariati, M. (2009). Dunaliella biotechnology: methods and applications. Journal of Applied. Microbiology, 107(1), 14-35. https://doi.org/10.1111/j.1365-2672.2009.04153.x
  • Ishika, T., Bahri, P.A., Laird, D.W., Moheimani, N.R. (2018). The effect of gradual increase in salinity on the biomass productivity and biochemical composition of several marine, halotolerant, and halophilic microalgae. Journal of Applied Phycology, 30(3), 1453-1464. https://doi.org/10.1007/s10811-017-1377-y
  • Jesus, S.S., Filho, R.M. (2010). Modeling growth of microalgae Dunaliella salina under different nutritional conditions. American Journal of Biochemistry and Biotechnology, 6, 279-283. https://doi.org/10.3844/ajbbsp.2010.279.283
  • Kanamoto, A., Kato, Y., Yoshida, E., Hasunuma, T., Kondo, A. (2021). Development of a method for fucoxanthin production using the Haptophyte marine microalga Pavlova sp. OPMS 30543. Marine Biotechnology, 23(2), 331-341. https://doi.org/10.1007/s10126-021-10028-5
  • Kendirlioglu, G., Agirman, N., Cetin, A.K. (2015). The effects of photoperiod on the growth, protein amount and pigment content of Chlorella vulgaris. Turkish Journal of Science and Technology, 10(2), 7-10.
  • Khadim, S.R., Singh, P., Singh, A.K., Tiwari, A., Mohanta, A., Asthana, R.K. (2018). Mass cultivation of Dunaliella salina in a flat plate photobioreactor and its effective harvesting. Bioresource Technology, 270, 20-29. https://doi.org/10.1016/j.biortech.2018.08.071
  • Krienitz, L., Bock, C., Nozaki, H., Wolf, M. (2011). SSU rRna gene phylogeny of morphospecies affiliated to the bioassay alga “Selenastrum capricornutum” recovered the polyphyletic origin of crescent‐shaped Chlorophyta (1). Journal of Phycology, 47(4), 880-893. https://doi.org/10.1111/j.1529-8817.2011.01010.x
  • Kunjapur, A.M., Eldridge, R.B. (2010). Photobioreactor design for commercial biofuel production from microalgae. I&EC Research, 49(8), 3516-3526. https://doi.org/10.1021/ie901459u
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6
  • Maoka, T. (2020). Carotenoids as natural functional pigments. Journal of Natural Medicines, 74(1), 1-16. https://doi.org/10.1007/s11418-019-01364-x
  • Muhaemin, M., Kaswadji, R.F. (2010). Biomass nutrient profiles of marine microalgae Dunaliella salina. Jurnal Penelitian Sains, 13(3), 13314-13369.
  • Olmos, J., Paniagua, J., Contreras, R. (2000). Molecular identification of Dunaliella sp. utilizing the 18S rDNA gene. Letters in Applied Microbiology, 30(1), 80-84. https://doi.org/10.1046/j.1472-765x.2000.00672.x
  • Oren, A. (2005). A hundred years of Dunaliella research: 1905–2005. Aquatic Biosystems, 1(1), 1-14. https://doi.org/10.1186/1746-1448-1-2
  • Ricardo, V.-Y., Giffard-Mena, I., Cruz-López, R., García-Mendoza, E., Stephano-Hornedo, J.L. (2018). Characterization of a new Dunalliela salina strain isolated from San Quintin, Baja California (México) producer of lipids, pigments and micronutrients. CICIMAR Oceánides, 33(2), 1- 10. https://doi.org/10.37543/oceanides.v33i2.212
  • Sahin, M.S., Khazi, M.I., Demirel, Z., Dalay, M.C. (2019). Variation in growth, fucoxanthin, fatty acids profile and lipid content of marine diatoms Nitzschia sp. and Nanofrustulum shiloi in response to nitrogen and iron. Biocatalysis Agricultural Biotechnology, 17, 390-398. https://doi.org/10.1016/j.bcab.2018.12.023
  • Sener, N., Demirel, Z., Imamoglu, E., Dalay, M. (2022). Optimization of Culture Conditions for Total Carotenoid Amount Using Response Surface Methodology in Green Microalgae/Ankistrodesmus convolutus. Aquatic Sciences and Engineering, 37(1), 29-37. https://doi.org/10.26650/ASE2020785091
  • Ueno R., Urano N., Suzuki M. (2003). Phylogeny of the non-photosynthetic green micro-algal genus Prototheca (Trebouxiophyceae, Chlorophyta) and related taxa inferred from SSU and LSU ribosomal DNA partial sequence data. FEMS Microbiology Letters, 223(2), 275-280. https://doi.org/10.1016/S0378-1097(03)00394-X
  • Wasanasathian A., Peng C.A. (2007). Bioprocessing for Value-Added Products from Renewable Resources. In: S. -T. Yang (Ed.), Algal photobioreactor for production of lutein and zeaxanthin 19 (pp. 491-505), Elsevier Science. https://doi.org/10.1016/B978-044452114-9/50020-7
  • Yuan, Y., Li, X., Zhao, Q. (2019). Enhancing growth and lipid productivity in Dunaliella salina under high light intensity and nitrogen limited conditions. Bioresource Technology Reports, 7, 100211. https://doi.org/10.1016/j.biteb.2019.100211
  • Zarandi-Miandoab L., Hejazi M.A., Bagherieh-Najjar M.B., Chaparzadeh N, (2019). Optimization of the four most effective factors on β-carotene production by Dunaliella salina using response surface methodology. Iranian Journal of Pharmaceutical Sciences, 18(3), 1566.
Year 2022, Volume: 5 Issue: 2, 136 - 145, 01.04.2022
https://doi.org/10.3153/AR22013

Abstract

References

  • Abaci-Bayar, A., Yilmaz, K., Bayar Y. (2020). Orta Kızılırmak bölümündeki Seyfe Gölü sulak alanında oluşan toprakların bazı özelliklerinin incelenmesi. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13(2), 677-692. https://doi.org/10.18185/erzifbed.695963
  • Ahmed, R.A., He, M., Aftab, R.A., Zheng, S., Nagi, M., Bakri, R., Wang, C. (2017). Bioenergy application of Dunaliella salina SA 134 grown at various salinity levels for lipid production. Scientific Reports, 7(1), 1-10. https://doi.org/10.1038/s41598-017-07540-x
  • Ajala, S., Alexander, M.L. (2020). Evaluating the effects of agitation by shaking, stirring and air sparging on growth and accumulation of biochemical compounds in microalgae cells. Biofuels, 1, 11. https://doi.org/10.1080/17597269.2020.1714161
  • Andersen, R.A. (2005). Algal Culturing Techniques. Elsevier Academic Press, New York. ISBN: 0-12-088426-7
  • Bligh, E.G., Dyer, W.J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911-917. https://doi.org/10.1139/o59-099
  • Bonnefond, H., Moelants, N., Talec, A., Mayzaud, P., Bernard, O., Sciandra, A. (2017). Coupling and uncoupling of triglyceride and beta-carotene production by Dunaliella salina under nitrogen limitation and starvation. Biotechnology for Biofuels and Bioproducts, 10(1), 1-10. https://doi.org/10.1186/s13068-017-0713-4
  • Borowitzka, M.A., Siva, C.J. (2007). The taxonomy of the genus Dunaliella (Chlorophyta, Dunaliellales) with emphasis on the marine and halophilic species. Journal of Applied Phycology, 19(5), 567-590. https://doi.org/10.1007/s10811-007-9171-x
  • Borowitzka, M.A., Borowitzka, L.J., Kessly, D. (1990). Effects of salinity increase on carotenoid accumulation in the green alga Dunaliella salina. Journal of Applied Phycology, 2(2), 111-119. https://doi.org/10.1007/BF00023372
  • Carvalho, A.P., Meireles, L.A., Malcata, F.X. (2008). Microalgal reactors: a review of enclosed system designs and performances. Biotechnology Progress, 22, 1490-1506. https://doi.org/10.1021/bp060065r
  • Colusse, G. A., Mendes, C.R.B., Duarte, M.E.R., de Carvalho, J.C., Noseda, M.D. (2020). Effects of different culture media on physiological features and laboratory scale production cost of Dunaliella salina. Biotechnology Reports, 27, e00508. https://doi.org/10.1016/j.btre.2020.e00508
  • da Silva, M.R.O.B., Moura, Y.A.S., Converti, A., Porto, A.L.F., Marques, D.D.A.V., Bezerra, R.P. (2021). Assessment of the potential of Dunaliella microalgae for different biotechnological applications: a systematic review. Algal Research, 58, 102396. https://doi.org/10.1016/j.algal.2021.102396
  • Day, J.G., Stacey, G. (2007). Cryopreservation and Freeze-Drying Protocols. Humana Press. https://doi.org/10.1007/978-1-59745-362-2
  • Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.T., Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analiytical Chemistry, 28(3), 350-356. https://doi.org/10.1021/ac60111a017
  • Elleuch, F., Hlima, H.B., Barkallah, M., Baril, P., Abdelkafi, S., Pichon, C., Fendri, I. (2019). Carotenoids overproduction in Dunaliella sp.: transcriptional changes and new insights through lycopene β cyclase regulation. Applied Sciences, 9(24), 5389. https://doi.org/10.3390/app9245389
  • Emami, K., Hack, E., Nelson, A., Brain, C.M., Lyne, F.M., Mesbahi, E., Day, J.G., Caldwell, G.S. (2015). Proteomic-based biotyping reveals hidden diversity within a microalgae culture collection: an example using Dunaliella. Scientific Reports, 5(1), 1-15. https://doi.org/10.1038/srep10036
  • Gharajeh, N.H., Valizadeh, M., Dorani, E., Hejazi, M.A. (2020). Biochemical profiling of three indigenous Dunaliella isolates with main focus on fatty acid composition towards potential biotechnological application. Biotechnology Reports, 26, e00479. https://doi.org/10.1016/j.btre.2020.e00479
  • Gomez, P.I., Barriga, A., Cifuentes, A.S., Gonzalez, M.A. (2003). Effect of salinity on the quantity and quality of carotenoids accumulated by Dunaliella salina (strain CONC-007) and Dunaliella bardawil (strain ATCC 30861) Chlorophyta. Biological Research, 36(2), 185-192. https://doi.org/10.4067/S0716-97602003000200008
  • Hosseini Tafreshi, A., Shariati, M. (2009). Dunaliella biotechnology: methods and applications. Journal of Applied. Microbiology, 107(1), 14-35. https://doi.org/10.1111/j.1365-2672.2009.04153.x
  • Ishika, T., Bahri, P.A., Laird, D.W., Moheimani, N.R. (2018). The effect of gradual increase in salinity on the biomass productivity and biochemical composition of several marine, halotolerant, and halophilic microalgae. Journal of Applied Phycology, 30(3), 1453-1464. https://doi.org/10.1007/s10811-017-1377-y
  • Jesus, S.S., Filho, R.M. (2010). Modeling growth of microalgae Dunaliella salina under different nutritional conditions. American Journal of Biochemistry and Biotechnology, 6, 279-283. https://doi.org/10.3844/ajbbsp.2010.279.283
  • Kanamoto, A., Kato, Y., Yoshida, E., Hasunuma, T., Kondo, A. (2021). Development of a method for fucoxanthin production using the Haptophyte marine microalga Pavlova sp. OPMS 30543. Marine Biotechnology, 23(2), 331-341. https://doi.org/10.1007/s10126-021-10028-5
  • Kendirlioglu, G., Agirman, N., Cetin, A.K. (2015). The effects of photoperiod on the growth, protein amount and pigment content of Chlorella vulgaris. Turkish Journal of Science and Technology, 10(2), 7-10.
  • Khadim, S.R., Singh, P., Singh, A.K., Tiwari, A., Mohanta, A., Asthana, R.K. (2018). Mass cultivation of Dunaliella salina in a flat plate photobioreactor and its effective harvesting. Bioresource Technology, 270, 20-29. https://doi.org/10.1016/j.biortech.2018.08.071
  • Krienitz, L., Bock, C., Nozaki, H., Wolf, M. (2011). SSU rRna gene phylogeny of morphospecies affiliated to the bioassay alga “Selenastrum capricornutum” recovered the polyphyletic origin of crescent‐shaped Chlorophyta (1). Journal of Phycology, 47(4), 880-893. https://doi.org/10.1111/j.1529-8817.2011.01010.x
  • Kunjapur, A.M., Eldridge, R.B. (2010). Photobioreactor design for commercial biofuel production from microalgae. I&EC Research, 49(8), 3516-3526. https://doi.org/10.1021/ie901459u
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6
  • Maoka, T. (2020). Carotenoids as natural functional pigments. Journal of Natural Medicines, 74(1), 1-16. https://doi.org/10.1007/s11418-019-01364-x
  • Muhaemin, M., Kaswadji, R.F. (2010). Biomass nutrient profiles of marine microalgae Dunaliella salina. Jurnal Penelitian Sains, 13(3), 13314-13369.
  • Olmos, J., Paniagua, J., Contreras, R. (2000). Molecular identification of Dunaliella sp. utilizing the 18S rDNA gene. Letters in Applied Microbiology, 30(1), 80-84. https://doi.org/10.1046/j.1472-765x.2000.00672.x
  • Oren, A. (2005). A hundred years of Dunaliella research: 1905–2005. Aquatic Biosystems, 1(1), 1-14. https://doi.org/10.1186/1746-1448-1-2
  • Ricardo, V.-Y., Giffard-Mena, I., Cruz-López, R., García-Mendoza, E., Stephano-Hornedo, J.L. (2018). Characterization of a new Dunalliela salina strain isolated from San Quintin, Baja California (México) producer of lipids, pigments and micronutrients. CICIMAR Oceánides, 33(2), 1- 10. https://doi.org/10.37543/oceanides.v33i2.212
  • Sahin, M.S., Khazi, M.I., Demirel, Z., Dalay, M.C. (2019). Variation in growth, fucoxanthin, fatty acids profile and lipid content of marine diatoms Nitzschia sp. and Nanofrustulum shiloi in response to nitrogen and iron. Biocatalysis Agricultural Biotechnology, 17, 390-398. https://doi.org/10.1016/j.bcab.2018.12.023
  • Sener, N., Demirel, Z., Imamoglu, E., Dalay, M. (2022). Optimization of Culture Conditions for Total Carotenoid Amount Using Response Surface Methodology in Green Microalgae/Ankistrodesmus convolutus. Aquatic Sciences and Engineering, 37(1), 29-37. https://doi.org/10.26650/ASE2020785091
  • Ueno R., Urano N., Suzuki M. (2003). Phylogeny of the non-photosynthetic green micro-algal genus Prototheca (Trebouxiophyceae, Chlorophyta) and related taxa inferred from SSU and LSU ribosomal DNA partial sequence data. FEMS Microbiology Letters, 223(2), 275-280. https://doi.org/10.1016/S0378-1097(03)00394-X
  • Wasanasathian A., Peng C.A. (2007). Bioprocessing for Value-Added Products from Renewable Resources. In: S. -T. Yang (Ed.), Algal photobioreactor for production of lutein and zeaxanthin 19 (pp. 491-505), Elsevier Science. https://doi.org/10.1016/B978-044452114-9/50020-7
  • Yuan, Y., Li, X., Zhao, Q. (2019). Enhancing growth and lipid productivity in Dunaliella salina under high light intensity and nitrogen limited conditions. Bioresource Technology Reports, 7, 100211. https://doi.org/10.1016/j.biteb.2019.100211
  • Zarandi-Miandoab L., Hejazi M.A., Bagherieh-Najjar M.B., Chaparzadeh N, (2019). Optimization of the four most effective factors on β-carotene production by Dunaliella salina using response surface methodology. Iranian Journal of Pharmaceutical Sciences, 18(3), 1566.
There are 37 citations in total.

Details

Primary Language English
Subjects Hydrobiology, Maritime Engineering (Other)
Journal Section Research Articles
Authors

Zeliha Demirel 0000-0003-3675-7315

Early Pub Date January 28, 2022
Publication Date April 1, 2022
Submission Date December 9, 2021
Published in Issue Year 2022Volume: 5 Issue: 2

Cite

APA Demirel, Z. (2022). Monitoring of growth and biochemical composition of Dunaliella salina and Dunaliella polymorpha in different photobioreactors. Aquatic Research, 5(2), 136-145. https://doi.org/10.3153/AR22013

16291

is licensed under a CreativeCommons Attribtion-ShareAlike 4.0 International Licence 14628   1325927040

Diamond Open Access refers to a scholarly publication model in which journals and platforms do not charge fees to either authors or readers.

Open Access Statement:

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.

Archiving Policy:

Archiving is done according to TÜBİTAK ULAKBİM "DergiPark" publication policy (LOCKSS).