Research Article
BibTex RIS Cite

Incubation temperatures, hatching success and congenital anomalies in green turtle nests from Guanahacabibes Peninsula, Cuba

Year 2021, Volume: 4 Issue: 4, 321 - 330, 01.10.2021
https://doi.org/10.3153/AR21027

Abstract

Elevated incubation temperatures of sea turtle nests decrease hatching success and alter the resulting hatchlings' morphology. There is an absence of studies assessing the relationships between temperature and hatching success in Cuba, even when they could improve understanding the limits of thermal tolerance in these species. This study evaluated the influence of incubation temperature on hatching success and phenotypic malformations in green turtle hatchlings (Chelonia mydas); and analyzed the temporal variation in hatching success on the studied beaches. In 48 green turtles nests distributed along two beaches, incubation temperature and hatching success were recorded between 2014 and 2019. Increasing incubation temperature caused a decrease in the hatching success and an increase in the frequency of supernumerary scutes. Despite the elevated temperatures (average > 30°C), hatching was higher than 80%. Significant differences in hatching success were only observed among seasons for nests in Antonio Beach (lower values in 2016 and 2019 compared to 2014).

Supporting Institution

The Ocean Foundation, the SEE Turtles, and Sea Turtle Conservancy provided for the logistical support of the temperature monitoring program. Guanahacabibes National Park administration provided all the camp logistic in the nesting areas.

Thanks

To the workers and volunteers for their effort in the conservation of marine turtles in Cuba.

References

  • Ackerman, R.A. (1977). The respiratory gas exchange of sea turtle nests (Chelonia, Caretta). Respiration Physiology, 31, 19-38. https://doi.org/10.1016/0034-5687(77)90062-7
  • Almeida, A.P., Moreira, L.M.P., Bruno, S.C., Thomé, J.C.A., Martins, A.S., Bolten, A.B., Bjorndal, K.A. (2011). Green turtle nesting on Trindade Island, Brazil: abundance, trends, and biometrics. Endangered Species Research, 14, 193-201. https://doi.org/10.3354/esr00357
  • Azanza, J., Ibarra, M.E., Ruiz, A., Hernández, J., Díaz-Fernández, R., Hernández, N. (2008). Análisis de nidos de tortuga verde (Chelonia mydas) durante la temporada de anidación 2006 en la Península de Guanahacabibes, Cuba. Revista de Investigaciones Marinas, 29(1),61-69.
  • Bárcenas‐Ibarra, A., de la Cueva, H., Rojas‐Lleonart, I., Abreu‐Grobois, F.A., Lozano‐Guzmán, R.I., Cuevas, E., García‐Gasca, A. (2015). First approximation to congenital malformation rates in embryos and hatchlings of sea turtles. Birth Defects Research Part A: Clinical and Molecular Teratology, 103(3), 203-224. https://doi.org/10.1002/bdra.23342
  • Bellini, C., Santos, A.J.B., Grossman, A., Marcovaldi, M.A., Barata, P.C.R. (2013). Green turtle (Chelonia mydas) nesting on Atol das Rocas, north-eastern Brazil, 1990–2008. Journal of the Marine Biological Association of the United Kingdom, 93(4), 1117-1132. https://doi.org/10.1017/S002531541200046X
  • Bladow, R.A., Milton, S.L. (2019). Embryonic mortality in green (Chelonia mydas) and loggerhead (Caretta caretta) sea turtle nests increases with cumulative exposure to elevated temperatures. Journal of Experimental Marine Biology and Ecology, 518, 151180. https://doi.org/10.1016/j.jembe.2019.151180
  • Booth, D.T., Feeney, R., Shibata, Y. (2012). Nest and maternal origin can influence morphology and locomotor performance on hatchling green turtles (Chelonia mydas) incubated in field nests. Marine Biology, 160, 127-137. https://doi.org/10.1007/s00227-012-2070-y
  • Broderick, A.C., Godley, B.J., Hays, G.C. (2001). Meta-bolic Heating and the Prediction of Sex Ratios for Green Turtles (Chelonia mydas). Physiological and Biochemical Zoology, 74(2), 161-170. https://doi.org/10.1086/319661
  • Brost, B., Witherington, B., Meylan, A., Leone, E., Ehrhart, L., Bagley, D. (2015). Sea turtle hatchling production from Florida (USA) beaches, 2002 − 2012, with recommendations for analyzing hatching success. Endangered Species Research, 27, 53-68. https://doi.org/10.3354/esr00653
  • Cabrera-Guerra, C., Azanza-Ricardo, J., Betancourt-Ávila, R., Bretos, F., Pérez Álvarez, P. (2019). Influencia de las especies arbustivas sobre el éxito reproductivo de la tortuga verde en la Península de Guanahacabibes, Pinar del Río, Cuba. Revista del Jardín Botánico Nacional, 40, 121-130.
  • Calderón-Peña, R., Betancourt-Avila, R., Rodríguez-Fajardo, E., Martínez-González, Y., Azanza-Ricardo, J. (2020). Sex ratio of the green sea turtle Chelonia mydas (Testudines: Cheloniidae) hatchlings in the Guanahacabibes Peninsula, Cuba. Revista de Biología Tropical, 68(3), 777-784. https://doi.org/10.15517/rbt.v68i3.39033
  • Cheng, I.J., Dutton, P.H., Chen, C.L., Chen, H.C., Chen, Y.H., Shea, J.W. (2008). Comparison of the genetics and nesting ecology of two green turtle rookeries. Journal of Zoology, 276, 375-384. https://doi.org/10.1111/j.1469-7998.2008.00501.x
  • Chen, C.L., Wang, C.C., Cheng, L.J. (2010). Effects of biotic and abiotic factors on the oxygen content of sea turtle nests during embryogenesis. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology, 180, 1045-1055. https://doi.org/10.1007/s00360-010-0479-5
  • Craven, K. S., Sheppard, S., Stallard, L. B., & Richardson, M. (2019). Investigating a link between head malformations and lack of pigmentation in loggerhead sea turtle embryos (Caretta caretta) in the southeastern US. Herpetological Notes, 12, 819-825.
  • Ditmer, M.A., Stapleton, S.P. (2012). Factors affecting hatch success of hawksbill sea turtles on Long Island, Antigua, West Indies. PloS one, 7(7), e38472. https://doi.org/10.1371/journal.pone.0038472
  • Erb, V., Lolavar, A., Wyneken, J. (2018). The role of sand moisture in shaping loggerhead sea turtle (Caretta caretta) neonate growth in southeast Florida. Chelonian Conservation and Biology, 17, 245-251. https://doi.org/10.2744/CCB-1301.1
  • Glen, F., Broderick, A.C., Godley, B.J., Hays, G.C. (2003). Incubation environment affects phenotype of naturally incubated green turtle hatchlings. Journal of the Marine Biological Association of the United Kingdom, 83, 1183-1186. https://doi.org/10.1017/S0025315403008464h
  • Gerhartz-Muro, J.L., Azanza-Ricardo, J., Moncada, F., Gerhartz-Abraham, M., Espinosa, L., Forneiro, Y., Chacón, D. (2018). Sand and incubation temperatu¬res in a sea turtle nesting beach at the Cayos de San Felipe National Park, Pinar del Río, Cuba, during the 2012-2013 season. Revista de Investigaciones Mari¬nas, 38(2), 45-61.
  • Howard, R., Bell, I., Pike, D.A. (2014). Thermal tolerances of sea turtle embryos: current understanding and future directions. Endangered Species Research, 26, 75-86. https://doi.org/10.3354/esr00636
  • IPCC (2018). Summary for Policymakers. In IPCC, M. Allen, M. Babiker, Y. Chen, H. de Coninck, S. Connors, et al. (Eds.), Global Warming of 1.5 C: An IPCC Special Report on the impacts of global warming of 1.5 C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, 1-32, Geneva: World Meteorological Organization.
  • Kobayashi, S., Wada, M., Fujimoto, R., Kumazawa, Y., Arai, K., Watanabe, G., Saito, T. (2017). The effects of nest incubation temperature on embryos and hatchlings of the loggerhead sea turtle: Implications of sex difference for survival rates during early life stages. Journal of Experimental Marine Biology and Ecology, 486, 274-281. https://doi.org/10.1016/j.jembe.2016.10.020
  • Laloë, J.O., Esteban, N., Berkel, J., Hays, G.C. (2016). Sand temperatures for nesting sea turtles in the Caribbean: Implications for hatchling sex ratios in the face of climate change. Journal of Experimental Marine Biology and Ecology, 474, 92-99. https://doi.org/10.1016/j.jembe.2015.09.015
  • Laloë, J.O., Cozens, J., Renom, B., Taxonera, A., Hays, G.C. (2017). Climate change and temperature‐linked hatchling mortality at a globally important sea turtle nesting site. Global Change Biology, 23(11), 4922-4931. https://doi.org/10.1111/gcb.13765
  • Miller, J.D. (1997). Reproduction in sea turtles. In: Lutz PL, Musick JA (eds) The biology of sea turtles. CRC Press, Boca Raton, FL, p 51-80. ISBN: 0-8493-8422-2
  • Miller, J.D., Mortimer, J.A., Limpus, C.J. (2017). A field key to the developmental stages of marine turtles (Cheloniidae) with notes on the development of Dermochelys. Chelonian Conservation and Biology, 16(2), 111-122. https://doi.org/10.2744/CCB-1261.1
  • Moncada Gavilán, F., Nodarse Andreu, G., Azanza Ricar¬do, J., Medina, Y., Forneiro Martín-Viaña, Y. (2011). Principales áreas de anidación de las tortugas marinas en el archipiélago cubano. Revista electró¬nica de la Agencia de Medio Ambiente, 11(20), 1-8.
  • Saba, V.S., Stock, C.A., Spotila, J.R., Paladino, F.V., Tomillo, P.S. (2012). Projected response of an endangered marine turtle population to climate change. Nature Climate Change, 2 (11), 814-820. https://doi.org/10.1038/nclimate1582
  • Santidrián – Tomillo, P., Genovart, M., Paladino, F.V., Spotila, J.R., Oro, D. (2015). Climate change overruns temperature resilience in sea turtles and threatens their survival. Global Change Biology, 21(8), 2980-2988. https://doi.org/10.1111/gcb.12918
  • Santidrián - Tomillo, P., Fonseca, L., Paladino, F.V., Spotila, J.R., Oro, D. (2017). Are thermal barriers "higher" in deep sea turtle nests? PLoS ONE, 12(5), e0177256. https://doi.org/10.1371/journal.pone.0177256
  • Stewart, T.A., Booth, D.T., Rusli, M.U. (2020). Influence of sand grain size and nest microenvironment on incubation success, hatchling morphology and locomotion performance of green turtles (Chelonia mydas) at the Chagar Hutang Turtle Sanctuary, Redang Island, Malaysia. Australian Journal of Zoology, 66(6), 356-368. https://doi.org/10.1071/ZO19025
  • Sonmez, B., Turan, C., Özdilek, S.Y. (2011). The effect of relocation on the morphology of Green Turtle, Chelonia mydas (Linnaeus, 1758), hatchlings on Samandag beach, Turkey (Reptilia: Cheloniidae). Zoology in the Middle East, 52, 29-38. https://doi.org/10.1080/09397140.2011.10638476
  • Sonmez, B. (2018). Relationship between Metabolic Heating and Nest Parameters in Green Turtles (Chelonia mydas, L. 1758) on Samandağ Beach, Turkey. Zoological Science, 35(3), 243-248. https://doi.org/10.2108/zs180003
  • Sonmez B. (2019). Head and plastron scalation patterns of the green turtle, Chelonia mydas, hatchlings in natural and relocated nests on Samandağ Beach. Journal of Black Sea/Mediterranean Environment, 25, 280-293.
  • Tilley, D., Ball, S., Ellick, J., Godley, B.J., Weber, N., Weber, S.B., Broderick, A.C. (2019). No evidence of fine scale thermal adaptation in green turtles. Journal of Experimental Marine Biology and Ecology, 514, 110-117. https://doi.org/10.1016/j.jembe.2019.04.001
  • Turkozan, O., Yamamoto, K., Yilmaz, C. (2011). Nest site preference and hatching success of green (Chelonia mydas) and loggerhead (Caretta caretta) sea turtles at Akyatan Beach, Turkey. Chelonian Conservation and Biology, 10, 270-275. https://doi.org/10.2744/CCB-0861.1
  • Weber, S.B., Broderick, A.C., Groothuis, T.G., Ellick, J., Godley, B.J., Blount, J.D. (2012). Fine-scale thermal adaptation in a green turtle nesting population. Proceedings. Royal Society B, 279, 1077-1084. https://doi.org/10.1098/rspb.2011.1238
  • Wyneken, J., Salmon, M. (2020). Linking Ecology, Morphology, and Behavior to Conservation: Lessons Learned from Studies of Sea Turtles. Integrative and Comparative Biology, 60(2), 440-455. https://doi.org/10.1093/icb/icaa044
  • Xavier, R., Barata, A., Cortez, P.L., Queiroz, N., Cuevas, E. (2006). Hawksbill turtle (Eretmochelys imbricata Linnaeus, 1766) and Green turtle (Chelonia mydas Linnaeus, 1754) nesting activity (2002–2004) at El Cuyo Beach, Mexico. Amphibia-Reptilia, 27, 539-547. https://doi.org/10.1163/156853806778877077
  • Zárate, P., Bjorndal, K.A., Parra, M., Dutton, P.H., Seminoff, J.A., Bolten, A.B. (2013). Hatching and emergence success in green turtle Chelonia mydas nests in the Galápagos Islands. Aquatic Biology, 19(3), 217-229. https://doi.org/10.3354/ab00534
  • Zimm, R., Bentley, B.P., Wyneken, J., Moustakas-Verho, J.E. (2017). Environmental causation of turtle scute anomalies in ovo and in silico. Integrative and comparative biology, 57(6), 1303-1311. https://doi.org/10.1093/icb/icx066
Year 2021, Volume: 4 Issue: 4, 321 - 330, 01.10.2021
https://doi.org/10.3153/AR21027

Abstract

References

  • Ackerman, R.A. (1977). The respiratory gas exchange of sea turtle nests (Chelonia, Caretta). Respiration Physiology, 31, 19-38. https://doi.org/10.1016/0034-5687(77)90062-7
  • Almeida, A.P., Moreira, L.M.P., Bruno, S.C., Thomé, J.C.A., Martins, A.S., Bolten, A.B., Bjorndal, K.A. (2011). Green turtle nesting on Trindade Island, Brazil: abundance, trends, and biometrics. Endangered Species Research, 14, 193-201. https://doi.org/10.3354/esr00357
  • Azanza, J., Ibarra, M.E., Ruiz, A., Hernández, J., Díaz-Fernández, R., Hernández, N. (2008). Análisis de nidos de tortuga verde (Chelonia mydas) durante la temporada de anidación 2006 en la Península de Guanahacabibes, Cuba. Revista de Investigaciones Marinas, 29(1),61-69.
  • Bárcenas‐Ibarra, A., de la Cueva, H., Rojas‐Lleonart, I., Abreu‐Grobois, F.A., Lozano‐Guzmán, R.I., Cuevas, E., García‐Gasca, A. (2015). First approximation to congenital malformation rates in embryos and hatchlings of sea turtles. Birth Defects Research Part A: Clinical and Molecular Teratology, 103(3), 203-224. https://doi.org/10.1002/bdra.23342
  • Bellini, C., Santos, A.J.B., Grossman, A., Marcovaldi, M.A., Barata, P.C.R. (2013). Green turtle (Chelonia mydas) nesting on Atol das Rocas, north-eastern Brazil, 1990–2008. Journal of the Marine Biological Association of the United Kingdom, 93(4), 1117-1132. https://doi.org/10.1017/S002531541200046X
  • Bladow, R.A., Milton, S.L. (2019). Embryonic mortality in green (Chelonia mydas) and loggerhead (Caretta caretta) sea turtle nests increases with cumulative exposure to elevated temperatures. Journal of Experimental Marine Biology and Ecology, 518, 151180. https://doi.org/10.1016/j.jembe.2019.151180
  • Booth, D.T., Feeney, R., Shibata, Y. (2012). Nest and maternal origin can influence morphology and locomotor performance on hatchling green turtles (Chelonia mydas) incubated in field nests. Marine Biology, 160, 127-137. https://doi.org/10.1007/s00227-012-2070-y
  • Broderick, A.C., Godley, B.J., Hays, G.C. (2001). Meta-bolic Heating and the Prediction of Sex Ratios for Green Turtles (Chelonia mydas). Physiological and Biochemical Zoology, 74(2), 161-170. https://doi.org/10.1086/319661
  • Brost, B., Witherington, B., Meylan, A., Leone, E., Ehrhart, L., Bagley, D. (2015). Sea turtle hatchling production from Florida (USA) beaches, 2002 − 2012, with recommendations for analyzing hatching success. Endangered Species Research, 27, 53-68. https://doi.org/10.3354/esr00653
  • Cabrera-Guerra, C., Azanza-Ricardo, J., Betancourt-Ávila, R., Bretos, F., Pérez Álvarez, P. (2019). Influencia de las especies arbustivas sobre el éxito reproductivo de la tortuga verde en la Península de Guanahacabibes, Pinar del Río, Cuba. Revista del Jardín Botánico Nacional, 40, 121-130.
  • Calderón-Peña, R., Betancourt-Avila, R., Rodríguez-Fajardo, E., Martínez-González, Y., Azanza-Ricardo, J. (2020). Sex ratio of the green sea turtle Chelonia mydas (Testudines: Cheloniidae) hatchlings in the Guanahacabibes Peninsula, Cuba. Revista de Biología Tropical, 68(3), 777-784. https://doi.org/10.15517/rbt.v68i3.39033
  • Cheng, I.J., Dutton, P.H., Chen, C.L., Chen, H.C., Chen, Y.H., Shea, J.W. (2008). Comparison of the genetics and nesting ecology of two green turtle rookeries. Journal of Zoology, 276, 375-384. https://doi.org/10.1111/j.1469-7998.2008.00501.x
  • Chen, C.L., Wang, C.C., Cheng, L.J. (2010). Effects of biotic and abiotic factors on the oxygen content of sea turtle nests during embryogenesis. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology, 180, 1045-1055. https://doi.org/10.1007/s00360-010-0479-5
  • Craven, K. S., Sheppard, S., Stallard, L. B., & Richardson, M. (2019). Investigating a link between head malformations and lack of pigmentation in loggerhead sea turtle embryos (Caretta caretta) in the southeastern US. Herpetological Notes, 12, 819-825.
  • Ditmer, M.A., Stapleton, S.P. (2012). Factors affecting hatch success of hawksbill sea turtles on Long Island, Antigua, West Indies. PloS one, 7(7), e38472. https://doi.org/10.1371/journal.pone.0038472
  • Erb, V., Lolavar, A., Wyneken, J. (2018). The role of sand moisture in shaping loggerhead sea turtle (Caretta caretta) neonate growth in southeast Florida. Chelonian Conservation and Biology, 17, 245-251. https://doi.org/10.2744/CCB-1301.1
  • Glen, F., Broderick, A.C., Godley, B.J., Hays, G.C. (2003). Incubation environment affects phenotype of naturally incubated green turtle hatchlings. Journal of the Marine Biological Association of the United Kingdom, 83, 1183-1186. https://doi.org/10.1017/S0025315403008464h
  • Gerhartz-Muro, J.L., Azanza-Ricardo, J., Moncada, F., Gerhartz-Abraham, M., Espinosa, L., Forneiro, Y., Chacón, D. (2018). Sand and incubation temperatu¬res in a sea turtle nesting beach at the Cayos de San Felipe National Park, Pinar del Río, Cuba, during the 2012-2013 season. Revista de Investigaciones Mari¬nas, 38(2), 45-61.
  • Howard, R., Bell, I., Pike, D.A. (2014). Thermal tolerances of sea turtle embryos: current understanding and future directions. Endangered Species Research, 26, 75-86. https://doi.org/10.3354/esr00636
  • IPCC (2018). Summary for Policymakers. In IPCC, M. Allen, M. Babiker, Y. Chen, H. de Coninck, S. Connors, et al. (Eds.), Global Warming of 1.5 C: An IPCC Special Report on the impacts of global warming of 1.5 C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, 1-32, Geneva: World Meteorological Organization.
  • Kobayashi, S., Wada, M., Fujimoto, R., Kumazawa, Y., Arai, K., Watanabe, G., Saito, T. (2017). The effects of nest incubation temperature on embryos and hatchlings of the loggerhead sea turtle: Implications of sex difference for survival rates during early life stages. Journal of Experimental Marine Biology and Ecology, 486, 274-281. https://doi.org/10.1016/j.jembe.2016.10.020
  • Laloë, J.O., Esteban, N., Berkel, J., Hays, G.C. (2016). Sand temperatures for nesting sea turtles in the Caribbean: Implications for hatchling sex ratios in the face of climate change. Journal of Experimental Marine Biology and Ecology, 474, 92-99. https://doi.org/10.1016/j.jembe.2015.09.015
  • Laloë, J.O., Cozens, J., Renom, B., Taxonera, A., Hays, G.C. (2017). Climate change and temperature‐linked hatchling mortality at a globally important sea turtle nesting site. Global Change Biology, 23(11), 4922-4931. https://doi.org/10.1111/gcb.13765
  • Miller, J.D. (1997). Reproduction in sea turtles. In: Lutz PL, Musick JA (eds) The biology of sea turtles. CRC Press, Boca Raton, FL, p 51-80. ISBN: 0-8493-8422-2
  • Miller, J.D., Mortimer, J.A., Limpus, C.J. (2017). A field key to the developmental stages of marine turtles (Cheloniidae) with notes on the development of Dermochelys. Chelonian Conservation and Biology, 16(2), 111-122. https://doi.org/10.2744/CCB-1261.1
  • Moncada Gavilán, F., Nodarse Andreu, G., Azanza Ricar¬do, J., Medina, Y., Forneiro Martín-Viaña, Y. (2011). Principales áreas de anidación de las tortugas marinas en el archipiélago cubano. Revista electró¬nica de la Agencia de Medio Ambiente, 11(20), 1-8.
  • Saba, V.S., Stock, C.A., Spotila, J.R., Paladino, F.V., Tomillo, P.S. (2012). Projected response of an endangered marine turtle population to climate change. Nature Climate Change, 2 (11), 814-820. https://doi.org/10.1038/nclimate1582
  • Santidrián – Tomillo, P., Genovart, M., Paladino, F.V., Spotila, J.R., Oro, D. (2015). Climate change overruns temperature resilience in sea turtles and threatens their survival. Global Change Biology, 21(8), 2980-2988. https://doi.org/10.1111/gcb.12918
  • Santidrián - Tomillo, P., Fonseca, L., Paladino, F.V., Spotila, J.R., Oro, D. (2017). Are thermal barriers "higher" in deep sea turtle nests? PLoS ONE, 12(5), e0177256. https://doi.org/10.1371/journal.pone.0177256
  • Stewart, T.A., Booth, D.T., Rusli, M.U. (2020). Influence of sand grain size and nest microenvironment on incubation success, hatchling morphology and locomotion performance of green turtles (Chelonia mydas) at the Chagar Hutang Turtle Sanctuary, Redang Island, Malaysia. Australian Journal of Zoology, 66(6), 356-368. https://doi.org/10.1071/ZO19025
  • Sonmez, B., Turan, C., Özdilek, S.Y. (2011). The effect of relocation on the morphology of Green Turtle, Chelonia mydas (Linnaeus, 1758), hatchlings on Samandag beach, Turkey (Reptilia: Cheloniidae). Zoology in the Middle East, 52, 29-38. https://doi.org/10.1080/09397140.2011.10638476
  • Sonmez, B. (2018). Relationship between Metabolic Heating and Nest Parameters in Green Turtles (Chelonia mydas, L. 1758) on Samandağ Beach, Turkey. Zoological Science, 35(3), 243-248. https://doi.org/10.2108/zs180003
  • Sonmez B. (2019). Head and plastron scalation patterns of the green turtle, Chelonia mydas, hatchlings in natural and relocated nests on Samandağ Beach. Journal of Black Sea/Mediterranean Environment, 25, 280-293.
  • Tilley, D., Ball, S., Ellick, J., Godley, B.J., Weber, N., Weber, S.B., Broderick, A.C. (2019). No evidence of fine scale thermal adaptation in green turtles. Journal of Experimental Marine Biology and Ecology, 514, 110-117. https://doi.org/10.1016/j.jembe.2019.04.001
  • Turkozan, O., Yamamoto, K., Yilmaz, C. (2011). Nest site preference and hatching success of green (Chelonia mydas) and loggerhead (Caretta caretta) sea turtles at Akyatan Beach, Turkey. Chelonian Conservation and Biology, 10, 270-275. https://doi.org/10.2744/CCB-0861.1
  • Weber, S.B., Broderick, A.C., Groothuis, T.G., Ellick, J., Godley, B.J., Blount, J.D. (2012). Fine-scale thermal adaptation in a green turtle nesting population. Proceedings. Royal Society B, 279, 1077-1084. https://doi.org/10.1098/rspb.2011.1238
  • Wyneken, J., Salmon, M. (2020). Linking Ecology, Morphology, and Behavior to Conservation: Lessons Learned from Studies of Sea Turtles. Integrative and Comparative Biology, 60(2), 440-455. https://doi.org/10.1093/icb/icaa044
  • Xavier, R., Barata, A., Cortez, P.L., Queiroz, N., Cuevas, E. (2006). Hawksbill turtle (Eretmochelys imbricata Linnaeus, 1766) and Green turtle (Chelonia mydas Linnaeus, 1754) nesting activity (2002–2004) at El Cuyo Beach, Mexico. Amphibia-Reptilia, 27, 539-547. https://doi.org/10.1163/156853806778877077
  • Zárate, P., Bjorndal, K.A., Parra, M., Dutton, P.H., Seminoff, J.A., Bolten, A.B. (2013). Hatching and emergence success in green turtle Chelonia mydas nests in the Galápagos Islands. Aquatic Biology, 19(3), 217-229. https://doi.org/10.3354/ab00534
  • Zimm, R., Bentley, B.P., Wyneken, J., Moustakas-Verho, J.E. (2017). Environmental causation of turtle scute anomalies in ovo and in silico. Integrative and comparative biology, 57(6), 1303-1311. https://doi.org/10.1093/icb/icx066
There are 40 citations in total.

Details

Primary Language English
Subjects Hydrobiology
Journal Section Research Articles
Authors

Randy Calderón 0000-0001-7712-2944

Julia Azanza Ricardo 0000-0002-9454-9226

Publication Date October 1, 2021
Submission Date December 15, 2020
Published in Issue Year 2021Volume: 4 Issue: 4

Cite

APA Calderón, R., & Azanza Ricardo, J. (2021). Incubation temperatures, hatching success and congenital anomalies in green turtle nests from Guanahacabibes Peninsula, Cuba. Aquatic Research, 4(4), 321-330. https://doi.org/10.3153/AR21027

16291

is licensed under a CreativeCommons Attribtion-ShareAlike 4.0 International Licence 14628   1325927040

Diamond Open Access refers to a scholarly publication model in which journals and platforms do not charge fees to either authors or readers.

Open Access Statement:

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.

Archiving Policy:

Archiving is done according to TÜBİTAK ULAKBİM "DergiPark" publication policy (LOCKSS).