Research Article
BibTex RIS Cite

Fluoksetin-HCl’nin Kılıçkuyruk Balıklarında (Xiphophorus hellerii) Oluşturduğu Oksidatif Hasarın Belirlenmesi

Year 2021, Volume: 4 Issue: 3, 286 - 292, 01.07.2021
https://doi.org/10.3153/AR21022

Abstract

Bu çalışma ile dünyada gittikçe artış gösteren sağlık sorunlarından biri olan depresyonun tedavisinde yaygın olarak kullanılan ve kardiyovasküler olarak güvenilir kabul edilen SSRI (Özgül Serotonin Geri Alım Engelleyicileri) grubu antidepresanlardan Prozac®’ın etken maddesi olan Fluoksetin Hidroklorür’ün, sucul bir organizma olan kılıçkuyruk balığı (Xiphophorus hellerii Heckel, 1848) dokularında oluşturduğu oksidatif stresin belirlenmesi amaçlanmıştır. Fluoksetin-HCl, doğada yüzey sularında 0.012 μg/L, atık sularda 0.54- 0.929 μg/L doz aralığında bulunmuştur. Bu bilgiler doğrultusunda kılıçkuyruk balıklarına 0.1 μg/L ve 1 μg/L Fluoksetin-HCl uygulaması yapılmıştır. 96 saat sonunda balıklardan kalp ve karaciğer dokuları antiseptik şartlarda disekte edilip homojenize edilmiştir. Daha sonra malondialdehit (MDA), total glutatyon (GSH) miktarları, katalaz (CAT) enzim aktivitesi, süperoksit dismutaz (SOD) enzim aktivitesi ve total protein miktarı spektrofotometrik yöntemlerle belirlenmiştir. Sonuç olarak, kalp dokuda CAT enzim aktivitesi ve MDA seviyesi azalırken, SOD enzim aktivitesi ve GSH seviyesi artmıştır. Karaciğer dokuda ise, CAT enzim aktivitesi ve GSH miktarı artarken, SOD enzim aktivitesi ve MDA seviyesi azalmıştır. Sonuç olarak bu çalışmada kontrol grubu ile yapılan karşılaştırmalar sonucu Fluoksetin-HCl’nin kılıçkuyruk balıklarında stres yolaklarını etkileyerek, stres cevabının düzenlenmesinde etkili olduğu belirlenmiştir.

References

  • Abreu, M.S., Koakoski, G., Ferreira, D., Oliveira, T.A., da Rosa, J.G.S., Gusso, D., Barcellos, L.J.G. (2014). Diazepam and fluoxetine decrease the stress response in zebrafish. PLoS One, 9(7), e103232. https://doi.org/10.1371/journal.pone.0103232
  • Aebi, H. (1984). Catalase in vitro. Methods of Enzymology, 105, 121-126. https://doi.org/10.1016/S0076-6879(84)05016-3
  • Airhart, M.J., Lee, D.H., Wilson, T.D., Miller, B.E., Miller, M.N., Skalko, R.G. (2007). Movement disorders and neurochemical changes in zebrafish larvae after bath exposure to fluoxeetine (PROZAC). Neurotoxicology and Teratology, 29, 652-664. https://doi.org/10.1016/j.ntt.2007.07.005
  • Alsop, D., Wood, C.M. (2013). Metal and pharmaceutical mixtures: is ion loss the mechanism underlying acute toxicity and widespread additive toxicity in zebrafish?. Aquatic Toxicology, 140, 257-267. https://doi.org/10.1016/j.aquatox.2013.05.021
  • Balcı, B., Erkuş, A., Erkuş, F.Ş. (2010). Farmasötik bileşiklerin sucul ortamda bulunuşu ve etkileri. Research Journal of Biology Sciences, 3(2), 13-19.
  • Beutler, E. (1975). Reduced glutathione-GSH, u: Beutler E.(ur.) Red cell metabolism: A manual of biochemical methods. Grane and Straton, New York.
  • Bradford, M.M. (1976). A Rapid Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding, Analytical Biochemistry, 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  • Chen, H., Zeng, X., Mu, L., Hou, L., Yang, B., Zhao, J., Zhang, Q. (2018). Effects of acute and chronic exposures of fluoxetine on the Chinese fish, topmouth gudgeon Pseudorasbora parva. Ecotoxicology and Environmental Safety, 160, 104-113. https://doi.org/10.1016/j.ecoenv.2018.04.061
  • Cunha, V., Rodrigues, P., Santos, M.M., Moradas-Ferreira, P., Ferreira, M. (2016). Danio rerio embryos on Prozac Effects on the detoxification mechanism and embryo development. Aquatic Toxicology, 178, 182-189. https://doi.org/10.1016/j.aquatox.2016.08.003
  • Ding, J., Lu, G., Li, Y. (2016). Interactive effects of selected pharmaceutical mixtures on bioaccumulation and biochemical status in crucian carp (Carassius auratus). Chemosphere, 148, 21-31. https://doi.org/10.1016/j.chemosphere.2016.01.017
  • FDA-CDER (1998). Guidance for industry-Environmental assessment of human drugs and biologics applications, Revision 1.
  • Gutiérrez-Rodríguez, C., Morris, M.R., Dubois, N.S., de Queiroz, K. (2007). Genetic variation and phylogeography of the swordtail fish Xiphophorus cortezi (Cyprinodontiformes, Poeciliidae). Molecular Phylogenetics and Evolution, 43(1), 111-123. https://doi.org/10.1016/j.ympev.2006.10.022
  • Halliwell, B., Gutteridge, J.M. (2015). Free radicals in biology and medicine. Oxford University Press, USA. ISBN: 978-0-19-871747-8 https://doi.org/10.1093/acprof:oso/9780198717478.001.0001
  • Jin, Y., Zhang, X., Shu, L., Chen, L., Sun, L., Qian, H., Fu, Z. (2010). Oxidative stress response and gene expression with atrazine exposure in adult female zebrafish (Danio rerio). Chemosphere, 78(7), 846-852. https://doi.org/10.1016/j.chemosphere.2009.11.044
  • Kayım, M. H., Çağırgan, H., Güner, Y. (1999). The research of the effects of 17α-methyltestosterone on the growth of swordtail fish (Xiphophorus helleri Heckel, 1848). Journal of Fisheries and Aquatic Sciences, 16(1-2), 31-46.
  • Kwak, H.I., Bae, M.O., Lee, M.H., Lee, Y.S., Lee, B.J., Kang, K.S., Cho, M.H. (2001). Effects of nonylphenol, bisphenol A, and their mixture on the viviparous swordtail fish (Xiphophorus helleri). Environmental Toxicology and Chemistry: An International Journal, 20(4), 787-795. https://doi.org/10.1002/etc.5620200414
  • Ledwozyw, A., Michalak, J., Stepien, A., Kadziolka, A. (1986). The relationship between plasma triglycerides, cholesterol, total lipids and lipid peroxidation products during human atherosclerosis. Clinica Chimica Acta, 155, 275-283. https://doi.org/10.1016/0009-8981(86)90247-0
  • Li, Z., Zlabeka, V., Grabica, R., Lia, P., Machovaa, J., Veliseka, J., Randak, T. (2010). Effects of exposure to sublethal propiconazole on the antioxidant defense system and Na+–K+-ATPase activity in brain of rainbow trout, Oncorhynchus mykiss. Aquatic Toxicology, 98, 297-303. https://doi.org/10.1016/j.aquatox.2010.02.017
  • McCallum, E.S., Bose, A.P., Warriner, T.R., Balshine, S. (2017). An evaluation of behavioural endpoints: the pharmaceutical pollutant fluoxetine decreases aggression across multiple contexts in round goby (Neogobius melanostomus). Chemosphere, 175, 401-410. https://doi.org/10.1016/j.chemosphere.2017.02.059
  • Mennigen, J.A., Zamora, J.M., Chang, J.P., Trudeau, V.L. (2017). Endocrine disrupting effects of waterborne fluoxetine exposure on the reproductive axis of female goldfish, Carassius auratus. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 202, 70-78. https://doi.org/10.1016/j.cbpc.2017.08.003
  • Mylroie, A.A., Collins, H., Umbles, C., Kyle, J. (1986). Erythrocyte superoxide dismutase activity and other parameters of copper status in rats ingesting lead acetate. Toxicology and Applied Pharmacology, 82(3), 512-520. https://doi.org/10.1016/0041-008X(86)90286-3
  • Oliveira,, M.R. (2016). Fluoxetine and the mitochondria: A review of the toxicological aspects. Toxicology Letters, 256, 185-191. https://doi.org/10.1016/j.toxlet.2016.07.001
  • Orem, N.R., Dolph, P.J., (2002). Loss of the phospholipase C gene product induces massive endocytosis of rhodopsin and arrestin in Drosophila photoreceptors. Vision Research, 42, 497-505. https://doi.org/10.1016/S0042-6989(01)00229-2
  • Panlilio, J.M., Marin, S., Lobl, M.B., McDonald, M.D. (2016). Treatment with the selective serotonin reuptake inhibitor, fluoxetine, attenuates the fish hypoxia response. Scientific Reports, 6(1), 1-12. https://doi.org/10.1038/srep31148
  • Sayeed, I., Parvez, S., Pandey, S., Bin-Hafeez, B., Haque, R., Raisuddin, S. (2003). Oxidative stress biomarkers of exposure to deltamethrin in freshwater fish, Channa punctatus Bloch. Ecotoxicology and Environmental Safety, 56(2), 295-301. https://doi.org/10.1016/S0147-6513(03)00009-5
  • Sehonova, P., Svobodova, Z., Dolezelova, P., Vosmerova, P., Faggio, C. (2018). Effects of waterborne antidepressants on non-target animals living in the aquatic environment: a review. Science of the Total Environment, 631, 789-794. https://doi.org/10.1016/j.scitotenv.2018.03.076
  • Sehring, I.M., Jahn, C., Weidinger, G. (2016). Zebrafish fin and heart: what's special about regeneration?. Current Opinion in Genetics & Development, 40, 48-56. https://doi.org/10.1016/j.gde.2016.05.011
  • Vera-Chang, M.N., Moon, T.W., Trudeau, V.L. (2019). Cortisol disruption and transgenerational alteration in the expression of stress-related genes in zebrafish larvae following fluoxetine exposure. Toxicology and Applied Pharmacology, 382, 114742. https://doi.org/10.1016/j.taap.2019.114742
  • Weinberger II, J., Klaper, R. (2014). Environmental concentrations of the selective serotonin reuptake inhibitor fluoxetine impact specific behaviors involved in reproduction, feeding and predator avoidance in the fish Pimephales promelas (fathead minnow). Aquatic Toxicology, 151, 77-83. https://doi.org/10.1016/j.aquatox.2013.10.012
  • Yan, Z., Zhang, X., Bao, X., Ling, X., Yang, H., Liu, J., Ji, Y. (2020). Influence of dissolved organic matter on the accumulation, metabolite production and multi-biological effects of environmentally relevant fluoxetine in crucian carp (Carassius auratus). Aquatic Toxicology, 226, 105581. https://doi.org/10.1016/j.aquatox.2020.105581
  • Yang, M., Qiu, W., Chen, J., Zhan, J., Pan, C., Lei, X., Wu, M. (2014). Growth inhibition and coordinated physiological regulation of zebrafish (Danio rerio) embryos upon sublethal exposure to antidepressant amitriptyline. Aquatic Toxicology, 151, 68-76. https://doi.org/10.1016/j.aquatox.2013.12.029
  • Zindler, F., Tisler, S., Loerracher, A.K., Zwiener, C., Braunbeck, T. (2020). Norfluoxetine is the only metabolite of fluoxetine in Zebrafish (Danio rerio) embryos that accumulates at environmentally relevant exposure scenarios. Environmental Science & Technology, 54(7), 4200-4209. https://doi.org/10.1021/acs.est.9b07618

The determination of oxidative damage caused by fluoxetine hydrocloride in swordtail fish (Xiphophorus hellerii)

Year 2021, Volume: 4 Issue: 3, 286 - 292, 01.07.2021
https://doi.org/10.3153/AR21022

Abstract

In this study, it was aimed to determine the oxidative stress in the tissues of the swordtail fish (Xiphophorus hellerii Heckel, 1848) after exposed to the active ingredient of Prozac® and one of the SSRI (Selective Serotonine Reuptake Inhibitor) group antidepressants, Fluoxetine Hydrochloride, which is considered to be safe cardiovascular. It is widely used in the treatment of depression, which is one of the increasing health problems in the World. Fluoxetine-HCl has been found 0.012 μg/L in surface waters and in the dose range of 0.54-0.929 μg/L in wastewater (Sehonova et al., 2018). In line with this information, 0.1 μg / L and 1 μg / L Fluoxetine-HCl was administered to swordtails. At the end of 96 hours, heart and liver tissues of the fish were dissected under antiseptic conditions and homogenized. Later, malondialdehyde (MDA), total glutathione (GSH), catalase (CAT) enzyme activity, superoxide dismutase (SOD) enzyme activity and total protein amount were determined by spectrophotometric methods. As a result, while CAT enzyme activity and MDA level decreased in heart tissue, SOD enzyme activity and GSH level increased. In liver tissue, while CAT enzyme activity and GSH amount increased, SOD enzyme activity and MDA level decreased. As a result of the comparisons with the control group, it was determined that Fluoxetine-HCl is effective in regulating the stress response by affecting the stress pathways in swordtails.

References

  • Abreu, M.S., Koakoski, G., Ferreira, D., Oliveira, T.A., da Rosa, J.G.S., Gusso, D., Barcellos, L.J.G. (2014). Diazepam and fluoxetine decrease the stress response in zebrafish. PLoS One, 9(7), e103232. https://doi.org/10.1371/journal.pone.0103232
  • Aebi, H. (1984). Catalase in vitro. Methods of Enzymology, 105, 121-126. https://doi.org/10.1016/S0076-6879(84)05016-3
  • Airhart, M.J., Lee, D.H., Wilson, T.D., Miller, B.E., Miller, M.N., Skalko, R.G. (2007). Movement disorders and neurochemical changes in zebrafish larvae after bath exposure to fluoxeetine (PROZAC). Neurotoxicology and Teratology, 29, 652-664. https://doi.org/10.1016/j.ntt.2007.07.005
  • Alsop, D., Wood, C.M. (2013). Metal and pharmaceutical mixtures: is ion loss the mechanism underlying acute toxicity and widespread additive toxicity in zebrafish?. Aquatic Toxicology, 140, 257-267. https://doi.org/10.1016/j.aquatox.2013.05.021
  • Balcı, B., Erkuş, A., Erkuş, F.Ş. (2010). Farmasötik bileşiklerin sucul ortamda bulunuşu ve etkileri. Research Journal of Biology Sciences, 3(2), 13-19.
  • Beutler, E. (1975). Reduced glutathione-GSH, u: Beutler E.(ur.) Red cell metabolism: A manual of biochemical methods. Grane and Straton, New York.
  • Bradford, M.M. (1976). A Rapid Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding, Analytical Biochemistry, 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  • Chen, H., Zeng, X., Mu, L., Hou, L., Yang, B., Zhao, J., Zhang, Q. (2018). Effects of acute and chronic exposures of fluoxetine on the Chinese fish, topmouth gudgeon Pseudorasbora parva. Ecotoxicology and Environmental Safety, 160, 104-113. https://doi.org/10.1016/j.ecoenv.2018.04.061
  • Cunha, V., Rodrigues, P., Santos, M.M., Moradas-Ferreira, P., Ferreira, M. (2016). Danio rerio embryos on Prozac Effects on the detoxification mechanism and embryo development. Aquatic Toxicology, 178, 182-189. https://doi.org/10.1016/j.aquatox.2016.08.003
  • Ding, J., Lu, G., Li, Y. (2016). Interactive effects of selected pharmaceutical mixtures on bioaccumulation and biochemical status in crucian carp (Carassius auratus). Chemosphere, 148, 21-31. https://doi.org/10.1016/j.chemosphere.2016.01.017
  • FDA-CDER (1998). Guidance for industry-Environmental assessment of human drugs and biologics applications, Revision 1.
  • Gutiérrez-Rodríguez, C., Morris, M.R., Dubois, N.S., de Queiroz, K. (2007). Genetic variation and phylogeography of the swordtail fish Xiphophorus cortezi (Cyprinodontiformes, Poeciliidae). Molecular Phylogenetics and Evolution, 43(1), 111-123. https://doi.org/10.1016/j.ympev.2006.10.022
  • Halliwell, B., Gutteridge, J.M. (2015). Free radicals in biology and medicine. Oxford University Press, USA. ISBN: 978-0-19-871747-8 https://doi.org/10.1093/acprof:oso/9780198717478.001.0001
  • Jin, Y., Zhang, X., Shu, L., Chen, L., Sun, L., Qian, H., Fu, Z. (2010). Oxidative stress response and gene expression with atrazine exposure in adult female zebrafish (Danio rerio). Chemosphere, 78(7), 846-852. https://doi.org/10.1016/j.chemosphere.2009.11.044
  • Kayım, M. H., Çağırgan, H., Güner, Y. (1999). The research of the effects of 17α-methyltestosterone on the growth of swordtail fish (Xiphophorus helleri Heckel, 1848). Journal of Fisheries and Aquatic Sciences, 16(1-2), 31-46.
  • Kwak, H.I., Bae, M.O., Lee, M.H., Lee, Y.S., Lee, B.J., Kang, K.S., Cho, M.H. (2001). Effects of nonylphenol, bisphenol A, and their mixture on the viviparous swordtail fish (Xiphophorus helleri). Environmental Toxicology and Chemistry: An International Journal, 20(4), 787-795. https://doi.org/10.1002/etc.5620200414
  • Ledwozyw, A., Michalak, J., Stepien, A., Kadziolka, A. (1986). The relationship between plasma triglycerides, cholesterol, total lipids and lipid peroxidation products during human atherosclerosis. Clinica Chimica Acta, 155, 275-283. https://doi.org/10.1016/0009-8981(86)90247-0
  • Li, Z., Zlabeka, V., Grabica, R., Lia, P., Machovaa, J., Veliseka, J., Randak, T. (2010). Effects of exposure to sublethal propiconazole on the antioxidant defense system and Na+–K+-ATPase activity in brain of rainbow trout, Oncorhynchus mykiss. Aquatic Toxicology, 98, 297-303. https://doi.org/10.1016/j.aquatox.2010.02.017
  • McCallum, E.S., Bose, A.P., Warriner, T.R., Balshine, S. (2017). An evaluation of behavioural endpoints: the pharmaceutical pollutant fluoxetine decreases aggression across multiple contexts in round goby (Neogobius melanostomus). Chemosphere, 175, 401-410. https://doi.org/10.1016/j.chemosphere.2017.02.059
  • Mennigen, J.A., Zamora, J.M., Chang, J.P., Trudeau, V.L. (2017). Endocrine disrupting effects of waterborne fluoxetine exposure on the reproductive axis of female goldfish, Carassius auratus. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 202, 70-78. https://doi.org/10.1016/j.cbpc.2017.08.003
  • Mylroie, A.A., Collins, H., Umbles, C., Kyle, J. (1986). Erythrocyte superoxide dismutase activity and other parameters of copper status in rats ingesting lead acetate. Toxicology and Applied Pharmacology, 82(3), 512-520. https://doi.org/10.1016/0041-008X(86)90286-3
  • Oliveira,, M.R. (2016). Fluoxetine and the mitochondria: A review of the toxicological aspects. Toxicology Letters, 256, 185-191. https://doi.org/10.1016/j.toxlet.2016.07.001
  • Orem, N.R., Dolph, P.J., (2002). Loss of the phospholipase C gene product induces massive endocytosis of rhodopsin and arrestin in Drosophila photoreceptors. Vision Research, 42, 497-505. https://doi.org/10.1016/S0042-6989(01)00229-2
  • Panlilio, J.M., Marin, S., Lobl, M.B., McDonald, M.D. (2016). Treatment with the selective serotonin reuptake inhibitor, fluoxetine, attenuates the fish hypoxia response. Scientific Reports, 6(1), 1-12. https://doi.org/10.1038/srep31148
  • Sayeed, I., Parvez, S., Pandey, S., Bin-Hafeez, B., Haque, R., Raisuddin, S. (2003). Oxidative stress biomarkers of exposure to deltamethrin in freshwater fish, Channa punctatus Bloch. Ecotoxicology and Environmental Safety, 56(2), 295-301. https://doi.org/10.1016/S0147-6513(03)00009-5
  • Sehonova, P., Svobodova, Z., Dolezelova, P., Vosmerova, P., Faggio, C. (2018). Effects of waterborne antidepressants on non-target animals living in the aquatic environment: a review. Science of the Total Environment, 631, 789-794. https://doi.org/10.1016/j.scitotenv.2018.03.076
  • Sehring, I.M., Jahn, C., Weidinger, G. (2016). Zebrafish fin and heart: what's special about regeneration?. Current Opinion in Genetics & Development, 40, 48-56. https://doi.org/10.1016/j.gde.2016.05.011
  • Vera-Chang, M.N., Moon, T.W., Trudeau, V.L. (2019). Cortisol disruption and transgenerational alteration in the expression of stress-related genes in zebrafish larvae following fluoxetine exposure. Toxicology and Applied Pharmacology, 382, 114742. https://doi.org/10.1016/j.taap.2019.114742
  • Weinberger II, J., Klaper, R. (2014). Environmental concentrations of the selective serotonin reuptake inhibitor fluoxetine impact specific behaviors involved in reproduction, feeding and predator avoidance in the fish Pimephales promelas (fathead minnow). Aquatic Toxicology, 151, 77-83. https://doi.org/10.1016/j.aquatox.2013.10.012
  • Yan, Z., Zhang, X., Bao, X., Ling, X., Yang, H., Liu, J., Ji, Y. (2020). Influence of dissolved organic matter on the accumulation, metabolite production and multi-biological effects of environmentally relevant fluoxetine in crucian carp (Carassius auratus). Aquatic Toxicology, 226, 105581. https://doi.org/10.1016/j.aquatox.2020.105581
  • Yang, M., Qiu, W., Chen, J., Zhan, J., Pan, C., Lei, X., Wu, M. (2014). Growth inhibition and coordinated physiological regulation of zebrafish (Danio rerio) embryos upon sublethal exposure to antidepressant amitriptyline. Aquatic Toxicology, 151, 68-76. https://doi.org/10.1016/j.aquatox.2013.12.029
  • Zindler, F., Tisler, S., Loerracher, A.K., Zwiener, C., Braunbeck, T. (2020). Norfluoxetine is the only metabolite of fluoxetine in Zebrafish (Danio rerio) embryos that accumulates at environmentally relevant exposure scenarios. Environmental Science & Technology, 54(7), 4200-4209. https://doi.org/10.1021/acs.est.9b07618
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Hydrobiology
Journal Section Research Articles
Authors

Güllü Kaymak 0000-0001-6309-0208

Publication Date July 1, 2021
Submission Date January 18, 2021
Published in Issue Year 2021Volume: 4 Issue: 3

Cite

APA Kaymak, G. (2021). Fluoksetin-HCl’nin Kılıçkuyruk Balıklarında (Xiphophorus hellerii) Oluşturduğu Oksidatif Hasarın Belirlenmesi. Aquatic Research, 4(3), 286-292. https://doi.org/10.3153/AR21022

16291

is licensed under a CreativeCommons Attribtion-ShareAlike 4.0 International Licence 14628   1325927040

Diamond Open Access refers to a scholarly publication model in which journals and platforms do not charge fees to either authors or readers.

Open Access Statement:

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.

Archiving Policy:

Archiving is done according to TÜBİTAK ULAKBİM "DergiPark" publication policy (LOCKSS).