Research Article
BibTex RIS Cite
Year 2020, Volume: 3 Issue: 1, 1 - 12, 01.01.2020
https://doi.org/10.3153/AR20001

Abstract

References

  • Abreu, A.P., Fernandes, B., Vicente, A.A., Teixeira, J., Dragone, G. (2012). Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresources Technology, 11, 61-66. https://doi.org/10.1016/j.biortech.2012.05.055
  • Bhatnagar, A., Chinnasamy, S., Singh, M., Das, K. C. (2011). Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Applied Energy, 88(10), 3425-3431. https://doi.org/10.1016/j.apenergy.2010.12.064
  • Ceron Garcia, M.C., Camacho, F.G., Mirón, A.S., Sevilla, J. F., Chisti, Y., Grima, E. M. (2006). Mixotrophic production of marine microalga Phaeodactylum tricornutum on various carbon sources. Journal of Microbiology Biotechnology, 16(5), 689.
  • Cheirsilp, B., Torpee, S. (2012). Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresource Technology, 110, 510-516. https://doi.org/10.1016/j.biortech.2012.01.125
  • Chojnacka, K., Marquez-Rocha, F.J. (2004). Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of cyanobacterium. Biotechnology, 3(1), 21-34. https://doi.org/10.3923/biotech.2004.21.34
  • Chojnacka, K., Noworyta, A. (2004). Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme and Microbial Technology, 34, 461-465. https://doi.org/10.1016/j.enzmictec.2003.12.002
  • Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356. https://doi.org/10.1021/ac60111a017
  • Gim, G.H., Ryu, J., Kim, M.J., Kim, P.I., Kim, S.W. (2016). Effects of carbon source and light intensity on the growth and total lipid production of three cyanobacterium under different culture conditions. Journal of Industrial Microbiology and Biotechnology, 43(5), 605-616. https://doi.org/10.1007/s10295-016-1741-y
  • Joannesa, C., Mansaa, R.F., Yasirb, S.M., Dayouc, J. (2016). Comparative studies of cell growth of freshwater microalga Chlorella sp. in photoautotrophic, heterotrophic and mixotrophic cultures. Jurnal Teknologi (Science & Engineering), 78(7), 83-89. https://doi.org/10.11113/jt.v78.4349
  • Katiyar, R., Gurjar, B.R., Biswas, S., Pruthi, V., Kumar, N., Kumar, P. (2017). Cyanobacterium: An emerging source of energy based bio-products and a solution for environmental issues. Renewable and Sustainable Energy Reviews, 72, 1083-1093. https://doi.org/10.1016/j.rser.2016.10.028
  • Kong, W.B., Yang, H., Cao, Y.T., Song, H., Hua, S.F., Xia, C.G. (2013). Effect of glycerol and glucose on the enhancement of biomass, lipid and soluble carbohydrate production by Chlorella vulgaris in mixotrophic culture. Food Technology and Biotechnology, 51(1), 62.
  • Lari, Z., Moradi-kheibari, N., Ahmadzadeh, H., Abrishamchi, P., Moheimani, N.R., Murry, M.A. (2016). Bioprocess engineering of cyanobacterium to optimize lipid production through nutrient management. Journal of Applied Phycology, 28(6), 3235-3250. https://doi.org/10.1007/s10811-016-0884-6
  • Lichtenthaler, H.K., Wellburn, A.R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11, 591-592. https://doi.org/10.1042/bst0110591
  • Lin, T.S., Wu, J.Y. (2015). Effect of carbon sources on growth and lipid accumulation of newly isolated microalgae cultured under mixotrophic condition. Bioresource Technology, 184, 100-107. https://doi.org/10.1016/j.biortech.2014.11.005
  • Margarites, A.C., Volpato, N., Araújo, E., Cardoso, L.G., Bertolin, T.E., Colla, L.M., Costa, J.A.V. (2017). Spirulina platensis is more efficient than Chlorella homosphaera in carbohydrate productivity. Environmental Technology, 38(17), 2209-2216. https://doi.org/10.1080/09593330.2016.1254685
  • Marquez, F.J., Sasaki, K., Kakizono, T., Nishio, N. & Nagai, S. (1993). Growth characteristics of Spirulina platensis in mixotrophic and heterotrophic conditions. Journal of Fermentation and Bioengineering, 76(5), 408-410. https://doi.org/10.1016/0922-338X(93)90034-6
  • Mata, T.M., Martins, A.A., Caetano, N.S. (2010). Cyanobacterium for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews, 14(1), 217-232. https://doi.org/10.1016/j.rser.2009.07.020
  • Meireles dos Santos, A., Vieira, K.R., Basso Sartori, R., Meireles dos Santos, A., Queiroz, M.I., Zepka, L.Q., Jacob-Lopes, E. (2017). Heterotrophic cultivation of cyanobacteria: study of effect of exogenous sources of organic carbon, absolute amount of nutrients, and stirring speed on biomass and lipid productivity. Frontiers in Bioengineering and Biotechnology, 5(12), 1-7. https://doi.org/10.3389/fbioe.2017.00012
  • Mikkat, S., Effmert, U. & Hagemann, M. (1997). Uptake and use of the osmoprotective compounds trehalose, glucosylglycerol, and sucrose by the cyanobacterium Synechocystis sp. PCC6803. Archives of Microbiology, 167(2-3), 112-118. https://doi.org/10.1007/s002030050423
  • Mikkat, S., Hagemann, M., Schoor, A. (1996). Active transport of glucosylglycerol is involved in salt adaptation of the cyanobacterium Synechocystis sp. strain PCC 6803. Microbiology, 142(7), 1725-1732. https://doi.org/10.1099/13500872-142-7-1725
  • Mishra, S.K., Suh, W.I., Farooq, W., Moon, M., Shrivastav, A., Park, M.S., Yang, J.-W. (2014). Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresource Technology, 155, 330-333. https://doi.org/10.1016/j.biortech.2013.12.077
  • Mitra, D., van Leeuwen, J.H., Lamsal, B. (2012). Heterotrophic/mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-products. Algal Research, 1(1), 40-48. https://doi.org/10.1016/j.algal.2012.03.002
  • Mühling, M., Belay, A., Whitton, B.A. (2005). Screening Arthrospira (Spirulina) strains for heterotrophy. Journal of Applied Phycology, 17(2), 129-135. https://doi.org/10.1007/s10811-005-7214-8
  • Neilson, A.H., Lewin, R.A. (1974). The uptake and utilization of organic carbon by algae: an essay in comparative biochemistry. Phycologia, 13(3), 227-264. https://doi.org/10.2216/i0031-8884-13-3-227.1
  • Nogueira, S.M.S., Souza Junior, J., Maia, H.D., Saboya, J.P.S., Farias, W.R.. (2018). Use of Spirulina platensis in treatment of fish farming wastewater. Revista Ciência Agronômica, 49(4), 599-606. https://doi.org/10.5935/1806-6690.20180068
  • Ozturk Urek, R., Kerimoglu, Y. (2019). Evaluation of effects of Mg2+ and Cu2+ on pigment-metabolite production and photosystem II activity of Arthrospira platensis Gomont 1892. Turkish Journal of Fisheries and Aquatic Sciences, 19(10), 873-883. https://doi.org/10.4194/1303-2712-v19_10_07
  • Patel, A., Gami, B., Patel, P., Patel, B. (2017). Cyanobacterium: Antiquity to era of integrated technology. Renewable and Sustainable Energy Reviews, 71, 535-547. https://doi.org/10.1016/j.rser.2016.12.081
  • Perez-Garcia, O., Escalante, F.M., Bashan, L.E., Bashan, Y. (2011). Heterotrophic cultures of cyanobacterium: metabolism and potential products. Water Research, 45(1), 11-36. https://doi.org/10.1016/j.watres.2010.08.037
  • Rosas, V.T., Poersch, L.H., Romano, L.A., Tesser, M.B. (2018). Feasibility of the use of Spirulina in aquaculture diets. Reviews in Aquaculture, 1-12. https://doi.org/10.1111/raq.12297
  • Shi, X.M., Liu, H.J., Zhang, X.W., Chen, F. (1999). Production of biomass and lutein by Chlorella protothecoides at various glucose concentrations in heterotrophic cultures. Process Biochemistry, 34(4), 341-347. https://doi.org/10.1016/S0032-9592(98)00101-0
  • Silaban, A., Bai, R., Gutierrez‐Wing, M.T., Negulescu, I.I., Rusch, K.A. (2014). Effect of organic carbon, C: N ratio and light on the growth and lipid productivity of cyanobacterium/cyanobacteria coculture. Engineering in Life Sciences, 14(1), 47-56. https://doi.org/10.1002/elsc.201200219
  • Sivakumar, N., Sundararaman, M., Selvakumar, G. (2018). Evaluation of growth performance of Penaeus monodon (Fabricius) fed diet with partial replacement of fishmeal by Spirulina platensis (Sp) meal. Indian Journal of Animal Research, 52(12), 1721-1726. https://doi.org/10.18805/ijar.B-3438
  • Sun, N., Wang, Y., Li, Y.T., Huang, J.-C., Chen, F. (2008). Sugar-based growth, astaxanthin accumulation and carotenogenic transcription of heterotrophic Chlorella zofingiensis (Chlorophyta). Process Biochemistry, 43(11), 1288-1292. https://doi.org/10.1016/j.procbio.2008.07.014
  • Van Wagenen, J., De Francisci, D., Angelidaki, I. (2015). Comparison of mixotrophic to cyclic autotrophic/heterotrophic growth strategies to optimize productivity of Chlorella sorokiniana. Journal of Applied Phycology, 27(5), 1775-1782. https://doi.org/10.1007/s10811-014-0485-1
  • Vonshak, A., Abeliovich, A., Boussiba, S., Arad, S., Richmond, A. (1982). Production of Spirulina biomass: effects of environmental factors and population density. Biomass, 2(3), 175-185. https://doi.org/10.1016/0144-4565(82)90028-2
  • Wang, S., Wu, Y., Wang, X. (2016). Heterotrophic cultivation of Chlorella pyrenoidosa using sucrose as the sole carbon source by co-culture with Rhodotorula glutinis. Bioresource Technology, 220, 615-620. https://doi.org/10.1016/j.biortech.2016.09.010
  • Wang, H., Zhou, W., Shao, H., Liu, T. (2017). A comparative analysis of biomass and lipid content in five Tribonema sp. strains at autotrophic, heterotrophic and mixotrophic cultivation. Algal Research, 24, 284-289. https://doi.org/10.1016/j.algal.2017.04.020
  • Zarrouk, C. (1966). Contribution à l'étude d'une cyanophycée. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthèse de Spirulina maxima. (PhD Thesis). Université de Paris, Paris, France.
  • Zhan, J., Rong, J., Wang, Q. (2017). Mixotrophic cultivation, a preferable cyanobacterium cultivation mode for biomass/bioenergy production, and bioremediation, advances and prospect. International Journal of Hydrogen Energy, 42(12), 8505-8517. https://doi.org/10.1016/j.ijhydene.2016.12.021

Evaluation of sucrose as carbon source in mixotrophic culture of Arthrospira platensis Gomont 1892

Year 2020, Volume: 3 Issue: 1, 1 - 12, 01.01.2020
https://doi.org/10.3153/AR20001

Abstract

Cyanobacteria
are photosynthetic microorganisms that use CO
2 as carbon source and
sunlight as energy source. Although phototrophic cultivation is widely used in
cyanobacterium production, heterotrophic and mixotrophic cultivations attract
attention among researchers. In this study the effect of different concentrations
(0[control] - 0.25 - 2.5 - 10 - 50 mM) of sucrose on the growth of Arthrospira platensis under mixotrophic
cultivation was investigated. The purpose of this study was to investigate
whether
A. platensis biomass
production could be performed regardless of high light intensity. Biomass,
chlorophyll, lipid and carbohydrate contents were determined by
spectrophotometrically. Also the physicochemical properties of the produced
cyanobacterium were investigated by FTIR, TGA and DSC.
  The highest biomass productivity was detected
as 1.33 g/L/day in the medium containing 2.5 mM sucrose and
the specific growth
rate increased 1.32 fold as compared to phototrophic culture. Additionally, t
he highest lipid content
(3.68 ±0.17 mg/g cell) was determined in the same medium.
This suggests that
A. platensis has adapted to the
medium that contains low sucrose concentrations. Also, this study showed that
sucrose containing medium supports lipid production. 

Thanks

We would like to thank Assoc. Dr. Leyla Uslu for her supply of cyanobacteria.

References

  • Abreu, A.P., Fernandes, B., Vicente, A.A., Teixeira, J., Dragone, G. (2012). Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresources Technology, 11, 61-66. https://doi.org/10.1016/j.biortech.2012.05.055
  • Bhatnagar, A., Chinnasamy, S., Singh, M., Das, K. C. (2011). Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Applied Energy, 88(10), 3425-3431. https://doi.org/10.1016/j.apenergy.2010.12.064
  • Ceron Garcia, M.C., Camacho, F.G., Mirón, A.S., Sevilla, J. F., Chisti, Y., Grima, E. M. (2006). Mixotrophic production of marine microalga Phaeodactylum tricornutum on various carbon sources. Journal of Microbiology Biotechnology, 16(5), 689.
  • Cheirsilp, B., Torpee, S. (2012). Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresource Technology, 110, 510-516. https://doi.org/10.1016/j.biortech.2012.01.125
  • Chojnacka, K., Marquez-Rocha, F.J. (2004). Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of cyanobacterium. Biotechnology, 3(1), 21-34. https://doi.org/10.3923/biotech.2004.21.34
  • Chojnacka, K., Noworyta, A. (2004). Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme and Microbial Technology, 34, 461-465. https://doi.org/10.1016/j.enzmictec.2003.12.002
  • Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356. https://doi.org/10.1021/ac60111a017
  • Gim, G.H., Ryu, J., Kim, M.J., Kim, P.I., Kim, S.W. (2016). Effects of carbon source and light intensity on the growth and total lipid production of three cyanobacterium under different culture conditions. Journal of Industrial Microbiology and Biotechnology, 43(5), 605-616. https://doi.org/10.1007/s10295-016-1741-y
  • Joannesa, C., Mansaa, R.F., Yasirb, S.M., Dayouc, J. (2016). Comparative studies of cell growth of freshwater microalga Chlorella sp. in photoautotrophic, heterotrophic and mixotrophic cultures. Jurnal Teknologi (Science & Engineering), 78(7), 83-89. https://doi.org/10.11113/jt.v78.4349
  • Katiyar, R., Gurjar, B.R., Biswas, S., Pruthi, V., Kumar, N., Kumar, P. (2017). Cyanobacterium: An emerging source of energy based bio-products and a solution for environmental issues. Renewable and Sustainable Energy Reviews, 72, 1083-1093. https://doi.org/10.1016/j.rser.2016.10.028
  • Kong, W.B., Yang, H., Cao, Y.T., Song, H., Hua, S.F., Xia, C.G. (2013). Effect of glycerol and glucose on the enhancement of biomass, lipid and soluble carbohydrate production by Chlorella vulgaris in mixotrophic culture. Food Technology and Biotechnology, 51(1), 62.
  • Lari, Z., Moradi-kheibari, N., Ahmadzadeh, H., Abrishamchi, P., Moheimani, N.R., Murry, M.A. (2016). Bioprocess engineering of cyanobacterium to optimize lipid production through nutrient management. Journal of Applied Phycology, 28(6), 3235-3250. https://doi.org/10.1007/s10811-016-0884-6
  • Lichtenthaler, H.K., Wellburn, A.R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11, 591-592. https://doi.org/10.1042/bst0110591
  • Lin, T.S., Wu, J.Y. (2015). Effect of carbon sources on growth and lipid accumulation of newly isolated microalgae cultured under mixotrophic condition. Bioresource Technology, 184, 100-107. https://doi.org/10.1016/j.biortech.2014.11.005
  • Margarites, A.C., Volpato, N., Araújo, E., Cardoso, L.G., Bertolin, T.E., Colla, L.M., Costa, J.A.V. (2017). Spirulina platensis is more efficient than Chlorella homosphaera in carbohydrate productivity. Environmental Technology, 38(17), 2209-2216. https://doi.org/10.1080/09593330.2016.1254685
  • Marquez, F.J., Sasaki, K., Kakizono, T., Nishio, N. & Nagai, S. (1993). Growth characteristics of Spirulina platensis in mixotrophic and heterotrophic conditions. Journal of Fermentation and Bioengineering, 76(5), 408-410. https://doi.org/10.1016/0922-338X(93)90034-6
  • Mata, T.M., Martins, A.A., Caetano, N.S. (2010). Cyanobacterium for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews, 14(1), 217-232. https://doi.org/10.1016/j.rser.2009.07.020
  • Meireles dos Santos, A., Vieira, K.R., Basso Sartori, R., Meireles dos Santos, A., Queiroz, M.I., Zepka, L.Q., Jacob-Lopes, E. (2017). Heterotrophic cultivation of cyanobacteria: study of effect of exogenous sources of organic carbon, absolute amount of nutrients, and stirring speed on biomass and lipid productivity. Frontiers in Bioengineering and Biotechnology, 5(12), 1-7. https://doi.org/10.3389/fbioe.2017.00012
  • Mikkat, S., Effmert, U. & Hagemann, M. (1997). Uptake and use of the osmoprotective compounds trehalose, glucosylglycerol, and sucrose by the cyanobacterium Synechocystis sp. PCC6803. Archives of Microbiology, 167(2-3), 112-118. https://doi.org/10.1007/s002030050423
  • Mikkat, S., Hagemann, M., Schoor, A. (1996). Active transport of glucosylglycerol is involved in salt adaptation of the cyanobacterium Synechocystis sp. strain PCC 6803. Microbiology, 142(7), 1725-1732. https://doi.org/10.1099/13500872-142-7-1725
  • Mishra, S.K., Suh, W.I., Farooq, W., Moon, M., Shrivastav, A., Park, M.S., Yang, J.-W. (2014). Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresource Technology, 155, 330-333. https://doi.org/10.1016/j.biortech.2013.12.077
  • Mitra, D., van Leeuwen, J.H., Lamsal, B. (2012). Heterotrophic/mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-products. Algal Research, 1(1), 40-48. https://doi.org/10.1016/j.algal.2012.03.002
  • Mühling, M., Belay, A., Whitton, B.A. (2005). Screening Arthrospira (Spirulina) strains for heterotrophy. Journal of Applied Phycology, 17(2), 129-135. https://doi.org/10.1007/s10811-005-7214-8
  • Neilson, A.H., Lewin, R.A. (1974). The uptake and utilization of organic carbon by algae: an essay in comparative biochemistry. Phycologia, 13(3), 227-264. https://doi.org/10.2216/i0031-8884-13-3-227.1
  • Nogueira, S.M.S., Souza Junior, J., Maia, H.D., Saboya, J.P.S., Farias, W.R.. (2018). Use of Spirulina platensis in treatment of fish farming wastewater. Revista Ciência Agronômica, 49(4), 599-606. https://doi.org/10.5935/1806-6690.20180068
  • Ozturk Urek, R., Kerimoglu, Y. (2019). Evaluation of effects of Mg2+ and Cu2+ on pigment-metabolite production and photosystem II activity of Arthrospira platensis Gomont 1892. Turkish Journal of Fisheries and Aquatic Sciences, 19(10), 873-883. https://doi.org/10.4194/1303-2712-v19_10_07
  • Patel, A., Gami, B., Patel, P., Patel, B. (2017). Cyanobacterium: Antiquity to era of integrated technology. Renewable and Sustainable Energy Reviews, 71, 535-547. https://doi.org/10.1016/j.rser.2016.12.081
  • Perez-Garcia, O., Escalante, F.M., Bashan, L.E., Bashan, Y. (2011). Heterotrophic cultures of cyanobacterium: metabolism and potential products. Water Research, 45(1), 11-36. https://doi.org/10.1016/j.watres.2010.08.037
  • Rosas, V.T., Poersch, L.H., Romano, L.A., Tesser, M.B. (2018). Feasibility of the use of Spirulina in aquaculture diets. Reviews in Aquaculture, 1-12. https://doi.org/10.1111/raq.12297
  • Shi, X.M., Liu, H.J., Zhang, X.W., Chen, F. (1999). Production of biomass and lutein by Chlorella protothecoides at various glucose concentrations in heterotrophic cultures. Process Biochemistry, 34(4), 341-347. https://doi.org/10.1016/S0032-9592(98)00101-0
  • Silaban, A., Bai, R., Gutierrez‐Wing, M.T., Negulescu, I.I., Rusch, K.A. (2014). Effect of organic carbon, C: N ratio and light on the growth and lipid productivity of cyanobacterium/cyanobacteria coculture. Engineering in Life Sciences, 14(1), 47-56. https://doi.org/10.1002/elsc.201200219
  • Sivakumar, N., Sundararaman, M., Selvakumar, G. (2018). Evaluation of growth performance of Penaeus monodon (Fabricius) fed diet with partial replacement of fishmeal by Spirulina platensis (Sp) meal. Indian Journal of Animal Research, 52(12), 1721-1726. https://doi.org/10.18805/ijar.B-3438
  • Sun, N., Wang, Y., Li, Y.T., Huang, J.-C., Chen, F. (2008). Sugar-based growth, astaxanthin accumulation and carotenogenic transcription of heterotrophic Chlorella zofingiensis (Chlorophyta). Process Biochemistry, 43(11), 1288-1292. https://doi.org/10.1016/j.procbio.2008.07.014
  • Van Wagenen, J., De Francisci, D., Angelidaki, I. (2015). Comparison of mixotrophic to cyclic autotrophic/heterotrophic growth strategies to optimize productivity of Chlorella sorokiniana. Journal of Applied Phycology, 27(5), 1775-1782. https://doi.org/10.1007/s10811-014-0485-1
  • Vonshak, A., Abeliovich, A., Boussiba, S., Arad, S., Richmond, A. (1982). Production of Spirulina biomass: effects of environmental factors and population density. Biomass, 2(3), 175-185. https://doi.org/10.1016/0144-4565(82)90028-2
  • Wang, S., Wu, Y., Wang, X. (2016). Heterotrophic cultivation of Chlorella pyrenoidosa using sucrose as the sole carbon source by co-culture with Rhodotorula glutinis. Bioresource Technology, 220, 615-620. https://doi.org/10.1016/j.biortech.2016.09.010
  • Wang, H., Zhou, W., Shao, H., Liu, T. (2017). A comparative analysis of biomass and lipid content in five Tribonema sp. strains at autotrophic, heterotrophic and mixotrophic cultivation. Algal Research, 24, 284-289. https://doi.org/10.1016/j.algal.2017.04.020
  • Zarrouk, C. (1966). Contribution à l'étude d'une cyanophycée. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthèse de Spirulina maxima. (PhD Thesis). Université de Paris, Paris, France.
  • Zhan, J., Rong, J., Wang, Q. (2017). Mixotrophic cultivation, a preferable cyanobacterium cultivation mode for biomass/bioenergy production, and bioremediation, advances and prospect. International Journal of Hydrogen Energy, 42(12), 8505-8517. https://doi.org/10.1016/j.ijhydene.2016.12.021
There are 39 citations in total.

Details

Primary Language English
Subjects Hydrobiology
Journal Section Research Articles
Authors

Zülfiye Velioğlu Tosuner 0000-0001-9181-6619

Raziye Öztürk Ürek 0000-0002-7147-6853

Publication Date January 1, 2020
Submission Date August 7, 2019
Published in Issue Year 2020Volume: 3 Issue: 1

Cite

APA Velioğlu Tosuner, Z., & Öztürk Ürek, R. (2020). Evaluation of sucrose as carbon source in mixotrophic culture of Arthrospira platensis Gomont 1892. Aquatic Research, 3(1), 1-12. https://doi.org/10.3153/AR20001

16291

is licensed under a CreativeCommons Attribtion-ShareAlike 4.0 International Licence 14628   1325927040

Diamond Open Access refers to a scholarly publication model in which journals and platforms do not charge fees to either authors or readers.

Open Access Statement:

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.

Archiving Policy:

Archiving is done according to TÜBİTAK ULAKBİM "DergiPark" publication policy (LOCKSS).