Vultivation of Arthrospira platensis in heterotrophic and mixotrophic conditions with different concentrations of whey
Year 2022,
, 146 - 153, 01.04.2022
Zülfiye Velioğlu Tosuner
,
Raziye Öztürk Ürek
Abstract
Wastes left over from human food production is commonly used to produce feed for animals, which is an important issue for a rational utilization of food sources globally, and a topic that attracts researcher for the establishment of best food production management. Whey as a side product from cheese production has great potentials in terms of nutritional value for both human food and animal feed production. This study aimed to investigate the possible use of whey (1, 10 and 30%, v/v) as an external carbon source for mixotrophic and heterotrophic cultivation of the cyanobacterium Arthrospira platensis. The highest specific growth rate (µ = 0.2 day-1), protein (3.76 ±0.14 mg/ g cell) and lipid (4.67 ±0.18 mg/g cell) contents were detected in heterotrophic culture while the highest chlorophyll-a (292.39 ±1.31 mg/ g cell) and total carbohydrate (1.42 ±0.07 mg/ g cell) contents were found in mixotrophic culture. In heterotrophic cultivation, it can be noted that the absorbed organic carbon source increased cell counts and triggered especially lipid production. In the mixotrophic cultivation, carbon absorbed from the culture medium or CO2 captured with chlorophyll was utilized in the production of total carbohydrate. This study provides evidence that a cyanobacterium can adapt to heterotrophic conditions without light, creating an example for an economic and ecological production model for biochemical components.
Thanks
We would like to thank Assoc. Dr. Leyla Uslu for her supplying us with microalgae and we are also thankful to Balkan Süt Ürünleri for providing whey.
References
- Bentahar, J., Doyen, A., Beaulieu, L., Deschênes, J.S. (2019). Investigation of β-galactosidase production by microalga Tetradesmus obliquus in determined growth conditions. Journal of Applied Phycology, 31(1), 301-308. https://doi.org/10.1007/s10811-018-1550-y
- Božanić, R., Barukčić, I., Lisak, K. (2014). Possibilities of whey utilization. Austin Journal of Nutrition and Food Sciences, 2(7), 7.
- Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
- Chandra, R., Rohit, M. V., Swamy, Y. V., Mohan, S. V. (2014). Regulatory function of organic carbon supplementation on biodiesel production during growth and nutrient stress phases of mixotrophic microalgae cultivation. Bioresource Technology, 165, 279-287. https://doi.org/10.1016/j.biortech.2014.02.102
- Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356. https://doi.org/10.1021/ac60111a017
Esen, M., Ozturk Urek, R. (2015). Ammonium nitrate and iron nutrition effects on some nitrogen assimilation enzymes and metabolites in Spirulina platensis. Biotechnology and Applied Biochemistry, 62(2), 275-286. https://doi.org/10.1002/bab.1268
- Ghobrini, D., Potocar, T., Smolova, J., Krausova, G., Yakoub-Bougdal, S. et al. (2020). Heterotrophic cultivation of Chlorella vulgaris using saline waste water from the demineralization of cheese whey. Biotechnology Letters, 42(2), 209-217. https://doi.org/10.1007/s10529-019-02770-7
- Joannesa, C., Mansaa, R.F., Yasirb, S.M., Dayouc, J. (2016). Comparative studies of cell growth of freshwater microalga Chlorella sp. in photoautotrophic, heterotrophic and mixotrophic cultures. Jurnal Teknologi, 78(7), 83-89. https://doi.org/10.11113/jt.v78.4349
- Lichtenthaler, H.K., Wellburn, A.R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11, 591-592. https://doi.org/10.1042/bst0110591
- Lutzu, G.A., Zhang, W., Liu, T. (2016). Feasibility of using brewery wastewater for biodiesel production and nutrient removal by Scenedesmus dimorphus. Environmental Technology, 37(12), 1568-1581. https://doi.org/10.1080/09593330.2015.1121292
- Maroneze, M.M., Zepka, L.Q., Lopes, E.J., Pérez-Gálvez, A., Roca, M. (2019). Chlorophyll oxidative metabolism during the phototrophic and heterotrophic growth of Scenedesmus obliquus. Antioxidants, 8(12), 600. https://doi.org/10.3390/antiox8120600
- Meireles dos Santos, A., Vieira, K.R., Basso Sartori, R., Meireles dos Santos, A., Queiroz, M.I. et al. (2017). Heterotrophic cultivation of cyanobacteria: study of effect of exogenous sources of organic carbon, absolute amount of nutrients, and stirring speed on biomass and lipid productivity. Frontiers in Bioengineering and Biotechnology, 5(12), 1-7. https://doi.org/10.3389/fbioe.2017.00012
- Mishra, S.K., Suh, W.I., Farooq, W., Moon, M., Shrivastav, A. et al. (2014). Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresource Technology, 155, 330-333. https://doi.org/10.1016/j.biortech.2013.12.077
Ozturk Urek, R., Kerimoglu, Y. (2019). Evaluation of effects of Mg2+ and Cu2+ on pigment-metabolite production and photosystem II activity of Arthrospira platensis Gomont 1892. Turkish Journal of Fisheries and Aquatic Sciences, 19(10), 873-883. http://doi.org/10.4194/1303-2712-v19_10_07
Pereira, M.I., Chagas, B.M., Sassi, R., Medeiros, G.F., Aguiar, E.M., Borba, L.H., Rangel, A.H. (2019). Mixotrophic cultivation of Spirulina platensis in dairy wastewater: Effects on the production of biomass, biochemical composition and antioxidant capacity. PloS One, 14(10), e0224294. https://doi.org/10.1371/journal.pone.0224294
Rosas, V.T., Poersch, L.H., Romano, L.A., Tesser, M.B. (2018). Feasibility of the use of Spirulina in aquaculture diets. Reviews Aquaculture, 1-12. https://doi.org/10.1111/raq.12297
- Sivakumar, N., Sundararaman, M., Selvakumar, G. (2018). Evaluation of growth performance of Penaeus monodon (Fabricius) fed diet with partial replacement of fishmeal by Spirulina platensis (Sp) meal. Indian Journal of Animal Research, 52(12), 1721-1726. https://doi.org/10.18805/ijar.B-3438
- Smithers, G.W. (2008). Whey and whey proteins—from ‘gutter-to-gold’. International Dairy Journal, 18(7), 695-704. https://doi.org/10.1016/j.idairyj.2008.03.008
- Velioğlu Tosuner, Z., Öztürk Ürek, R. (2020). Evaluation of sucrose as carbon source in mixotrophic culture of Arthrospira platensis Gomont 1892. Aquatic Research, 3(1), 1-12. https://doi.org/10.3153/AR20001
Velioglu Tosuner, Z., Ozturk Urek, R. (2021). The effects of nutrition on lipid production of Haematococcus pluvialis and biodiesel potential. Environmental Engineering and Management Journal, 20 (8), 1289-1299. https://doi.org/10.30638/eemj.2021.119
Wang, H., Zhou, W., Shao, H., Liu, T. (2017). A comparative analysis of biomass and lipid content in five Tribonema sp. strains at autotrophic, heterotrophic and mixotrophic cultivation. Algal Research, 24, 284-289. https://doi.org/10.1016/j.algal.2017.04.020
Zarrouk, C. (1966). Contribution à l’étude d’une cyanophycée. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthèse de Spirulina maxima. PhD, Université de Paris, Paris, France.
- Zhan, J., Rong, J., Wang, Q. (2017). Mixotrophic cultivation, a preferable cyanobacterium cultivation mode for biomass/bioenergy production, and bioremediation, advances and prospect. International Journal of Hydrogen Energy, 42(12), 8505-8517. https://doi.org/10.1016/j.ijhydene.2016.12.021
Zhu, L.D., Li, Z.H., Hiltunen, E. (2016). Strategies for lipid production improvement in microalgae as a biodiesel feedstock. BioMed Research International, 2016, 8792548. https://doi.org/10.1155/2016/8792548
Year 2022,
, 146 - 153, 01.04.2022
Zülfiye Velioğlu Tosuner
,
Raziye Öztürk Ürek
References
- Bentahar, J., Doyen, A., Beaulieu, L., Deschênes, J.S. (2019). Investigation of β-galactosidase production by microalga Tetradesmus obliquus in determined growth conditions. Journal of Applied Phycology, 31(1), 301-308. https://doi.org/10.1007/s10811-018-1550-y
- Božanić, R., Barukčić, I., Lisak, K. (2014). Possibilities of whey utilization. Austin Journal of Nutrition and Food Sciences, 2(7), 7.
- Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
- Chandra, R., Rohit, M. V., Swamy, Y. V., Mohan, S. V. (2014). Regulatory function of organic carbon supplementation on biodiesel production during growth and nutrient stress phases of mixotrophic microalgae cultivation. Bioresource Technology, 165, 279-287. https://doi.org/10.1016/j.biortech.2014.02.102
- Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356. https://doi.org/10.1021/ac60111a017
Esen, M., Ozturk Urek, R. (2015). Ammonium nitrate and iron nutrition effects on some nitrogen assimilation enzymes and metabolites in Spirulina platensis. Biotechnology and Applied Biochemistry, 62(2), 275-286. https://doi.org/10.1002/bab.1268
- Ghobrini, D., Potocar, T., Smolova, J., Krausova, G., Yakoub-Bougdal, S. et al. (2020). Heterotrophic cultivation of Chlorella vulgaris using saline waste water from the demineralization of cheese whey. Biotechnology Letters, 42(2), 209-217. https://doi.org/10.1007/s10529-019-02770-7
- Joannesa, C., Mansaa, R.F., Yasirb, S.M., Dayouc, J. (2016). Comparative studies of cell growth of freshwater microalga Chlorella sp. in photoautotrophic, heterotrophic and mixotrophic cultures. Jurnal Teknologi, 78(7), 83-89. https://doi.org/10.11113/jt.v78.4349
- Lichtenthaler, H.K., Wellburn, A.R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11, 591-592. https://doi.org/10.1042/bst0110591
- Lutzu, G.A., Zhang, W., Liu, T. (2016). Feasibility of using brewery wastewater for biodiesel production and nutrient removal by Scenedesmus dimorphus. Environmental Technology, 37(12), 1568-1581. https://doi.org/10.1080/09593330.2015.1121292
- Maroneze, M.M., Zepka, L.Q., Lopes, E.J., Pérez-Gálvez, A., Roca, M. (2019). Chlorophyll oxidative metabolism during the phototrophic and heterotrophic growth of Scenedesmus obliquus. Antioxidants, 8(12), 600. https://doi.org/10.3390/antiox8120600
- Meireles dos Santos, A., Vieira, K.R., Basso Sartori, R., Meireles dos Santos, A., Queiroz, M.I. et al. (2017). Heterotrophic cultivation of cyanobacteria: study of effect of exogenous sources of organic carbon, absolute amount of nutrients, and stirring speed on biomass and lipid productivity. Frontiers in Bioengineering and Biotechnology, 5(12), 1-7. https://doi.org/10.3389/fbioe.2017.00012
- Mishra, S.K., Suh, W.I., Farooq, W., Moon, M., Shrivastav, A. et al. (2014). Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresource Technology, 155, 330-333. https://doi.org/10.1016/j.biortech.2013.12.077
Ozturk Urek, R., Kerimoglu, Y. (2019). Evaluation of effects of Mg2+ and Cu2+ on pigment-metabolite production and photosystem II activity of Arthrospira platensis Gomont 1892. Turkish Journal of Fisheries and Aquatic Sciences, 19(10), 873-883. http://doi.org/10.4194/1303-2712-v19_10_07
Pereira, M.I., Chagas, B.M., Sassi, R., Medeiros, G.F., Aguiar, E.M., Borba, L.H., Rangel, A.H. (2019). Mixotrophic cultivation of Spirulina platensis in dairy wastewater: Effects on the production of biomass, biochemical composition and antioxidant capacity. PloS One, 14(10), e0224294. https://doi.org/10.1371/journal.pone.0224294
Rosas, V.T., Poersch, L.H., Romano, L.A., Tesser, M.B. (2018). Feasibility of the use of Spirulina in aquaculture diets. Reviews Aquaculture, 1-12. https://doi.org/10.1111/raq.12297
- Sivakumar, N., Sundararaman, M., Selvakumar, G. (2018). Evaluation of growth performance of Penaeus monodon (Fabricius) fed diet with partial replacement of fishmeal by Spirulina platensis (Sp) meal. Indian Journal of Animal Research, 52(12), 1721-1726. https://doi.org/10.18805/ijar.B-3438
- Smithers, G.W. (2008). Whey and whey proteins—from ‘gutter-to-gold’. International Dairy Journal, 18(7), 695-704. https://doi.org/10.1016/j.idairyj.2008.03.008
- Velioğlu Tosuner, Z., Öztürk Ürek, R. (2020). Evaluation of sucrose as carbon source in mixotrophic culture of Arthrospira platensis Gomont 1892. Aquatic Research, 3(1), 1-12. https://doi.org/10.3153/AR20001
Velioglu Tosuner, Z., Ozturk Urek, R. (2021). The effects of nutrition on lipid production of Haematococcus pluvialis and biodiesel potential. Environmental Engineering and Management Journal, 20 (8), 1289-1299. https://doi.org/10.30638/eemj.2021.119
Wang, H., Zhou, W., Shao, H., Liu, T. (2017). A comparative analysis of biomass and lipid content in five Tribonema sp. strains at autotrophic, heterotrophic and mixotrophic cultivation. Algal Research, 24, 284-289. https://doi.org/10.1016/j.algal.2017.04.020
Zarrouk, C. (1966). Contribution à l’étude d’une cyanophycée. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthèse de Spirulina maxima. PhD, Université de Paris, Paris, France.
- Zhan, J., Rong, J., Wang, Q. (2017). Mixotrophic cultivation, a preferable cyanobacterium cultivation mode for biomass/bioenergy production, and bioremediation, advances and prospect. International Journal of Hydrogen Energy, 42(12), 8505-8517. https://doi.org/10.1016/j.ijhydene.2016.12.021
Zhu, L.D., Li, Z.H., Hiltunen, E. (2016). Strategies for lipid production improvement in microalgae as a biodiesel feedstock. BioMed Research International, 2016, 8792548. https://doi.org/10.1155/2016/8792548