Research Article
BibTex RIS Cite

Toxicity of environmentally important micropollutants on three trophic levels

Year 2022, , 20 - 28, 01.01.2022
https://doi.org/10.3153/AR22003

Abstract

Micropollution is a serious environmental problem caused by continuous entry of trace quantities of toxic chemical substances into the aquatic environment. In the present study, three trophic levels of the aquatic ecosystems were used to evaluate the acute toxicities of environmentally important micropollutants including heavy metals, pesticides and drugs. There is a scarcity of information on toxicity of the studied substances on marine water algae. Among studied micropollutants, the most toxic chemical to Daphnia magna and Danio rerio was found to be 1-Chloro-2,4 dinitrobenzene with EC50 of 0.002 and 4.2 mg/L, respectively. Although this compound was also toxic to marine algae, Phaeodactylum tricornutum, arsenic showed the highest toxicity to the algae with EC50 of 2.4 mg/L. As compared to other organisms, D. magna was found to have higher sensitivity to all of the tested micropollutants. 

Supporting Institution

TUBITAK

Project Number

115Y025

Thanks

We thank Turkish Scientific and Technological Research Council (TUBITAK) for supporting this study.

References

  • Arensberg, P., Hemmingsen, V.H., Nyholm, N. (1995). A Miniscale Algal Toxicity Test. Chemosphere, 30(11), 2103–15. https://doi.org/10.1016/0045-6535(95)00090-U
  • Bernot, R.J., Brueseke, M.A., Evans-White, M.A., Lamberti, G.A. (2005). Acute and Chronic Toxicity of Imidazolium-Based Ionic Liquids on Daphnia Magna. Environmental Toxicology and Chemistry 24(1), 87. https://doi.org/10.1897/03-635.1
  • Brown, R.J., Galloway, T.S., Lowe, D., Browne, M.A., Dissanayake, A., Jones, M.B., Depledge, M.H. (2004). Differential Sensitivity of Three Marine Invertebrates to Copper Assessed Using Multiple Biomarkers. Aquatic Toxicology, 66(3), 267–78. https://doi.org/10.1016/j.aquatox.2003.10.001
  • Company, R., Serafim, A., Bebianno, M.J., Cosson, R., Shillito, B., Fiala-Médioni, A. (2004). Effect of Cadmium, Copper and Mercury on Antioxidant Enzyme Activities and Lipid Peroxidation in the Gills of the Hydrothermal Vent Mussel Bathymodiolus Azoricus. In Marine Environmental Research, 58, 377–81. https://doi.org/10.1016/j.marenvres.2004.03.083
  • Danovaro, R., Fonda, S., Pusceddu, U.A. (2009). Climate change and the potential spreading of marine mucilage and microbial pathogens in the Mediterranean Sea. PlosOne, 4(9), e7006. https://doi.org/10.1371/journal.pone.0007006
  • Dierickx, P.J., Vanderwielen, C. (1986). Glutathione-Dependent Toxicity of the Algicide 1-Chloro-2,4-Dinitrobenzene to Daphnia Magna straus. Bulletin of Environmental Contamination and Toxicology, 37(1), 629–32. https://doi.org/10.1007/BF01607814
  • Dirany, A., Aaron, E., Oturan, S., Sirés, N., Oturan, I., Aaron, J.J. (2011). Study of the toxicity of sulfamethoxazole and its degradation products in water by a bioluminescence method during application of the electro-Fenton treatment. Analytical and Bioanalytical Chemistry, 400(2), 353–360. https://doi.org/10.1007/s00216-010-4441-x
  • Dhillon, G.S., Kaur S., Pulicharla, A., Brar S.K., Cledón, M., Verma, M., Surampalli, R.Y. (2015). Triclosan: Current status, occurrence, environmental risks and bioaccumulation potential. Int J Environ Res Public Health, 12(5), 5657–5684.
  • Etchepare, R., Van der Hoek, J.P. (2015). Health Risk Assessment of Organic Micropollutants in Greywater for Potable Reuse. Water Research, 72 (April), 186–198.
  • Falås, P., Wick, A., Sandro, C., Habermacher, J., Ternes, T.A., Joss, A. (2016). Tracing the limits of organic micropollutant removal in biological wastewater treatment. Water Research, 95(May), 240–249. https://doi.org/10.1016/j.watres.2016.03.009
  • Fontagné-Dicharry, S., Durante, Sadasivam, H.A., C.A., Kaushik, J., Geurden, I. (2017). Parental and early-feeding effects of dietary methionine in rainbow trout (Oncorhynchus mykiss). Aquaculture, 469(February), 16–27. https://doi.org/10.1016/j.aquaculture.2016.11.039
  • Gavrilescu, M., Demnerová, K., Aamand, J., Agathos, S., Fava, F. (2015). Emerging pollutants in the environment: Present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnology, 32(1), 147–56. https://doi.org/10.1016/j.nbt.2014.01.001
  • Guillard, R.R.L. (1975). Culture of phytoplankton for feeding marine invertebrates. in culture of marine invertebrate Animals, 29–60. Boston, MA: Springer US. https://doi.org/10.1007/978-1-4615-8714-9_3
  • Harris, C.A., Hamilton, P.B., Runnalls, T.J., Vinciotti, V., Henshaw, A., Hodgson, D., Coe, T.S., Jobling, S., Charles R.T., Sumpter, J.P. (2011). The consequences of feminization in breeding groups of wild fish. Environmental Health Perspectives, 119(3), 306–311. https://doi.org/10.1289/ehp.1002555
  • Hollender, J., Heinz S., McArdell, C.S. (2007). Polar organic micropollutants in the water cycle. in dangerous pollutants (xenobiotics) in urban water cycle. 103–16. Springer Netherlands. https://doi.org/10.1007/978-1-4020-6795-2_11
  • Howe, K., Matthew D.C., Torroja, C.F., Torrance, J., Berthelot, C., Muffato, M., Collins, J.E. (2013). The zebrafish reference genome sequence and its relationship to the human genome. Nature, 496(7446), 498–503. https://doi.org/10.1038/nature12111
  • Lele, Z., Krone, P.H. (1996). The zebrafish as a model system in developmental, toxicological and transgenic research. Biotechnology Advances. Elsevier Inc. https://doi.org/10.1016/0734-9750(96)00004-3
  • Li, Y., Dong, F., Liu, X., Xu, J., Han, Y., Zheng, Y. (2014). Chiral fungicide triadimefon and triadimenol: Stereoselective transformation in greenhouse crops and soil, and toxicity to Daphnia magna. Journal of Hazardous Materials, 265, 115–123. https://doi.org/10.1016/j.jhazmat.2013.11.055
  • Li, X., Zhang, R., Tian, T., Shang, X., Xu D., Yingying H., Matsuura, N. (2021). Screening and ecological risk of 1200 organic micropollutants in Yangtze Estuary water. Water Research, June, 117341. https://doi.org/10.1016/j.watres.2021.117341
  • Libralato, G., Gentile, E., Ghirardini, A.V. (2016). Wastewater effects on Phaeodactylum tricornutum (Bohlin): Setting up a classification system. Ecological Indicators, 60(July), 31–37. https://doi.org/10.1016/j.ecolind.2015.06.014
  • Maas-Diepeveen, J.L., Leeuwen, C.J. (1986). Aquatic Toxicity of Aromatic Nitro Compounds and Anilines to Several Freshwater Species. Laboratory for Ecotoxicology, Institute for Inland Water Management and Waste Water Treatment, Report No. 86-42: 10 p.
  • Margot, J., Luca Rossi, Barry, D.A., Holliger, C. (2015). A review of the fate of micropollutants in wastewater treatment plants. WIREs Water, 2 (5), 457–487. https://doi.org/10.1002/wat2.1090
  • Metz, F., Ingold, K. (2014). Sustainable wastewater management: Is it possible to regulate micropollution in the future by learning from the past? A policy analysis. Sustainability, 6(4), 1992-2012. https://doi.org/10.3390/su6041992
  • Moermond, C.T.A., Heugens, E.H.W. (2009). Environmental risk limits for trichlorophenols. Report 601714005/2009.
  • Morlon, H., Claude, F., Magali, F., Christelle, A., Jacqueline, G.L., Alain, B. (2005). Toxicity of selenite in the unicellular green alga Chlamydomonas reinhardtii: Comparison between effects at the population and sub-cellular level. Aquatic Toxicology, 73(1), 65–78. https://doi.org/10.1016/j.aquatox.2005.02.007
  • National Center for Biotechnology Information (2021). PubChem Compound Summary for CID 5359596, Arsenic. Retrieved June 17, 2021 from ttps://pubchem.ncbi.nlm.nih.gov/compound
  • Paoletti, F., Sirini, P., Seifert, H., Vehlow, J. (2001). Fate of antimony in municipal solid waste incineration. Chemosphere, 42(5-7), 533–543. https://doi.org/10.1016/S0045-6535(00)00225-3
  • Poirier, I., Marie, P., Lauriane, K., Philippe, H., Arnaud, D., Arash, J., Johana, C., Christelle, C., Gallon, R.K., Bertrand, M. (2018). Toxicological effects of cd se nanocrystals on the marine diatom Phaeodactylum tricornutum: The first mass spectrometry-based proteomic approach. Ecotoxicology and Environmental Safety, 152, 78–90. https://doi.org/10.1016/j.ecoenv.2018.01.043
  • Qian, L., Feng, C., Yang, Y., Yuan, L., Suzhen, Q., Wang, C. (2018). Mechanisms of developmental toxicity in zebrafish embryos (Danio rerio) induced by boscalid. Science of the Total Environment, 634, 478–487. https://doi.org/10.1016/j.scitotenv.2018.04.012
  • Rogowska, J., Monika, C., Wojciech, R., Lidia, W. (2020). Micropollutants in Treated Wastewater. Ambio. Springer. https://doi.org/10.1007/s13280-019-01219-5
  • Santos, J.E.L., Gómez, M.A., Moura, D.C. de, Cerro-López, M., Quiroz, M.A., Martínez-Huitle, C.A. (2021). Removal of herbicide 1-chloro-2,4-dinitrobenzene (DNCB) from aqueous solutions by electrochemical oxidation using boron-doped diamond (BDD) and PbO2 electrodes. Journal of Hazardous Materials, 402, 123850. https://doi.org/10.1016/j.jhazmat.2020.123850
  • Satoh, A., Vudikaria, L.Q., Kurano, K., Miyachi, S. (2005). Evaluation of the sensitivity of marine microalgal strains to the heavy metals, Cu, As, Sb, Pb and Cd. Environment International, 31(5), 713–722. https://doi.org/10.1016/j.envint.2005.01.001
  • Schwarzenbach, R.P., Escher, B.I., Fenner, K., Hofstetter, T.B., Johnson, A.J., Gunten, U.V., Wehrli, B. (2006). The challenge of micropollutants in aquatic systems. Science, 313(5790), 1072-1077. https://doi.org/10.1126/science.1127291
  • SCCS (Scientific Committee on Consumer Safety) (2010). Opinion on Triclosan (Antimicrobial Resistance) Scientific Committee on Consumer Safety; Luxembourg: 2010. https://ec.europa.eu/health/scientific_committees/opinions_layman/triclosan/en/about-triclosan.htm#29 (accessed:12.12.2021)
  • Shao, Y., Chen, Z., Hollert, H., Zhou, S., Deutschmann, B., Seiler, T.B. (2019). Toxicity of 10 organic micropollutants and their mixture: Implications for aquatic risk assessment. Science of the Total Environment, 666(May), 1273–1282. https://doi.org/10.1016/j.scitotenv.2019.02.047
  • Singh, A.K., Sharma, L., Mallick, N. (2004). Antioxidative role of nitric oxide on copper toxicity to a chlorophycean alga, chlorella. Ecotoxicology and Environmental Safety, 59(2), 223–227. https://doi.org/10.1016/j.ecoenv.2003.10.009
  • Sun, H.Q., Du, Y., Zhang, Z.Y., Jiang, W.J., Guo, Y.M., Lu, X.W., Zhang, Y.M., Sun, L.W. (2016). Acute toxicity and ecological risk assessment of benzophenone and N,N-Diethyl-3 Methylbenzamide in personal care products. International Journal of Environmental Research and Public Health, 13(9), 925. https://doi.org/10.3390/ijerph13090925
  • Tatarazako, N., Ishibashi, H., Teshima, K., Kishi, K., Arizono, K. (2004). Effects of triclosan on various aquatic organisms. Environmental Sciences: An International Journal of Environmental Physiology and Toxicology, 11(2), 133–140.
  • Tato, T., Beiras, R. (2019). The use of the marine microalga Tisochrysis lutea (T-Iso) in standard toxicity tests; comparative sensitivity with other test species. Frontiers in Marine Science, 6 (August). https://doi.org/10.3389/fmars.2019.00488
  • TUBITAK (2017). Project on Determination of Hazardous Substances in Coastal and Transitional Waters and Ecological Coast Dynamics. Proje No:5128702.
  • Venkataraman, B.V., Sudha, S. (2005). Vanadium Toxicity. Asian Journal of Experimental Sciences, 19(2), 127-134.
  • Villette, C., Maurer, L., Delecolle, J., Zumsteg, J., Erhardt, J., Heintz, D. (2019). In situ localization of micropollutants and associated stress response in populus Nigra leaves. Environment International, 126(May), 523–532. https://doi.org/10.1016/j.envint.2019.02.066
  • Wang, L., Zheng, B. (2008). Toxic effects of fluoranthene and copper on marine diatom Phaeodactylum tricornutum. Journal of Environmental Sciences, 20(11), 1363–1372. https://doi.org/10.1016/S1001-0742(08)62234-2 Wang, X., Pan, J., Guan, W., Dai, J., Zou, X., Yan, Y., Hu, W. (2011). Selective removal of 3-Chlorophenol from aqueous solution using surface molecularly imprinted microspheres. Journal of Chemical & Engineering Data, 56, 2793–2801. https://doi.org/10.1021/je101275e
  • Wilhelm, S., Jacob, S., Ziegler, M., Köhler, H.Z., Triebskorn, R. (2018). Influence of different wastewater treatment technologies on genotoxicity and dioxin-like toxicity in effluent-exposed fish. Environmental Sciences Europe, 30(25). https://doi.org/10.1186/s12302-018-0154-0
  • Yan, Z., Yang, H., Dong, H., Ma, B., Sun, H., Pan, T., Jiang, R., Zhou, R., Shen, J., Liu, J., Lu, G. (2018). Occurrence and ecological risk assessment of organic micropollutants in the lower reaches of the Yangtze River, China: A case study of water diversion. Environmental Pollution, 239, 223–232. Zhang, Y., Liu, M., Liu, J., Wang, X., Wang, C., Ai, W., Chen, S., Wang, H. (2018). Combined toxicity of triclosan, 2,4-dichlorophenol and 2,4,6-trichlorophenol to zebrafish (Danio rerio). Environmental Toxicology and Pharmacology, 57, 9–18.
  • Zhang, H., West, D., Shi, H., Ma, Y., Adams, C., Eichholz, T. (2019). Simultaneous determination of selected trace contaminants in drinking water using solid-phase extraction-high performance liquid chromatography-tandem mass spectrometry. Water, Air, & Soil Pollution, 230(28). https://doi.org/10.1007/s11270-018-4066-9
  • Zhou, Y., Zhang, Y., Hu, X. (2020). Synergistic coupling Co3Fe7 alloy and CoFe2O4 spinel for highly efficient removal of 2,4-dichlorophenol by activating peroxymonosulfate. Chemosphere, 242, 125244. https://doi.org/10.1016/j.chemosphere.2019.125244
Year 2022, , 20 - 28, 01.01.2022
https://doi.org/10.3153/AR22003

Abstract

Project Number

115Y025

References

  • Arensberg, P., Hemmingsen, V.H., Nyholm, N. (1995). A Miniscale Algal Toxicity Test. Chemosphere, 30(11), 2103–15. https://doi.org/10.1016/0045-6535(95)00090-U
  • Bernot, R.J., Brueseke, M.A., Evans-White, M.A., Lamberti, G.A. (2005). Acute and Chronic Toxicity of Imidazolium-Based Ionic Liquids on Daphnia Magna. Environmental Toxicology and Chemistry 24(1), 87. https://doi.org/10.1897/03-635.1
  • Brown, R.J., Galloway, T.S., Lowe, D., Browne, M.A., Dissanayake, A., Jones, M.B., Depledge, M.H. (2004). Differential Sensitivity of Three Marine Invertebrates to Copper Assessed Using Multiple Biomarkers. Aquatic Toxicology, 66(3), 267–78. https://doi.org/10.1016/j.aquatox.2003.10.001
  • Company, R., Serafim, A., Bebianno, M.J., Cosson, R., Shillito, B., Fiala-Médioni, A. (2004). Effect of Cadmium, Copper and Mercury on Antioxidant Enzyme Activities and Lipid Peroxidation in the Gills of the Hydrothermal Vent Mussel Bathymodiolus Azoricus. In Marine Environmental Research, 58, 377–81. https://doi.org/10.1016/j.marenvres.2004.03.083
  • Danovaro, R., Fonda, S., Pusceddu, U.A. (2009). Climate change and the potential spreading of marine mucilage and microbial pathogens in the Mediterranean Sea. PlosOne, 4(9), e7006. https://doi.org/10.1371/journal.pone.0007006
  • Dierickx, P.J., Vanderwielen, C. (1986). Glutathione-Dependent Toxicity of the Algicide 1-Chloro-2,4-Dinitrobenzene to Daphnia Magna straus. Bulletin of Environmental Contamination and Toxicology, 37(1), 629–32. https://doi.org/10.1007/BF01607814
  • Dirany, A., Aaron, E., Oturan, S., Sirés, N., Oturan, I., Aaron, J.J. (2011). Study of the toxicity of sulfamethoxazole and its degradation products in water by a bioluminescence method during application of the electro-Fenton treatment. Analytical and Bioanalytical Chemistry, 400(2), 353–360. https://doi.org/10.1007/s00216-010-4441-x
  • Dhillon, G.S., Kaur S., Pulicharla, A., Brar S.K., Cledón, M., Verma, M., Surampalli, R.Y. (2015). Triclosan: Current status, occurrence, environmental risks and bioaccumulation potential. Int J Environ Res Public Health, 12(5), 5657–5684.
  • Etchepare, R., Van der Hoek, J.P. (2015). Health Risk Assessment of Organic Micropollutants in Greywater for Potable Reuse. Water Research, 72 (April), 186–198.
  • Falås, P., Wick, A., Sandro, C., Habermacher, J., Ternes, T.A., Joss, A. (2016). Tracing the limits of organic micropollutant removal in biological wastewater treatment. Water Research, 95(May), 240–249. https://doi.org/10.1016/j.watres.2016.03.009
  • Fontagné-Dicharry, S., Durante, Sadasivam, H.A., C.A., Kaushik, J., Geurden, I. (2017). Parental and early-feeding effects of dietary methionine in rainbow trout (Oncorhynchus mykiss). Aquaculture, 469(February), 16–27. https://doi.org/10.1016/j.aquaculture.2016.11.039
  • Gavrilescu, M., Demnerová, K., Aamand, J., Agathos, S., Fava, F. (2015). Emerging pollutants in the environment: Present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnology, 32(1), 147–56. https://doi.org/10.1016/j.nbt.2014.01.001
  • Guillard, R.R.L. (1975). Culture of phytoplankton for feeding marine invertebrates. in culture of marine invertebrate Animals, 29–60. Boston, MA: Springer US. https://doi.org/10.1007/978-1-4615-8714-9_3
  • Harris, C.A., Hamilton, P.B., Runnalls, T.J., Vinciotti, V., Henshaw, A., Hodgson, D., Coe, T.S., Jobling, S., Charles R.T., Sumpter, J.P. (2011). The consequences of feminization in breeding groups of wild fish. Environmental Health Perspectives, 119(3), 306–311. https://doi.org/10.1289/ehp.1002555
  • Hollender, J., Heinz S., McArdell, C.S. (2007). Polar organic micropollutants in the water cycle. in dangerous pollutants (xenobiotics) in urban water cycle. 103–16. Springer Netherlands. https://doi.org/10.1007/978-1-4020-6795-2_11
  • Howe, K., Matthew D.C., Torroja, C.F., Torrance, J., Berthelot, C., Muffato, M., Collins, J.E. (2013). The zebrafish reference genome sequence and its relationship to the human genome. Nature, 496(7446), 498–503. https://doi.org/10.1038/nature12111
  • Lele, Z., Krone, P.H. (1996). The zebrafish as a model system in developmental, toxicological and transgenic research. Biotechnology Advances. Elsevier Inc. https://doi.org/10.1016/0734-9750(96)00004-3
  • Li, Y., Dong, F., Liu, X., Xu, J., Han, Y., Zheng, Y. (2014). Chiral fungicide triadimefon and triadimenol: Stereoselective transformation in greenhouse crops and soil, and toxicity to Daphnia magna. Journal of Hazardous Materials, 265, 115–123. https://doi.org/10.1016/j.jhazmat.2013.11.055
  • Li, X., Zhang, R., Tian, T., Shang, X., Xu D., Yingying H., Matsuura, N. (2021). Screening and ecological risk of 1200 organic micropollutants in Yangtze Estuary water. Water Research, June, 117341. https://doi.org/10.1016/j.watres.2021.117341
  • Libralato, G., Gentile, E., Ghirardini, A.V. (2016). Wastewater effects on Phaeodactylum tricornutum (Bohlin): Setting up a classification system. Ecological Indicators, 60(July), 31–37. https://doi.org/10.1016/j.ecolind.2015.06.014
  • Maas-Diepeveen, J.L., Leeuwen, C.J. (1986). Aquatic Toxicity of Aromatic Nitro Compounds and Anilines to Several Freshwater Species. Laboratory for Ecotoxicology, Institute for Inland Water Management and Waste Water Treatment, Report No. 86-42: 10 p.
  • Margot, J., Luca Rossi, Barry, D.A., Holliger, C. (2015). A review of the fate of micropollutants in wastewater treatment plants. WIREs Water, 2 (5), 457–487. https://doi.org/10.1002/wat2.1090
  • Metz, F., Ingold, K. (2014). Sustainable wastewater management: Is it possible to regulate micropollution in the future by learning from the past? A policy analysis. Sustainability, 6(4), 1992-2012. https://doi.org/10.3390/su6041992
  • Moermond, C.T.A., Heugens, E.H.W. (2009). Environmental risk limits for trichlorophenols. Report 601714005/2009.
  • Morlon, H., Claude, F., Magali, F., Christelle, A., Jacqueline, G.L., Alain, B. (2005). Toxicity of selenite in the unicellular green alga Chlamydomonas reinhardtii: Comparison between effects at the population and sub-cellular level. Aquatic Toxicology, 73(1), 65–78. https://doi.org/10.1016/j.aquatox.2005.02.007
  • National Center for Biotechnology Information (2021). PubChem Compound Summary for CID 5359596, Arsenic. Retrieved June 17, 2021 from ttps://pubchem.ncbi.nlm.nih.gov/compound
  • Paoletti, F., Sirini, P., Seifert, H., Vehlow, J. (2001). Fate of antimony in municipal solid waste incineration. Chemosphere, 42(5-7), 533–543. https://doi.org/10.1016/S0045-6535(00)00225-3
  • Poirier, I., Marie, P., Lauriane, K., Philippe, H., Arnaud, D., Arash, J., Johana, C., Christelle, C., Gallon, R.K., Bertrand, M. (2018). Toxicological effects of cd se nanocrystals on the marine diatom Phaeodactylum tricornutum: The first mass spectrometry-based proteomic approach. Ecotoxicology and Environmental Safety, 152, 78–90. https://doi.org/10.1016/j.ecoenv.2018.01.043
  • Qian, L., Feng, C., Yang, Y., Yuan, L., Suzhen, Q., Wang, C. (2018). Mechanisms of developmental toxicity in zebrafish embryos (Danio rerio) induced by boscalid. Science of the Total Environment, 634, 478–487. https://doi.org/10.1016/j.scitotenv.2018.04.012
  • Rogowska, J., Monika, C., Wojciech, R., Lidia, W. (2020). Micropollutants in Treated Wastewater. Ambio. Springer. https://doi.org/10.1007/s13280-019-01219-5
  • Santos, J.E.L., Gómez, M.A., Moura, D.C. de, Cerro-López, M., Quiroz, M.A., Martínez-Huitle, C.A. (2021). Removal of herbicide 1-chloro-2,4-dinitrobenzene (DNCB) from aqueous solutions by electrochemical oxidation using boron-doped diamond (BDD) and PbO2 electrodes. Journal of Hazardous Materials, 402, 123850. https://doi.org/10.1016/j.jhazmat.2020.123850
  • Satoh, A., Vudikaria, L.Q., Kurano, K., Miyachi, S. (2005). Evaluation of the sensitivity of marine microalgal strains to the heavy metals, Cu, As, Sb, Pb and Cd. Environment International, 31(5), 713–722. https://doi.org/10.1016/j.envint.2005.01.001
  • Schwarzenbach, R.P., Escher, B.I., Fenner, K., Hofstetter, T.B., Johnson, A.J., Gunten, U.V., Wehrli, B. (2006). The challenge of micropollutants in aquatic systems. Science, 313(5790), 1072-1077. https://doi.org/10.1126/science.1127291
  • SCCS (Scientific Committee on Consumer Safety) (2010). Opinion on Triclosan (Antimicrobial Resistance) Scientific Committee on Consumer Safety; Luxembourg: 2010. https://ec.europa.eu/health/scientific_committees/opinions_layman/triclosan/en/about-triclosan.htm#29 (accessed:12.12.2021)
  • Shao, Y., Chen, Z., Hollert, H., Zhou, S., Deutschmann, B., Seiler, T.B. (2019). Toxicity of 10 organic micropollutants and their mixture: Implications for aquatic risk assessment. Science of the Total Environment, 666(May), 1273–1282. https://doi.org/10.1016/j.scitotenv.2019.02.047
  • Singh, A.K., Sharma, L., Mallick, N. (2004). Antioxidative role of nitric oxide on copper toxicity to a chlorophycean alga, chlorella. Ecotoxicology and Environmental Safety, 59(2), 223–227. https://doi.org/10.1016/j.ecoenv.2003.10.009
  • Sun, H.Q., Du, Y., Zhang, Z.Y., Jiang, W.J., Guo, Y.M., Lu, X.W., Zhang, Y.M., Sun, L.W. (2016). Acute toxicity and ecological risk assessment of benzophenone and N,N-Diethyl-3 Methylbenzamide in personal care products. International Journal of Environmental Research and Public Health, 13(9), 925. https://doi.org/10.3390/ijerph13090925
  • Tatarazako, N., Ishibashi, H., Teshima, K., Kishi, K., Arizono, K. (2004). Effects of triclosan on various aquatic organisms. Environmental Sciences: An International Journal of Environmental Physiology and Toxicology, 11(2), 133–140.
  • Tato, T., Beiras, R. (2019). The use of the marine microalga Tisochrysis lutea (T-Iso) in standard toxicity tests; comparative sensitivity with other test species. Frontiers in Marine Science, 6 (August). https://doi.org/10.3389/fmars.2019.00488
  • TUBITAK (2017). Project on Determination of Hazardous Substances in Coastal and Transitional Waters and Ecological Coast Dynamics. Proje No:5128702.
  • Venkataraman, B.V., Sudha, S. (2005). Vanadium Toxicity. Asian Journal of Experimental Sciences, 19(2), 127-134.
  • Villette, C., Maurer, L., Delecolle, J., Zumsteg, J., Erhardt, J., Heintz, D. (2019). In situ localization of micropollutants and associated stress response in populus Nigra leaves. Environment International, 126(May), 523–532. https://doi.org/10.1016/j.envint.2019.02.066
  • Wang, L., Zheng, B. (2008). Toxic effects of fluoranthene and copper on marine diatom Phaeodactylum tricornutum. Journal of Environmental Sciences, 20(11), 1363–1372. https://doi.org/10.1016/S1001-0742(08)62234-2 Wang, X., Pan, J., Guan, W., Dai, J., Zou, X., Yan, Y., Hu, W. (2011). Selective removal of 3-Chlorophenol from aqueous solution using surface molecularly imprinted microspheres. Journal of Chemical & Engineering Data, 56, 2793–2801. https://doi.org/10.1021/je101275e
  • Wilhelm, S., Jacob, S., Ziegler, M., Köhler, H.Z., Triebskorn, R. (2018). Influence of different wastewater treatment technologies on genotoxicity and dioxin-like toxicity in effluent-exposed fish. Environmental Sciences Europe, 30(25). https://doi.org/10.1186/s12302-018-0154-0
  • Yan, Z., Yang, H., Dong, H., Ma, B., Sun, H., Pan, T., Jiang, R., Zhou, R., Shen, J., Liu, J., Lu, G. (2018). Occurrence and ecological risk assessment of organic micropollutants in the lower reaches of the Yangtze River, China: A case study of water diversion. Environmental Pollution, 239, 223–232. Zhang, Y., Liu, M., Liu, J., Wang, X., Wang, C., Ai, W., Chen, S., Wang, H. (2018). Combined toxicity of triclosan, 2,4-dichlorophenol and 2,4,6-trichlorophenol to zebrafish (Danio rerio). Environmental Toxicology and Pharmacology, 57, 9–18.
  • Zhang, H., West, D., Shi, H., Ma, Y., Adams, C., Eichholz, T. (2019). Simultaneous determination of selected trace contaminants in drinking water using solid-phase extraction-high performance liquid chromatography-tandem mass spectrometry. Water, Air, & Soil Pollution, 230(28). https://doi.org/10.1007/s11270-018-4066-9
  • Zhou, Y., Zhang, Y., Hu, X. (2020). Synergistic coupling Co3Fe7 alloy and CoFe2O4 spinel for highly efficient removal of 2,4-dichlorophenol by activating peroxymonosulfate. Chemosphere, 242, 125244. https://doi.org/10.1016/j.chemosphere.2019.125244
There are 47 citations in total.

Details

Primary Language English
Subjects Hydrobiology
Journal Section Research Articles
Authors

Hilal Yılmaz 0000-0002-5782-0283

Gülsen Avaz 0000-0003-2703-7877

Ülkü Yetiş 0000-0001-7322-0563

Melek Özkan 0000-0001-9017-5389

Project Number 115Y025
Publication Date January 1, 2022
Submission Date January 27, 2021
Published in Issue Year 2022

Cite

APA Yılmaz, H., Avaz, G., Yetiş, Ü., Özkan, M. (2022). Toxicity of environmentally important micropollutants on three trophic levels. Aquatic Research, 5(1), 20-28. https://doi.org/10.3153/AR22003

16291

is licensed under a CreativeCommons Attribtion-ShareAlike 4.0 International Licence 14628   1325927040

Diamond Open Access refers to a scholarly publication model in which journals and platforms do not charge fees to either authors or readers.

Open Access Statement:

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.

Archiving Policy:

Archiving is done according to TÜBİTAK ULAKBİM "DergiPark" publication policy (LOCKSS).