Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of Swelling Ratio on Carboxymethyl Cellulose-Based Hydrogel Using A Central Composite Design

Yıl 2021, Cilt: 25 Sayı: 3, 731 - 745, 30.12.2021
https://doi.org/10.19113/sdufenbed.987240

Öz

This study, it was aimed to synthesize carboxymethyl cellulose-based hydrogel using citric acid as a cross linker and to evaluate its water-holding ability. The central composite design method was used to determine the optimal amounts for the synthesis of the hydrogel with its maximum water absorption capacity and to examine the main effect and interaction effect of the factors involved in the synthesis of the hydrogel. The effect of main factors such as polymer composition, sodium carboxymethyl cellulose, citric acid, and polyethylene glycol concentration (w/v%) on swelling rate was evaluated. Optimization of the product component and statistical evaluation of all data were carried out with the Minitab Statistical Software program. When the results were evaluated, it showed that the super absorbent hydrogel was produced under optimum conditions.

Proje Numarası

FDK-2020-8125

Kaynakça

  • [1] Ahmed, E. M. 2015. Hydrogel: Preparation, Characterization, And Applications, Journal of Advanced Research, 6, 105-121.
  • [2] Maitra, J., Shukla, K. V. 2014. Cross-linking in Hydrogels, American Journal of Polymer Science, 4(2), 25-31.
  • [3] Guilherme, M. R., Aouada, F. A., Fajardo, A. R., Martins, A. F., Paulino, A. T., Davi, M. F. T., Rubira, A. F., Muniz, E. C. 2015. Super Absorbent Hydrogels Based On Polysaccharides For Application in Agriculture As Soil Conditioner And Nutrient Carrier: A Review, European Polymer Journal, 72, 365-385.
  • [4] Olayide, S., Lawal, Y. M., Fukae, R., Nishinari, K. 2011. Microporous Hydrogels Of Cellulose Ether Cross-Linked With Di- Or Polyfunctional Glycidyl Ether Made For The Delivery Of Bioactive Substances, Colloid and Polymer Science, 289, 1261-1272.
  • [5] Sannino, A., Demitri, C., Madaghiele, M. 2009. Biodegradable Cellulose-Based Hydrogels: Design And Applications, Materials, 2(2), 353-373.
  • [6] Bao, Y., Ma, J., Li, N. 2011. Synthesis And Swelling Behaviors of Sodium Carboxymethyl Cellulose-g-Poly(AA-co-AM-co-AMPS)/MMT Superabsorbent Hydrogel, Carbohydrate Polymers, 84 (1), 76-82.
  • [7] Kono, H. 2014. Characterization And Properties of Carboxymethyl Cellulose Hydrogels Crosslinked by Polyethylene Glycol, Carbohydrate Polymers, 106, 84-93.
  • [8] Barbucci, R., Magnani, A., Consumi, M. 2000. Swelling Behavior of Carboxymethylcellulose Hydrogels in Relation to Cross-Linking, pH, and Charge Density, Macromolecules, 33(20), 7475-7480.
  • [9] Chen, Y., Cui, G., Dan, N., Huang, Y., Bai, Z., Yang, C., Dan, W. 2019. Preparation And Characterization of Dopamine-Sodium Carboxymethyl Cellulose Hydrogel, SN Applied Sciences, 1, 609-618.
  • [10] Rimmer, S. 2011. Biomedical Hydrogels: Biochemistry, Manufacture And Medical Applications, Materials. 1st, edition. Woodhead Publishing Limited, Cambridge, UK, 288s.
  • [11] Demitri, C., Sole, R. D., Scalera, F., Sannino, A., Vasapollo, G., Maffezzoli, A., Nicolais, L. 2008. Novel Superabsorbent Cellulose-Based Hydrogels Crosslinked with Citric Acid. Journal of Applied Polymer Science, 110, 2453-2460.
  • [12] Capanema, N. S. V., Mansur, A. A. P., de Jesus, A. C., Carvalho, S. M., de Oliveira, L. C., Mansur, H. S. 2018. Super Absorbent Crosslinked Carboxymethyl Cellulose-PEG Hydrogels For Potential Wound Dressing Applications, International Journal of Biological Macromolecules, 106, 1218-1234.
  • [13] Ghorpade, V. S., Yadav, A. V., Dias, R. J. 2017. Citric Acid Crosslinked Β-Cyclodextrin/Carboxymethylcellulose Hydrogel Films For Controlled Delivery of Poorly Soluble Drugs, Carbohydrate Polymers, 164, 339-348.
  • [14] Khurma, J. R., Nand, A. V. 2008. Temperature and pH Sensitive Hydrogels Composed of Chitosan And Poly(Ethyleneglycol), Polymer Bulletin, 59, 805-812.
  • [15] Thompson, D. O. 1997. Cyclodextrins-Enabling Excipients: Their Present And Future Use in Pharmaceuticals, Critical Reviews™ in Therapeutic Drug Carrier Systems, 14, 1-104.
  • [16] Loftsson, T., Brewster, M. E. 1996. Pharmaceutical Applications of Cyclodextrins, I: Drug Solubilization And Stabilization, Journal of Pharmaceutical Sciences, 85, 1017-1025.
  • [17] Challa, R., Alka, A., Javed, A., Khar, R. K. 2005. Cyclodextrins in Drug Delivery: An Updated Review, An Official Journal of the American Association of Pharmaceutical Scientists, 6, 329-357.
  • [18] Peppas, N. A., Mikos, A. G. 1986. Preparation Methods and Structure of Hydrogels, Hydrogels in Medicine and Pharmacy, CRC Press Florida, 1, 1-20.
  • [19] Ratner, B. D. 1986. Hydrogels in Medicine and Pharmacy, Hydrogels Surfaces, CRC Press Florida, 1, 85-93.
  • [20] Uyanık, A. ed. 2008. Analitik Kimyacılar için İstatistik ve Kemometri. İlke Yayınevi, Ankara, 312s.
  • [21] Lazic, Z. R. 2004. Design of Experiments in Chemical Engineering a Practical Guide. 1st, edition. Wiley-VCH, Weinheim, 620s.
  • [22] Minitab 17 program. 2021. https://www.minitab.com/en-us/products/minitab/ (Erişim Tarihi: 10.03.2021).
  • [23] Demitri, C. 2013. Potential of Cellulose-Based Super Absorbent Hydrogels as Water Reservoir in Agriculture, International Journal of Polymer Science, 28, 622-625.
  • [24] Kono, H., Onishi, K., Nakamura, T. 2013. Characterization and Bisphenol A Adsorption Capacity of -Cyclodextrin–Carboxymethylcellulose-Based Hydrogels, Carbohydrate Polymers, 98, 784-792.
  • [25] Malik, N. S., Ahmad, M., Minhas, M. U. 2017. Cross-Linked Β-Cyclodextrin And Carboxymethyl Cellulose Hydrogels For Controlled Drug Delivery Of Acyclovir, Plos One, 12(2), 1-17.

Merkezi Bir Kompozit Tasarım Kullanılarak Karboksimetil Selüloz Temelli Hidrojelin Şişme Oranının Belirlenmesi

Yıl 2021, Cilt: 25 Sayı: 3, 731 - 745, 30.12.2021
https://doi.org/10.19113/sdufenbed.987240

Öz

Bu çalışmada, çapraz bağlayıcı olarak sitrik asit kullanılarak karboksimetil selüloz temelli hidrojel sentezlenmesi ve su tutma kabiliyetinin değerlendirilmesi amaçlanmıştır. Maksimum su emme kapasitesine sahip hidrojelin sentezi için en uygun miktarları belirlemek ve hidrojelin sentezinde yer alan faktörlerin ana etkisini ve etkileşim etkisini incelemek için merkezi kompozit tasarım metodu kullanılmıştır. Polimer bileşimi, sodyum karboksimetil selüloz, sitrik asit ve polietilen glikol 6000/10000 konsantrasyonu (%w/v) gibi ana faktörlerin şişme hızı üzerindeki etkisi değerlendirilmiştir. Ürün bileşeninin optimizasyonu ve tüm verilerin istatistiksel olarak değerlendirilmesi Minitab 17 İstatistik Yazılımı programı ile yapılmıştır. Elde edilen sonuçlar değerlendirildiğinde süper emici hidrojelin optimum koşullar altında üretildiğini göstermiştir.

Destekleyen Kurum

Süleyman Demirel Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Proje Numarası

FDK-2020-8125

Teşekkür

Bu çalışma, Süleyman Demirel Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi, Isparta, Türkiye'den FDK-2020-8125 nolu proje ile finansal olarak desteklenmiştir.

Kaynakça

  • [1] Ahmed, E. M. 2015. Hydrogel: Preparation, Characterization, And Applications, Journal of Advanced Research, 6, 105-121.
  • [2] Maitra, J., Shukla, K. V. 2014. Cross-linking in Hydrogels, American Journal of Polymer Science, 4(2), 25-31.
  • [3] Guilherme, M. R., Aouada, F. A., Fajardo, A. R., Martins, A. F., Paulino, A. T., Davi, M. F. T., Rubira, A. F., Muniz, E. C. 2015. Super Absorbent Hydrogels Based On Polysaccharides For Application in Agriculture As Soil Conditioner And Nutrient Carrier: A Review, European Polymer Journal, 72, 365-385.
  • [4] Olayide, S., Lawal, Y. M., Fukae, R., Nishinari, K. 2011. Microporous Hydrogels Of Cellulose Ether Cross-Linked With Di- Or Polyfunctional Glycidyl Ether Made For The Delivery Of Bioactive Substances, Colloid and Polymer Science, 289, 1261-1272.
  • [5] Sannino, A., Demitri, C., Madaghiele, M. 2009. Biodegradable Cellulose-Based Hydrogels: Design And Applications, Materials, 2(2), 353-373.
  • [6] Bao, Y., Ma, J., Li, N. 2011. Synthesis And Swelling Behaviors of Sodium Carboxymethyl Cellulose-g-Poly(AA-co-AM-co-AMPS)/MMT Superabsorbent Hydrogel, Carbohydrate Polymers, 84 (1), 76-82.
  • [7] Kono, H. 2014. Characterization And Properties of Carboxymethyl Cellulose Hydrogels Crosslinked by Polyethylene Glycol, Carbohydrate Polymers, 106, 84-93.
  • [8] Barbucci, R., Magnani, A., Consumi, M. 2000. Swelling Behavior of Carboxymethylcellulose Hydrogels in Relation to Cross-Linking, pH, and Charge Density, Macromolecules, 33(20), 7475-7480.
  • [9] Chen, Y., Cui, G., Dan, N., Huang, Y., Bai, Z., Yang, C., Dan, W. 2019. Preparation And Characterization of Dopamine-Sodium Carboxymethyl Cellulose Hydrogel, SN Applied Sciences, 1, 609-618.
  • [10] Rimmer, S. 2011. Biomedical Hydrogels: Biochemistry, Manufacture And Medical Applications, Materials. 1st, edition. Woodhead Publishing Limited, Cambridge, UK, 288s.
  • [11] Demitri, C., Sole, R. D., Scalera, F., Sannino, A., Vasapollo, G., Maffezzoli, A., Nicolais, L. 2008. Novel Superabsorbent Cellulose-Based Hydrogels Crosslinked with Citric Acid. Journal of Applied Polymer Science, 110, 2453-2460.
  • [12] Capanema, N. S. V., Mansur, A. A. P., de Jesus, A. C., Carvalho, S. M., de Oliveira, L. C., Mansur, H. S. 2018. Super Absorbent Crosslinked Carboxymethyl Cellulose-PEG Hydrogels For Potential Wound Dressing Applications, International Journal of Biological Macromolecules, 106, 1218-1234.
  • [13] Ghorpade, V. S., Yadav, A. V., Dias, R. J. 2017. Citric Acid Crosslinked Β-Cyclodextrin/Carboxymethylcellulose Hydrogel Films For Controlled Delivery of Poorly Soluble Drugs, Carbohydrate Polymers, 164, 339-348.
  • [14] Khurma, J. R., Nand, A. V. 2008. Temperature and pH Sensitive Hydrogels Composed of Chitosan And Poly(Ethyleneglycol), Polymer Bulletin, 59, 805-812.
  • [15] Thompson, D. O. 1997. Cyclodextrins-Enabling Excipients: Their Present And Future Use in Pharmaceuticals, Critical Reviews™ in Therapeutic Drug Carrier Systems, 14, 1-104.
  • [16] Loftsson, T., Brewster, M. E. 1996. Pharmaceutical Applications of Cyclodextrins, I: Drug Solubilization And Stabilization, Journal of Pharmaceutical Sciences, 85, 1017-1025.
  • [17] Challa, R., Alka, A., Javed, A., Khar, R. K. 2005. Cyclodextrins in Drug Delivery: An Updated Review, An Official Journal of the American Association of Pharmaceutical Scientists, 6, 329-357.
  • [18] Peppas, N. A., Mikos, A. G. 1986. Preparation Methods and Structure of Hydrogels, Hydrogels in Medicine and Pharmacy, CRC Press Florida, 1, 1-20.
  • [19] Ratner, B. D. 1986. Hydrogels in Medicine and Pharmacy, Hydrogels Surfaces, CRC Press Florida, 1, 85-93.
  • [20] Uyanık, A. ed. 2008. Analitik Kimyacılar için İstatistik ve Kemometri. İlke Yayınevi, Ankara, 312s.
  • [21] Lazic, Z. R. 2004. Design of Experiments in Chemical Engineering a Practical Guide. 1st, edition. Wiley-VCH, Weinheim, 620s.
  • [22] Minitab 17 program. 2021. https://www.minitab.com/en-us/products/minitab/ (Erişim Tarihi: 10.03.2021).
  • [23] Demitri, C. 2013. Potential of Cellulose-Based Super Absorbent Hydrogels as Water Reservoir in Agriculture, International Journal of Polymer Science, 28, 622-625.
  • [24] Kono, H., Onishi, K., Nakamura, T. 2013. Characterization and Bisphenol A Adsorption Capacity of -Cyclodextrin–Carboxymethylcellulose-Based Hydrogels, Carbohydrate Polymers, 98, 784-792.
  • [25] Malik, N. S., Ahmad, M., Minhas, M. U. 2017. Cross-Linked Β-Cyclodextrin And Carboxymethyl Cellulose Hydrogels For Controlled Drug Delivery Of Acyclovir, Plos One, 12(2), 1-17.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

İlkay Konçe 0000-0003-3542-7090

Ebru Çubuk Demiralay 0000-0002-6270-7509

Yaşar Doğan Daldal 0000-0003-1211-2686

Proje Numarası FDK-2020-8125
Yayımlanma Tarihi 30 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 25 Sayı: 3

Kaynak Göster

APA Konçe, İ., Çubuk Demiralay, E., & Daldal, Y. D. (2021). Merkezi Bir Kompozit Tasarım Kullanılarak Karboksimetil Selüloz Temelli Hidrojelin Şişme Oranının Belirlenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(3), 731-745. https://doi.org/10.19113/sdufenbed.987240
AMA Konçe İ, Çubuk Demiralay E, Daldal YD. Merkezi Bir Kompozit Tasarım Kullanılarak Karboksimetil Selüloz Temelli Hidrojelin Şişme Oranının Belirlenmesi. SDÜ Fen Bil Enst Der. Aralık 2021;25(3):731-745. doi:10.19113/sdufenbed.987240
Chicago Konçe, İlkay, Ebru Çubuk Demiralay, ve Yaşar Doğan Daldal. “Merkezi Bir Kompozit Tasarım Kullanılarak Karboksimetil Selüloz Temelli Hidrojelin Şişme Oranının Belirlenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25, sy. 3 (Aralık 2021): 731-45. https://doi.org/10.19113/sdufenbed.987240.
EndNote Konçe İ, Çubuk Demiralay E, Daldal YD (01 Aralık 2021) Merkezi Bir Kompozit Tasarım Kullanılarak Karboksimetil Selüloz Temelli Hidrojelin Şişme Oranının Belirlenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25 3 731–745.
IEEE İ. Konçe, E. Çubuk Demiralay, ve Y. D. Daldal, “Merkezi Bir Kompozit Tasarım Kullanılarak Karboksimetil Selüloz Temelli Hidrojelin Şişme Oranının Belirlenmesi”, SDÜ Fen Bil Enst Der, c. 25, sy. 3, ss. 731–745, 2021, doi: 10.19113/sdufenbed.987240.
ISNAD Konçe, İlkay vd. “Merkezi Bir Kompozit Tasarım Kullanılarak Karboksimetil Selüloz Temelli Hidrojelin Şişme Oranının Belirlenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25/3 (Aralık 2021), 731-745. https://doi.org/10.19113/sdufenbed.987240.
JAMA Konçe İ, Çubuk Demiralay E, Daldal YD. Merkezi Bir Kompozit Tasarım Kullanılarak Karboksimetil Selüloz Temelli Hidrojelin Şişme Oranının Belirlenmesi. SDÜ Fen Bil Enst Der. 2021;25:731–745.
MLA Konçe, İlkay vd. “Merkezi Bir Kompozit Tasarım Kullanılarak Karboksimetil Selüloz Temelli Hidrojelin Şişme Oranının Belirlenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 25, sy. 3, 2021, ss. 731-45, doi:10.19113/sdufenbed.987240.
Vancouver Konçe İ, Çubuk Demiralay E, Daldal YD. Merkezi Bir Kompozit Tasarım Kullanılarak Karboksimetil Selüloz Temelli Hidrojelin Şişme Oranının Belirlenmesi. SDÜ Fen Bil Enst Der. 2021;25(3):731-45.

e-ISSN: 1308-6529