Research Article
BibTex RIS Cite
Year 2025, Volume: 8 Issue: 3, 166 - 175, 02.07.2025
https://doi.org/10.3153/AR25017

Abstract

References

  • Aykur, M., Dagci, H. (2023). Molecular identification of Acanthamoeba spp., Balamuthia mandrillaris and Naegleria fowleri in soil samples using quantitative real-time PCR testing in Turkey; Hidden danger in the soil. Acta Tropica, 244, 106956. https://doi.org/10.1016/j.actatropica.2023.106956
  • Bolotova, Y.V. (2015). Aquatic plants of the Far East of Russia: a review on their use in medicine, pharmacological activity. Bangladesh Journal of Medical Science, 14(1), 9–13. https://doi.org/10.3329/bjms.v14i1.21554
  • Ceniklioglu, B., Duzlu, O. (2022). Determination of molecular prevalence and genotypes of Acanthamoeba species ısolated from different water sources. Journal of Health Sciences, 31(3), 336–342. https://doi.org/10.34108/eujhs.1099002
  • Chen, J., Liu, Z., Wang, X., Wang, F. (2017). Isolation and identification of myriophylline, an alkaloid from Myriophyllum spicatum, and its herbicidal activity against aquatic weeds. Journal of Agricultural and Food Chemistry, 65(12), 2568–2574.
  • Chin, Y.W., Balunas, M.J., Chai, H.B., Kinghorn, A.D. (2006). Drug discovery from natural sources. The AAPS journal, 8, E239-E253. https://doi.org/10.1007/BF02854894
  • De Lacerda, A.G., Lira, M. (2021). Acanthamoeba keratitis: a review of biology, pathophysiology and epidemiology. Ophthalmic and Physiological Optics, 41(1), 116–135. https://doi.org/10.1111/opo.12752
  • Ertürk, Ö., Beyhan, T. A. Ş., Şahin, H. (2020). Antibacterial and antifungal activity of Eurasian water-milfoil collected from lentic and lotic water body in Central Black Sea Region, Turkey. Acta Biologica Turcica, 33(1), 12–19.
  • Fiori, P.L., Mattana, A., Dessì, D., Conti, S. (2006). In vitro acanthamoebicidal activity of a killer monoclonal antibody and a synthetic peptide. Journal of Antimicrob Chemother, 57(5), 891–898. https://doi.org/10.1093/jac/dkl051
  • Gross, E., Garric, J. (Eds.). (2019). Ecotoxicology: New Challenges and New Approaches. Elsevier.
  • He, Y., Zhou, Q.H., Liu, B.Y., Cheng, L., Tian, Y., Zhang, Y.Y., Wu, Z.B. (2016). Programmed cell death in the cyanobacterium Microcystis aeruginosa induced by allelopathic effect of submerged macrophyte Myriophyllum spicatum in co-culture system. Journal of Applied Phycology, 28, 2805–2814. https://doi.org/10.1007/s10811-016-0814-7
  • Hoff, H.K., Thum, R.A. (2022). Hybridization and invasiveness in Eurasian watermilfoil (Myriophyllum spicatum): is prioritizing hybrids in management justified?. Invasive Plant Science and Management, 15(1), 3–8. https://doi.org/10.1017/inp.2022.4
  • Li, Y., Zhang, L., Li, S. (2020). Carotenoids in Myriophyllum spicatum: Occurrence, antioxidant activities, and potential for mitigating oxidative stress in aquatic environments. Aquatic Toxicology, 229, 105652.
  • Liao, Y., Wu, H., Zhang, X. (2020). Allelopathic effects of Myriophyllum spicatum on cyanobacterial growth and its potential as a bioagent in controlling harmful algal blooms. Environmental Toxicology and Chemistry, 39(1), 212–223.
  • Jeong, S., Joo, S., Park, S. (2024). Applying a neural network machine learning model to predict seasonal allelopathic inhibitory effects of Myriophyllum spicatum on the growth of Microcystis aeruginosa. Aquatic Ecology, 58(2), 349–361. https://doi.org/10.1007/s10452-023-10073-3
  • Jeong, S., Yang, D., Joo, S., Park, S. (2021). Allelopathic inhibition effects of Myriophyllum spicatum on growths of bloom-forming cyanobacteria and other phytoplankton species in coexistence experiments. Journal of Plant Biology, 64(6), 501–510. https://doi.org/10.1007/s12374-021-09322-5
  • Kaynak, B., Aydogdu, G., Koloren, Z. (2024). Investigation of Sambucus ebulus plant extract with regard to its ın-vitro DNA protective action, cytotoxic effect, and amoebicidal on Acanthamoeba castellanii trophozoites. Karadeniz Fen Bilimleri Dergisi, 14(4), 2172–2189. https://doi.org/10.31466/kfbd.1537169
  • Kaynak, B., Koloren, Z., Karaman, U. (2019). Investigation of in vitro amoebicidal activities of Trachystemon orientalis on Acanthamoeba castellanii cysts and trophozoites. Van Medical Journal, 26(4), 483–490. https://doi.org/10.5505/vtd.2019.79926
  • Lambrechts, I.A., Gibango, L., Chrysargyris, A., Tzortzakis, N., Lall, N. (2020). Aquatic Plants Native to Europe. In Aquatic Plants, 241–290, CRC Press. https://doi.org/10.1201/9780429429095-5
  • Leu, E., Krieger-Liszkay, A., Goussias, C., Gross, E.M. (2002). Polyphenolic allelochemicals from the aquatic angiosperm Myriophyllum spicatum inhibit photosystem II. Plant Physiology, 130(4), 2011–2018. https://doi.org/10.1104/pp.011593
  • Liao, Y.Y., Liu, Y., Liu, X., Lü, T.F., Mbichi, R.W., Wan, T., Liu, F. (2020). The complete chloroplast genome of Myriophyllum spicatum reveals a 4-kb inversion and provides new insights into plastome evolution in Haloragaceae. Ecology and Evolution, 10(6), 3090–3102. https://doi.org/10.1002/ece3.6125
  • Lindén, E., Lehtiniemi, M. (2005). The lethal and sublethal effects of the aquatic macrophyte Myriophyllum spicatum on Baltic littoral planktivores. Limnology and Oceanography, 50(2), 405–411. https://doi.org/10.4319/lo.2005.50.2.0405
  • Liu, B. Y., Zhou, P. J., Tian, J. R., Jiang, S. Y. (2007). Effect of pyrogallol on the growth and pigment content of cyanobacteria-blooming toxic and nontoxic Microcystis aeruginosa. Bulletin of Environmental Contamination and Toxicology, 78, 499–502. https://doi.org/10.1007/s00128-007-9096-8
  • Liu, Y., Liu, N., Zhou, Y., Wang, F., Zhang, Y., Wu, Z. (2019). Growth and physiological responses in Myriophyllum spicatum L. exposed to linear alkylbenzene sulfonate. Environmental Toxicology and Chemistry, 38(9), 2073–2081. https://doi.org/10.1002/etc.4475
  • Maredová, N., Altman, J., Kaštovský, J. (2021). The effects of macrophytes on the growth of bloom-forming cyanobacteria: Systematic review and experiment. Science of the Total Environment, 792, 148413. https://doi.org/10.1016/j.scitotenv.2021.148413
  • Mitsuwan, W., Bunsuwansakul, C., Leonard, T.E., Laohaprapanon, S., Hounkong, K., Bunluepuech, K., Kaewjai, C., Mahboob, T., Raju, C.S., Dhobi, M., Pereira, M., Nawaz M., Wiart, C., Siyadatpanah, A., Norouzi, R., Nissapatorn, V. (2020). Curcuma longa ethanol extract and Curcumin inhibit the growth of Acanthamoeba triangularis trophozoites and cysts isolated from water reservoirs at Walailak University, Thailand. Pathogens and Global Health, 114(4), 194–204. https://doi.org/10.1080/20477724.2020.1755551
  • Nakai, S., Zou, G., Okuda, T., Nishijima, W., Hosomi, M., Okada, M. (2012). Polyphenols and fatty acids responsible for anti-cyanobacterial allelopathic effects of submerged macrophyte Myriophyllum spicatum. Water Science and Technology, 66(5), 993–999. https://doi.org/10.2166/wst.2012.272
  • Shao, J., Wu, Z., Yu, G., Peng, X., Li, R. (2009). Allelopathic mechanism of pyrogallol to Microcystis aeruginosa PCC7806 (Cyanobacteria): from views of gene expression and antioxidant system. Chemosphere, 75(7), 924–928. https://doi.org/10.1016/j.chemosphere.2009.01.021
  • Siddiqui, R., Akbar, N., Khatoon, B., Kawish, M., Ali, M.S., Shah, M. R., Khan, N.A. (2022). Novel plant-based metabolites as disinfectants against Acanthamoeba castellanii. Antibiotics, 11(2), 248. https://doi.org/10.3390/antibiotics11020248
  • Švanys, A., Paškauskas, R., Hilt, S. (2014). Effects of the allelopathically active macrophyte Myriophyllum spicatum on a natural phytoplankton community: a mesocosm study. Hydrobiologia, 737, 57–66. https://doi.org/10.1007/s10750-013-1782-4
  • Taş, B., Kolören, Z., Kolören, O. (2024). In vitro, amoebicidal activities of submerged plant Ceratophyllum demersum L. extract against Acanthamoeba castellanii trophozoites. Aquatic Research, 7(4), 178–188. https://doi.org/10.3153/AR24016.
  • Taş, B., Şahin, H., Yarılgaç, T. (2018). Ulugöl’de (Ulugöl Tabiat Parkı, Ordu) hidrofitlerin artışı üzerine bir ön inceleme. Akademik Ziraat Dergisi, 7(1), 111–120. https://doi.org/10.29278/azd.440704
  • Taş, B., Topaldemir, H. (2021). Assessment of aquatic plants in the Miliç Coastal Wetland (Terme, Samsun, Turkey). Review of Hydrobiology, 14(1-2), 1–23.
  • Topaldemir, H., Taş, B. (2024). Yeşilırmak deltası Terme sulak alanlarında etnobotanik ve tıbbi potansiyele sahip yaygın makrofitler. Aquatic Research, 7(2), 51–73. https://doi.org/10.3153/AR24006
  • Ustaoğlu, F., Kükrer, S., Taş, B., Topaldemir, H. (2022). Evaluation of metal accumulation in Terme River sediments using ecological indices and a bioindicator species. Environmental Science and Pollution Research, 29(31), 47399–47415. https://doi.org/10.1007/s11356-022-19224-9
  • Viveros-Legorreta, J.L., Sarma, S.S.S., Castellanos-Páez, M.E., Nandini, S. (2022). Seasonal dynamics of phenolic substances from the macrophyte Myriophyllum aquaticum and their allelopathic effects on the growth and reproduction of Plationus patulus (Rotifera: Brachionidae). Hydrobiologia, 849(17), 3843–3858. https://doi.org/10.1007/s10750-022-04963-0
  • Wang, T., Liu, H. (2023). Aquatic plant allelochemicals inhibit the growth of microalgae and cyanobacteria in aquatic environments. Environmental Science and Pollution Research, 30(48), 105084–105098. https://doi.org/10.1007/s11356-023-29994-5
  • Wang, Y., Jiang, L., Zhao, Y., Ju, X., Wang, L., Jin, L., Fine R.D., Li, M. (2023). Biological characteristics and pathogenicity of Acanthamoeba. Frontiers in Microbiology, 14, 1147077. https://doi.org/10.3389/fmicb.2023.1147077
  • Xi, X. I.A.O., Li-ping, L., Hua, L., Ying-xu, C. (2009). Algal control ability of allelopathically active submerged macrophytes: a review. Yingyong Shengtai Xuebao, 20(3).
  • Zhao, S., Wang, Z., Zhang, H. (2018). Saponins from Myriophyllum spicatum and their antifungal and antimicrobial activities. Phytochemistry, 150, 90–97.
  • Zuo, S., Yao, C., Yang, H., Li, Y. (2023). Density-and time-dependent bioturbation effect of Limnodrilus hoffmeisteri on allelopathic cyanobacterial suppression of Myriophyllum spicatum. Aquatic Sciences, 85(3), 78. https://doi.org/10.1007/s00027-023-00978-4

Evaluation of the anti-Acanthamoeba potential of Myriophyllum spicatum on Acanthamoeba castellanii trophozoites

Year 2025, Volume: 8 Issue: 3, 166 - 175, 02.07.2025
https://doi.org/10.3153/AR25017

Abstract

Myriophyllum spicatum is a submerged aquatic macrophyte known for its allelopathic and antimicrobial properties. This study investigated the amoebicidal activity of ethanolic M. spicatum leaf extract against Acanthamoeba castellanii trophozoites. Plant samples were collected from the Terme River (Samsun), extracted with ethanol, and tested at concentrations ranging from 1.5 to 48 µg/mL over 24, 48, and 72 hours. Trophozoite viability was assessed using trypan blue staining, and statistical analysis was performed with SPSS and Jamovi software. Results showed significant dose- and time-dependent reductions in trophozoite viability, with an IC50 value of 26.5 µg/mL at 72 hours. The highest inhibition was observed at 48 µg/mL, resulting in a 33% reduction in viability. Principal Component Analysis revealed distinct clustering of higher concentrations from lower doses and control. The study highlights M. spicatum’s potential as a natural anti-amoebic agent. Given the parasite's resistance to conventional drugs and the increasing threat of Acanthamoeba infections, particularly in developing regions, plant-based compounds offer promising alternatives. Further research is recommended to evaluate the extract’s effects on the cyst stage and explore its therapeutic applications. This study is the first to report the anti-Acanthamoeba effect of M. spicatum, contributing novel insight into aquatic plant-based antiparasitic agents.

Ethical Statement

Ethics committee approval is not required for this study.

References

  • Aykur, M., Dagci, H. (2023). Molecular identification of Acanthamoeba spp., Balamuthia mandrillaris and Naegleria fowleri in soil samples using quantitative real-time PCR testing in Turkey; Hidden danger in the soil. Acta Tropica, 244, 106956. https://doi.org/10.1016/j.actatropica.2023.106956
  • Bolotova, Y.V. (2015). Aquatic plants of the Far East of Russia: a review on their use in medicine, pharmacological activity. Bangladesh Journal of Medical Science, 14(1), 9–13. https://doi.org/10.3329/bjms.v14i1.21554
  • Ceniklioglu, B., Duzlu, O. (2022). Determination of molecular prevalence and genotypes of Acanthamoeba species ısolated from different water sources. Journal of Health Sciences, 31(3), 336–342. https://doi.org/10.34108/eujhs.1099002
  • Chen, J., Liu, Z., Wang, X., Wang, F. (2017). Isolation and identification of myriophylline, an alkaloid from Myriophyllum spicatum, and its herbicidal activity against aquatic weeds. Journal of Agricultural and Food Chemistry, 65(12), 2568–2574.
  • Chin, Y.W., Balunas, M.J., Chai, H.B., Kinghorn, A.D. (2006). Drug discovery from natural sources. The AAPS journal, 8, E239-E253. https://doi.org/10.1007/BF02854894
  • De Lacerda, A.G., Lira, M. (2021). Acanthamoeba keratitis: a review of biology, pathophysiology and epidemiology. Ophthalmic and Physiological Optics, 41(1), 116–135. https://doi.org/10.1111/opo.12752
  • Ertürk, Ö., Beyhan, T. A. Ş., Şahin, H. (2020). Antibacterial and antifungal activity of Eurasian water-milfoil collected from lentic and lotic water body in Central Black Sea Region, Turkey. Acta Biologica Turcica, 33(1), 12–19.
  • Fiori, P.L., Mattana, A., Dessì, D., Conti, S. (2006). In vitro acanthamoebicidal activity of a killer monoclonal antibody and a synthetic peptide. Journal of Antimicrob Chemother, 57(5), 891–898. https://doi.org/10.1093/jac/dkl051
  • Gross, E., Garric, J. (Eds.). (2019). Ecotoxicology: New Challenges and New Approaches. Elsevier.
  • He, Y., Zhou, Q.H., Liu, B.Y., Cheng, L., Tian, Y., Zhang, Y.Y., Wu, Z.B. (2016). Programmed cell death in the cyanobacterium Microcystis aeruginosa induced by allelopathic effect of submerged macrophyte Myriophyllum spicatum in co-culture system. Journal of Applied Phycology, 28, 2805–2814. https://doi.org/10.1007/s10811-016-0814-7
  • Hoff, H.K., Thum, R.A. (2022). Hybridization and invasiveness in Eurasian watermilfoil (Myriophyllum spicatum): is prioritizing hybrids in management justified?. Invasive Plant Science and Management, 15(1), 3–8. https://doi.org/10.1017/inp.2022.4
  • Li, Y., Zhang, L., Li, S. (2020). Carotenoids in Myriophyllum spicatum: Occurrence, antioxidant activities, and potential for mitigating oxidative stress in aquatic environments. Aquatic Toxicology, 229, 105652.
  • Liao, Y., Wu, H., Zhang, X. (2020). Allelopathic effects of Myriophyllum spicatum on cyanobacterial growth and its potential as a bioagent in controlling harmful algal blooms. Environmental Toxicology and Chemistry, 39(1), 212–223.
  • Jeong, S., Joo, S., Park, S. (2024). Applying a neural network machine learning model to predict seasonal allelopathic inhibitory effects of Myriophyllum spicatum on the growth of Microcystis aeruginosa. Aquatic Ecology, 58(2), 349–361. https://doi.org/10.1007/s10452-023-10073-3
  • Jeong, S., Yang, D., Joo, S., Park, S. (2021). Allelopathic inhibition effects of Myriophyllum spicatum on growths of bloom-forming cyanobacteria and other phytoplankton species in coexistence experiments. Journal of Plant Biology, 64(6), 501–510. https://doi.org/10.1007/s12374-021-09322-5
  • Kaynak, B., Aydogdu, G., Koloren, Z. (2024). Investigation of Sambucus ebulus plant extract with regard to its ın-vitro DNA protective action, cytotoxic effect, and amoebicidal on Acanthamoeba castellanii trophozoites. Karadeniz Fen Bilimleri Dergisi, 14(4), 2172–2189. https://doi.org/10.31466/kfbd.1537169
  • Kaynak, B., Koloren, Z., Karaman, U. (2019). Investigation of in vitro amoebicidal activities of Trachystemon orientalis on Acanthamoeba castellanii cysts and trophozoites. Van Medical Journal, 26(4), 483–490. https://doi.org/10.5505/vtd.2019.79926
  • Lambrechts, I.A., Gibango, L., Chrysargyris, A., Tzortzakis, N., Lall, N. (2020). Aquatic Plants Native to Europe. In Aquatic Plants, 241–290, CRC Press. https://doi.org/10.1201/9780429429095-5
  • Leu, E., Krieger-Liszkay, A., Goussias, C., Gross, E.M. (2002). Polyphenolic allelochemicals from the aquatic angiosperm Myriophyllum spicatum inhibit photosystem II. Plant Physiology, 130(4), 2011–2018. https://doi.org/10.1104/pp.011593
  • Liao, Y.Y., Liu, Y., Liu, X., Lü, T.F., Mbichi, R.W., Wan, T., Liu, F. (2020). The complete chloroplast genome of Myriophyllum spicatum reveals a 4-kb inversion and provides new insights into plastome evolution in Haloragaceae. Ecology and Evolution, 10(6), 3090–3102. https://doi.org/10.1002/ece3.6125
  • Lindén, E., Lehtiniemi, M. (2005). The lethal and sublethal effects of the aquatic macrophyte Myriophyllum spicatum on Baltic littoral planktivores. Limnology and Oceanography, 50(2), 405–411. https://doi.org/10.4319/lo.2005.50.2.0405
  • Liu, B. Y., Zhou, P. J., Tian, J. R., Jiang, S. Y. (2007). Effect of pyrogallol on the growth and pigment content of cyanobacteria-blooming toxic and nontoxic Microcystis aeruginosa. Bulletin of Environmental Contamination and Toxicology, 78, 499–502. https://doi.org/10.1007/s00128-007-9096-8
  • Liu, Y., Liu, N., Zhou, Y., Wang, F., Zhang, Y., Wu, Z. (2019). Growth and physiological responses in Myriophyllum spicatum L. exposed to linear alkylbenzene sulfonate. Environmental Toxicology and Chemistry, 38(9), 2073–2081. https://doi.org/10.1002/etc.4475
  • Maredová, N., Altman, J., Kaštovský, J. (2021). The effects of macrophytes on the growth of bloom-forming cyanobacteria: Systematic review and experiment. Science of the Total Environment, 792, 148413. https://doi.org/10.1016/j.scitotenv.2021.148413
  • Mitsuwan, W., Bunsuwansakul, C., Leonard, T.E., Laohaprapanon, S., Hounkong, K., Bunluepuech, K., Kaewjai, C., Mahboob, T., Raju, C.S., Dhobi, M., Pereira, M., Nawaz M., Wiart, C., Siyadatpanah, A., Norouzi, R., Nissapatorn, V. (2020). Curcuma longa ethanol extract and Curcumin inhibit the growth of Acanthamoeba triangularis trophozoites and cysts isolated from water reservoirs at Walailak University, Thailand. Pathogens and Global Health, 114(4), 194–204. https://doi.org/10.1080/20477724.2020.1755551
  • Nakai, S., Zou, G., Okuda, T., Nishijima, W., Hosomi, M., Okada, M. (2012). Polyphenols and fatty acids responsible for anti-cyanobacterial allelopathic effects of submerged macrophyte Myriophyllum spicatum. Water Science and Technology, 66(5), 993–999. https://doi.org/10.2166/wst.2012.272
  • Shao, J., Wu, Z., Yu, G., Peng, X., Li, R. (2009). Allelopathic mechanism of pyrogallol to Microcystis aeruginosa PCC7806 (Cyanobacteria): from views of gene expression and antioxidant system. Chemosphere, 75(7), 924–928. https://doi.org/10.1016/j.chemosphere.2009.01.021
  • Siddiqui, R., Akbar, N., Khatoon, B., Kawish, M., Ali, M.S., Shah, M. R., Khan, N.A. (2022). Novel plant-based metabolites as disinfectants against Acanthamoeba castellanii. Antibiotics, 11(2), 248. https://doi.org/10.3390/antibiotics11020248
  • Švanys, A., Paškauskas, R., Hilt, S. (2014). Effects of the allelopathically active macrophyte Myriophyllum spicatum on a natural phytoplankton community: a mesocosm study. Hydrobiologia, 737, 57–66. https://doi.org/10.1007/s10750-013-1782-4
  • Taş, B., Kolören, Z., Kolören, O. (2024). In vitro, amoebicidal activities of submerged plant Ceratophyllum demersum L. extract against Acanthamoeba castellanii trophozoites. Aquatic Research, 7(4), 178–188. https://doi.org/10.3153/AR24016.
  • Taş, B., Şahin, H., Yarılgaç, T. (2018). Ulugöl’de (Ulugöl Tabiat Parkı, Ordu) hidrofitlerin artışı üzerine bir ön inceleme. Akademik Ziraat Dergisi, 7(1), 111–120. https://doi.org/10.29278/azd.440704
  • Taş, B., Topaldemir, H. (2021). Assessment of aquatic plants in the Miliç Coastal Wetland (Terme, Samsun, Turkey). Review of Hydrobiology, 14(1-2), 1–23.
  • Topaldemir, H., Taş, B. (2024). Yeşilırmak deltası Terme sulak alanlarında etnobotanik ve tıbbi potansiyele sahip yaygın makrofitler. Aquatic Research, 7(2), 51–73. https://doi.org/10.3153/AR24006
  • Ustaoğlu, F., Kükrer, S., Taş, B., Topaldemir, H. (2022). Evaluation of metal accumulation in Terme River sediments using ecological indices and a bioindicator species. Environmental Science and Pollution Research, 29(31), 47399–47415. https://doi.org/10.1007/s11356-022-19224-9
  • Viveros-Legorreta, J.L., Sarma, S.S.S., Castellanos-Páez, M.E., Nandini, S. (2022). Seasonal dynamics of phenolic substances from the macrophyte Myriophyllum aquaticum and their allelopathic effects on the growth and reproduction of Plationus patulus (Rotifera: Brachionidae). Hydrobiologia, 849(17), 3843–3858. https://doi.org/10.1007/s10750-022-04963-0
  • Wang, T., Liu, H. (2023). Aquatic plant allelochemicals inhibit the growth of microalgae and cyanobacteria in aquatic environments. Environmental Science and Pollution Research, 30(48), 105084–105098. https://doi.org/10.1007/s11356-023-29994-5
  • Wang, Y., Jiang, L., Zhao, Y., Ju, X., Wang, L., Jin, L., Fine R.D., Li, M. (2023). Biological characteristics and pathogenicity of Acanthamoeba. Frontiers in Microbiology, 14, 1147077. https://doi.org/10.3389/fmicb.2023.1147077
  • Xi, X. I.A.O., Li-ping, L., Hua, L., Ying-xu, C. (2009). Algal control ability of allelopathically active submerged macrophytes: a review. Yingyong Shengtai Xuebao, 20(3).
  • Zhao, S., Wang, Z., Zhang, H. (2018). Saponins from Myriophyllum spicatum and their antifungal and antimicrobial activities. Phytochemistry, 150, 90–97.
  • Zuo, S., Yao, C., Yang, H., Li, Y. (2023). Density-and time-dependent bioturbation effect of Limnodrilus hoffmeisteri on allelopathic cyanobacterial suppression of Myriophyllum spicatum. Aquatic Sciences, 85(3), 78. https://doi.org/10.1007/s00027-023-00978-4
There are 40 citations in total.

Details

Primary Language English
Subjects Food Microbiology
Journal Section Research Articles
Authors

Beyhan Taş 0000-0001-6421-2561

Zeynep Kolören 0000-0001-9708-2716

Onur Kolören 0000-0001-7845-6647

Early Pub Date June 27, 2025
Publication Date July 2, 2025
Submission Date March 25, 2025
Acceptance Date April 12, 2025
Published in Issue Year 2025Volume: 8 Issue: 3

Cite

APA Taş, B., Kolören, Z., & Kolören, O. (2025). Evaluation of the anti-Acanthamoeba potential of Myriophyllum spicatum on Acanthamoeba castellanii trophozoites. Aquatic Research, 8(3), 166-175. https://doi.org/10.3153/AR25017

16291

is licensed under a CreativeCommons Attribtion-ShareAlike 4.0 International Licence 14628   1325927040

Diamond Open Access refers to a scholarly publication model in which journals and platforms do not charge fees to either authors or readers.

Open Access Statement:

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.

Archiving Policy:

Archiving is done according to TÜBİTAK ULAKBİM "DergiPark" publication policy (LOCKSS).