Protein and carbohydrate contents related to varying light levels and chlorophyll-a in selected freshwater and marine phytoplankton
Year 2025,
Volume: 8 Issue: 2, 79 - 97
Cidya Grant
,
J. William Louda
Abstract
This study investigated correlations between chlorophyll-a (CHLa) and certain biomass parameters (protein and two forms of carbohydrates) under the influence of light intensity. These findings are applicable to the estimation of metabolizable biomass in water bodies, which is important for understanding the nutritional value of phytoplankton and their impact on aquatic food webs. Furthermore, these determined biomass relationships can also assist in the prediction of the generation of anoxia during and following algal blooms. That is, one could relate the standing crop of metabolizable organic matter (proteins and carbohydrates) to existing conditions of water depth, currents, dissolved oxygen trends and other parameters. Results from this study indicate that protein, colloidal carbohydrates, and storage carbohydrate concentrations in phytoplankton can be broadly estimated by multiplying chlorophyll-a amounts (pg/cell or mg/L) by 202.6, 17.7, and 144.9, respectively. The methodology presented can therefore serve as a means of approximating the standing crop of metabolizable phytoplankton organic matter (viz. protein and two forms of carbohydrates).
Ethical Statement
The authors declare that this study does not require ethical permission
Supporting Institution
Funds for this study derived from monies remaining from several contracts with the South Florida Water Management District, West Palm Beach Florida. Additional funds derived from the Department of Chemistry, Florida Atlantic University.
Thanks
The authors thank Florida Atlantic University for the research facilities in which this study took place.
References
- Bhavya, P.S., Kim, B.K., Jo, N., Kim, K., Kang, J.J., Lee, J.H., Lee, D., Lee, J.H., Joo, H.T., Ahn, S.H., Kim, Y., Min, J.-O., Kang, M.G., Yun M.S., Kang C.K., Lee S.H. (2018). A Review on the Macromolecular Compositions of Phytoplankton and the Implications for Aquatic Biogeochemistry. Ocean Science Journal, 54, 1-14. https://doi.org/10.1007/s12601-018-0061-8
- Burdloff, D., Etcheber, H., Buscail, R. (2001). Improved procedures for the extraction of water extractable carbohydrates from particulate organic matter. Oceanologica Acta, 24, 343–347. https://doi.org/10.1016/S0399-1784(01)01151-3
- Cook, K.V., Li, C., Cai, H., Krumholz, L.R., Hambright, K.D., Paerl, H.W., Steffen, M.M., Wilson, A.E., Burford M.A., Grossart H.-P., Hamilton D.P., Jiang H., Sukenik, A., Latour, D., Meyer, E.I., Padisak, J., Qin, B., Zamor, R.M., Zhu G. (2020). The global Microcystis interactome. Limnology and Oceanography, 65, S194-207. https://doi.org/10.1002/lno.11361
- Decho, A.W. (1990). Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. In Oceanography and Marine Biology: An Annual Review; Barnes, H. Ed.; 28, pp. 73-153. e-ISBN 0-203-01480-4.
- Dunker, S., Boho, D., Wäldchen, J., Mafder, P. (2018). Combining high-throughput imaging flow cytometry and deep learning for efficient species and life-cycle stage identification of phytoplankton. BMC Ecology,18, 51. https://doi.org/10.1186/s12898-018-0209-5
- Fernandez-Reiriz, M.J., Perez-Camacho, A., Ferreiro, M.J., Blanco, M., Planas, M., Campos, M.J., Labarta, U. (1989). Biomass Production and Variation in the Biochemical Profile (Total Protein, Carbohydrates, RNA, Lipids and Fatty Acids) of Seven Species of Marine Microalgae. Aquaculture, 83, 17-37. https://doi.org/10.1016/0044-8486(89)90057-4
- Goto, N., Mitamura, O., Terai, H. (2001). Biodegradation of photosynthetically produced extracellular organic carbon from intertidal benthic algae. Journal of Experimental Marine Biology and Ecology, 257, 73–86. https://doi.org/10.1016/S0022-0981(00)00329-4
- Grant, C.S. & Louda, J.W. (2010). Microalgal pigment ratios in relation to light intensity – Implications for chemotaxonomy. Aquatic Biology, 11, 127-138. https://doi.org/10.3354/ab00298
- Gulati, R.D. & Demott, W.R. (1997). The role of food quality for zooplankton: remarks on the state-of-the-art, perspectives and priorities. Freshwater Biology, 38, 753-768. https://doi.org/10.1046/j.1365-2427.1997.00275.x
- Guiry, M.D. (2024). In AlgaeBase. Guiry, M.D., & Guiry, G.M. Eds.; World-wide electronic Publication, National University of Ireland, Galway. https://algaebase.org
- Hallegraeff, G.M. (1993). A review of harmful algal blooms and their apparent global increase. Phycologia, 32, 79–99. https://doi.org/10.2216/i0031-8884-32-2-79.1
- Handa, N. (1969). Carbohydrate metabolism in marine diatom Skeletonema costatum. Marine Biology, 4, 208–214. https://doi.org/10.1007/BF00393894
- Hori, T., Itasaka, O., Mitamura, O. (1969) The removal of dissolved silica from freshwater in Lake Biwako. Memoirs of the faculty of Education. Shiga University. Natural Sciences. 19, 45-51.
- Huot, Y., Babin, M., Bruyant, F., Grob, C., Twardowski, M.S., Claustre, H. (2007). Does chlorophyll-a provide the best index of phytoplankton biomass for primary productivity studies? Biogeoscience Discussions, 4, 707-745. https://doi.org/10.5194/bgd-4-707-2007
- Itzhaki, R.F., & Gill, P. M. (1964). A microbiuret method for estimating proteins. Analytical Biochemistry, 9, 401-410. https://doi.org/10.1016/0003-2697(64)90200-3
- Jayappriyan, K.R., Rajkumar, R., Sheeja, L., Nagaraj, S., Divya, S., Rengasamy, R. (2010). Discrimination between the morphological and molecular identification in the genus Dunaliella. International Journal of Current Research, 9, 73–78.
- Jeffrey, S.W. & Vesk, M. (1997). Introduction to marine phytoplankton and their pigment signatures, In Phytoplankton Pigments in Oceanography SCOR-UNESCO, Jeffrey, S.W., Mantoura, R.F.C., and Wright, S.W. Eds.; Paris, pp 37-84. ISBN 92-3-103275-5. 661 pp.
- Jensen L.V., Wasielesky W.J., Ballester E.L.C., Cavalli R.O., Santos M.S. (2006). Role of microalgae Thalassiosira fluviatilis in weight gain and survival of the shrimp Farfantepenaeus paulensis reared in indoor nursery tanks. Nauplius, 14(1), 37-42.
- Karlson, B., Cusack, C., Bresna, E. (2010) Microscopic and molecular methods for quantitative phytoplankton analysis. Intergovernmental Oceanographic Commission of UNESCO. (IOC Manuals and Guides, no. 55.) (IOC/2010/MG/55) UNESCO, Paris.110 pages.
- Kiss, K.T. & Nausch, M. (1988) Comparative investigations of planktonic diatoms of sections of the Danube near Vienna and Budapest. In Proceedings 9th International Diatom Symposium Bristol. Round F., Ed.; Biopress: 115-122.
- Lancelot, C. & Mathot, S. (1985). Biochemical fractionation of primary production by phytoplankton in Belgian coastal waters during short-and-long term incubations with 14C-bicarbonate. II Phaeocystis pouchetti colonial population. Marine Biology, 86, 227–232. https://doi.org/10.1007/BF00397508
Liao, T. (2024). Stochastic dynamics of a plankton modelwith zooplankton selectivity and nutritional value of phytoplankton. Journal of Applied Mathematics and Computation, 70, 251-283. https://doi.org/10.1007/s12190-023-01959-4
- Louda, J.W. (2008). Pigment-based chemotaxonomy of Florida Bay phytoplankton; Development and difficulties. Journal of Liquid Chromatography and Related Techniques, 31, 295-323. https://doi.org/10.1080/10826070701780599
- Louda, J. W., Loitz, J.W., Melisiotis, A., Orem, W.H. (2004). Potential sources of hydrogel stabilization of Florida Bay lime mud sediments and implications for organic matter Preservation. Journal of Coastal Research, 20, 448–463. https://doi.org/10.2112/1551-5036(2004)020[0448:PSOHSO]2.0.CO;2
- Marshall, S.M. & Orr, A.P. (2009). Carbohydrate as a measure of phytoplankton. Journal of the Marine Biological Association of the United Kingdom, 42(3), 511-519. https://doi.org/10.1017/S0025315400054229
- Morais, Jr. W.G., Gorgich, M., Corrêa, P.S., Martins, A.A., Mata, T.M., Caetano, N.S. (2020). Microalgae for biotechnological applications: Cultivation, harvesting and biomass processing. Aquaculture, 528, 735562. https://doi.org/10.1016/j.aquaculture.2020.735562
- Murakami, T., Isaji, C, Kuroda, N., Yoshida, K., Haga, H., Watanabe, Y., Saijo Y. (1994). Development of potamoplanktonic diatoms in downreaches of Japanese rivers. Japanese Journal of Limnology, 55, 13-21. https://doi.org/10.3739/rikusui.55.13
- Meyers, J., & Kratz, W.A. (1955). Relations between pigment content and photosynthetic characteristics in a blue-green alga. Journal of General Physiology, 39, 11–12. https://doi.org/10.1085/jgp.39.1.11
- Miller, E.J., Potts, J.M., Cox, M.J., Miller, B.S., Calderan, S., Leaper, R., Olson, P.A., O’Driscoll, R.L., Double, M.C. (2019). The characteristics of krill swarms in relation to aggregating Antarctic blue whales. Scientific Reports, 9, 16487. https://doi.org/10.1038/s41598-019-52792-4
- Millie, D.F., Paerl, H.W., Hurley. J.P. (1993). Microalgal pigment assessments using high-performance liquid chromatography: A Synopsis of organismal and ecological applications. Canadian Journal of Fisheries and Aquatic Science, 50, 2513-2527. https://doi.org/10.1139/f93-275
- Mineeva, N.M. (2011). Plant Pigments as Indicators of Phytoplankton Biomass (Review). International Journal on Algae, 13, i4.20. https://doi.org/10.1615/InterJAlgae.v13.i4.20
- Mitrovic, S. M., Hitchcock, J. N., Davie, A. W., Ryan, D.A. (2010). Growth responses of Cyclotella meneghiniana (Bacillariophyceae) to various temperatures. Journal of Plankton Research, 32, 1217–1221. https://doi.org/10.1093/plankt/fbq038
- Moal, J., Martin-Jezequel, V., Harris, R.P., Samain, J.-F., Poulet, S.A. (1987). Interspecific and intraspecific variability of the chemical composition of marine phytoplankton. Oceanologica Acta, 10(3), 339-346.
- Neto, R.R., Mead, R.N., Louda, J.W., Jaffe, R. (2006). Organic biogeochemistry of detrital flocculent material (floc) in a subtropical, coastal, wetland. Biogeochemistry, 77, 283-304. https://doi.org/10.1007/s10533-005-5042-1
- Philips, E.J., Zeman, C., Hansen, P. (1989). Growth, photosynthesis, nitrogen fixation and carbohydrate production by a unicellular cyanobacterium, Synechococcus sp. (Cyanophyta). Journal of Applied Phycology, 1, 137–145. https://doi.org/10.1007/BF00003876
- Phlips, E.J., Badylak, S., Lynch, T.C. (1999). Blooms of the picoplanktonic cyanobacterium Synechococcus in Florida Bay, a subtropical inner shelf lagoon. Limnology and Oceanogtaphy, 44,1166–1175. https://doi.org/10.4319/lo.1999.44.4.1166
- Rausch, T. (1981). The estimation of micro-algal protein content and its meaning to the evaluation of algal biomass I. Comparison of methods for extracting protein. Hydrobiologia, 78(3), 237–251. https://doi.org/10.1007/BF00008520
- Ricca, J.G., Mayali, X., Qu, J., Weber, P.K., Poirier, G., Dufresne, C.P., Louda J.W., Terentis, A.C. (2024). Endogenous production and vibrational analysis of heavy-isotope-labeled peptides from Cyanobacteria. ChemBioChem, 25, e202400019. https://doi.org/10.1002/cbic.202400019
- Ross, C., Santiago-vazquez, L., Paul, V. (2006). Toxin release in response to oxidative stress and programmed cell death in the cyanobacterium Microcystis aeruginosa. Aquatic Toxicology, 78, 66–73. https://doi.org/10.1016/j.aquatox.2006.02.007
- Sassi, K.K., Silva, J.A., Calixto, C.D., Sassi, R., Sassi, C.F. (2019). Metabolites of interest for food technology produced by microalgae from the Northeast Brazil. Revista Ciencia Agronomica, 50(1), 54-65. https://doi.org/10.5935/1806-6690.20190007
- Schaffner, L.R., Govaert, L., De Meester, L., Ellner, S.P., Fairchild, E., Miner, B.E., Rudstam, L.G., Spaak, P., Hairston, Jr N.G. (2019). Consumer-resource dynamics is an eco-evolutionary process in a natural plankton community. Nature Ecology and Evolution, 3, 1351–1358. https://doi.org/10.1038/s41559-019-0960-9
- Schreiber, E. (1927). Die Reinkultur von marinem Phytoplankton und deren Bedeutung für die Erforschung der Produktionsfähigkeit des Meerwassers. Wissenschaftliche. Meeresuntersuch., N.F. 10, 1-34.
- Spaulding, S., & Edlund, M. (2009). Thalassiosira. In: Diatoms of the United States. http://westerndiatoms.colorado.edu/taxa/genus/Thalassiosira
- Wehr, J.D., & Sheath, R. G. (2003). (eds): Freshwater Algae of North America: Ecology and Classification, Elsevier Science USA, pp. 255–258. ISBN: 9780123858764
- Wright, S.W., Thomas, D.P., Marchant, H.J., Higgins, H.W., Mackey, M.D., Mackey, D.J. (1996). Analysis of phytoplankton of the Australian sector of the Southern Ocean: comparisons of microscopy and size frequency data with the interpretations of pigment HPLC data using the ‘CHEMTAX’ matrix factorization program. Marine Ecology Progress Series, 144, 285–298. https://doi.org/10.3354/meps144285
- Ye, L., Chang, C.Y., Garcıa-Comas, C. Gong, G.-C., Hsieh, C-H. (2013). Increasing zooplankton size diversity enhances the strength of top-down control on phytoplankton through diet niche partitioning. Journal of Animal Ecology, 82(5), 1052-1061. https://doi.org/10.1111/1365-2656.12067
- Yun, M.S., Lee, D.B., Kim, B.K., Kang, J.J., Lee, J.H., Yang, E.J., Park, W.G., Chung, K.H., Lee, S.H. (2015). Comparison of phytoplankton macromolecular compositions and zooplankton proximate compositions in the northern Chukchi Sea. Deep Sea Research-II: Topical Studies in Oceanography, 120, 82-90. https://doi.org/10.1016/j.dsr2.2014.05.018
- Zarauz L., Irigoien X. (2008) Effects of Lugol’s fixation on the size structure of natural nano–microplankton samples, analyzed by means of an automatic counting method, Journal of Plankton Research, 30(11), 1297–1303. https://doi.org/10.1093/plankt/fbn084
Year 2025,
Volume: 8 Issue: 2, 79 - 97
Cidya Grant
,
J. William Louda
References
- Bhavya, P.S., Kim, B.K., Jo, N., Kim, K., Kang, J.J., Lee, J.H., Lee, D., Lee, J.H., Joo, H.T., Ahn, S.H., Kim, Y., Min, J.-O., Kang, M.G., Yun M.S., Kang C.K., Lee S.H. (2018). A Review on the Macromolecular Compositions of Phytoplankton and the Implications for Aquatic Biogeochemistry. Ocean Science Journal, 54, 1-14. https://doi.org/10.1007/s12601-018-0061-8
- Burdloff, D., Etcheber, H., Buscail, R. (2001). Improved procedures for the extraction of water extractable carbohydrates from particulate organic matter. Oceanologica Acta, 24, 343–347. https://doi.org/10.1016/S0399-1784(01)01151-3
- Cook, K.V., Li, C., Cai, H., Krumholz, L.R., Hambright, K.D., Paerl, H.W., Steffen, M.M., Wilson, A.E., Burford M.A., Grossart H.-P., Hamilton D.P., Jiang H., Sukenik, A., Latour, D., Meyer, E.I., Padisak, J., Qin, B., Zamor, R.M., Zhu G. (2020). The global Microcystis interactome. Limnology and Oceanography, 65, S194-207. https://doi.org/10.1002/lno.11361
- Decho, A.W. (1990). Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. In Oceanography and Marine Biology: An Annual Review; Barnes, H. Ed.; 28, pp. 73-153. e-ISBN 0-203-01480-4.
- Dunker, S., Boho, D., Wäldchen, J., Mafder, P. (2018). Combining high-throughput imaging flow cytometry and deep learning for efficient species and life-cycle stage identification of phytoplankton. BMC Ecology,18, 51. https://doi.org/10.1186/s12898-018-0209-5
- Fernandez-Reiriz, M.J., Perez-Camacho, A., Ferreiro, M.J., Blanco, M., Planas, M., Campos, M.J., Labarta, U. (1989). Biomass Production and Variation in the Biochemical Profile (Total Protein, Carbohydrates, RNA, Lipids and Fatty Acids) of Seven Species of Marine Microalgae. Aquaculture, 83, 17-37. https://doi.org/10.1016/0044-8486(89)90057-4
- Goto, N., Mitamura, O., Terai, H. (2001). Biodegradation of photosynthetically produced extracellular organic carbon from intertidal benthic algae. Journal of Experimental Marine Biology and Ecology, 257, 73–86. https://doi.org/10.1016/S0022-0981(00)00329-4
- Grant, C.S. & Louda, J.W. (2010). Microalgal pigment ratios in relation to light intensity – Implications for chemotaxonomy. Aquatic Biology, 11, 127-138. https://doi.org/10.3354/ab00298
- Gulati, R.D. & Demott, W.R. (1997). The role of food quality for zooplankton: remarks on the state-of-the-art, perspectives and priorities. Freshwater Biology, 38, 753-768. https://doi.org/10.1046/j.1365-2427.1997.00275.x
- Guiry, M.D. (2024). In AlgaeBase. Guiry, M.D., & Guiry, G.M. Eds.; World-wide electronic Publication, National University of Ireland, Galway. https://algaebase.org
- Hallegraeff, G.M. (1993). A review of harmful algal blooms and their apparent global increase. Phycologia, 32, 79–99. https://doi.org/10.2216/i0031-8884-32-2-79.1
- Handa, N. (1969). Carbohydrate metabolism in marine diatom Skeletonema costatum. Marine Biology, 4, 208–214. https://doi.org/10.1007/BF00393894
- Hori, T., Itasaka, O., Mitamura, O. (1969) The removal of dissolved silica from freshwater in Lake Biwako. Memoirs of the faculty of Education. Shiga University. Natural Sciences. 19, 45-51.
- Huot, Y., Babin, M., Bruyant, F., Grob, C., Twardowski, M.S., Claustre, H. (2007). Does chlorophyll-a provide the best index of phytoplankton biomass for primary productivity studies? Biogeoscience Discussions, 4, 707-745. https://doi.org/10.5194/bgd-4-707-2007
- Itzhaki, R.F., & Gill, P. M. (1964). A microbiuret method for estimating proteins. Analytical Biochemistry, 9, 401-410. https://doi.org/10.1016/0003-2697(64)90200-3
- Jayappriyan, K.R., Rajkumar, R., Sheeja, L., Nagaraj, S., Divya, S., Rengasamy, R. (2010). Discrimination between the morphological and molecular identification in the genus Dunaliella. International Journal of Current Research, 9, 73–78.
- Jeffrey, S.W. & Vesk, M. (1997). Introduction to marine phytoplankton and their pigment signatures, In Phytoplankton Pigments in Oceanography SCOR-UNESCO, Jeffrey, S.W., Mantoura, R.F.C., and Wright, S.W. Eds.; Paris, pp 37-84. ISBN 92-3-103275-5. 661 pp.
- Jensen L.V., Wasielesky W.J., Ballester E.L.C., Cavalli R.O., Santos M.S. (2006). Role of microalgae Thalassiosira fluviatilis in weight gain and survival of the shrimp Farfantepenaeus paulensis reared in indoor nursery tanks. Nauplius, 14(1), 37-42.
- Karlson, B., Cusack, C., Bresna, E. (2010) Microscopic and molecular methods for quantitative phytoplankton analysis. Intergovernmental Oceanographic Commission of UNESCO. (IOC Manuals and Guides, no. 55.) (IOC/2010/MG/55) UNESCO, Paris.110 pages.
- Kiss, K.T. & Nausch, M. (1988) Comparative investigations of planktonic diatoms of sections of the Danube near Vienna and Budapest. In Proceedings 9th International Diatom Symposium Bristol. Round F., Ed.; Biopress: 115-122.
- Lancelot, C. & Mathot, S. (1985). Biochemical fractionation of primary production by phytoplankton in Belgian coastal waters during short-and-long term incubations with 14C-bicarbonate. II Phaeocystis pouchetti colonial population. Marine Biology, 86, 227–232. https://doi.org/10.1007/BF00397508
Liao, T. (2024). Stochastic dynamics of a plankton modelwith zooplankton selectivity and nutritional value of phytoplankton. Journal of Applied Mathematics and Computation, 70, 251-283. https://doi.org/10.1007/s12190-023-01959-4
- Louda, J.W. (2008). Pigment-based chemotaxonomy of Florida Bay phytoplankton; Development and difficulties. Journal of Liquid Chromatography and Related Techniques, 31, 295-323. https://doi.org/10.1080/10826070701780599
- Louda, J. W., Loitz, J.W., Melisiotis, A., Orem, W.H. (2004). Potential sources of hydrogel stabilization of Florida Bay lime mud sediments and implications for organic matter Preservation. Journal of Coastal Research, 20, 448–463. https://doi.org/10.2112/1551-5036(2004)020[0448:PSOHSO]2.0.CO;2
- Marshall, S.M. & Orr, A.P. (2009). Carbohydrate as a measure of phytoplankton. Journal of the Marine Biological Association of the United Kingdom, 42(3), 511-519. https://doi.org/10.1017/S0025315400054229
- Morais, Jr. W.G., Gorgich, M., Corrêa, P.S., Martins, A.A., Mata, T.M., Caetano, N.S. (2020). Microalgae for biotechnological applications: Cultivation, harvesting and biomass processing. Aquaculture, 528, 735562. https://doi.org/10.1016/j.aquaculture.2020.735562
- Murakami, T., Isaji, C, Kuroda, N., Yoshida, K., Haga, H., Watanabe, Y., Saijo Y. (1994). Development of potamoplanktonic diatoms in downreaches of Japanese rivers. Japanese Journal of Limnology, 55, 13-21. https://doi.org/10.3739/rikusui.55.13
- Meyers, J., & Kratz, W.A. (1955). Relations between pigment content and photosynthetic characteristics in a blue-green alga. Journal of General Physiology, 39, 11–12. https://doi.org/10.1085/jgp.39.1.11
- Miller, E.J., Potts, J.M., Cox, M.J., Miller, B.S., Calderan, S., Leaper, R., Olson, P.A., O’Driscoll, R.L., Double, M.C. (2019). The characteristics of krill swarms in relation to aggregating Antarctic blue whales. Scientific Reports, 9, 16487. https://doi.org/10.1038/s41598-019-52792-4
- Millie, D.F., Paerl, H.W., Hurley. J.P. (1993). Microalgal pigment assessments using high-performance liquid chromatography: A Synopsis of organismal and ecological applications. Canadian Journal of Fisheries and Aquatic Science, 50, 2513-2527. https://doi.org/10.1139/f93-275
- Mineeva, N.M. (2011). Plant Pigments as Indicators of Phytoplankton Biomass (Review). International Journal on Algae, 13, i4.20. https://doi.org/10.1615/InterJAlgae.v13.i4.20
- Mitrovic, S. M., Hitchcock, J. N., Davie, A. W., Ryan, D.A. (2010). Growth responses of Cyclotella meneghiniana (Bacillariophyceae) to various temperatures. Journal of Plankton Research, 32, 1217–1221. https://doi.org/10.1093/plankt/fbq038
- Moal, J., Martin-Jezequel, V., Harris, R.P., Samain, J.-F., Poulet, S.A. (1987). Interspecific and intraspecific variability of the chemical composition of marine phytoplankton. Oceanologica Acta, 10(3), 339-346.
- Neto, R.R., Mead, R.N., Louda, J.W., Jaffe, R. (2006). Organic biogeochemistry of detrital flocculent material (floc) in a subtropical, coastal, wetland. Biogeochemistry, 77, 283-304. https://doi.org/10.1007/s10533-005-5042-1
- Philips, E.J., Zeman, C., Hansen, P. (1989). Growth, photosynthesis, nitrogen fixation and carbohydrate production by a unicellular cyanobacterium, Synechococcus sp. (Cyanophyta). Journal of Applied Phycology, 1, 137–145. https://doi.org/10.1007/BF00003876
- Phlips, E.J., Badylak, S., Lynch, T.C. (1999). Blooms of the picoplanktonic cyanobacterium Synechococcus in Florida Bay, a subtropical inner shelf lagoon. Limnology and Oceanogtaphy, 44,1166–1175. https://doi.org/10.4319/lo.1999.44.4.1166
- Rausch, T. (1981). The estimation of micro-algal protein content and its meaning to the evaluation of algal biomass I. Comparison of methods for extracting protein. Hydrobiologia, 78(3), 237–251. https://doi.org/10.1007/BF00008520
- Ricca, J.G., Mayali, X., Qu, J., Weber, P.K., Poirier, G., Dufresne, C.P., Louda J.W., Terentis, A.C. (2024). Endogenous production and vibrational analysis of heavy-isotope-labeled peptides from Cyanobacteria. ChemBioChem, 25, e202400019. https://doi.org/10.1002/cbic.202400019
- Ross, C., Santiago-vazquez, L., Paul, V. (2006). Toxin release in response to oxidative stress and programmed cell death in the cyanobacterium Microcystis aeruginosa. Aquatic Toxicology, 78, 66–73. https://doi.org/10.1016/j.aquatox.2006.02.007
- Sassi, K.K., Silva, J.A., Calixto, C.D., Sassi, R., Sassi, C.F. (2019). Metabolites of interest for food technology produced by microalgae from the Northeast Brazil. Revista Ciencia Agronomica, 50(1), 54-65. https://doi.org/10.5935/1806-6690.20190007
- Schaffner, L.R., Govaert, L., De Meester, L., Ellner, S.P., Fairchild, E., Miner, B.E., Rudstam, L.G., Spaak, P., Hairston, Jr N.G. (2019). Consumer-resource dynamics is an eco-evolutionary process in a natural plankton community. Nature Ecology and Evolution, 3, 1351–1358. https://doi.org/10.1038/s41559-019-0960-9
- Schreiber, E. (1927). Die Reinkultur von marinem Phytoplankton und deren Bedeutung für die Erforschung der Produktionsfähigkeit des Meerwassers. Wissenschaftliche. Meeresuntersuch., N.F. 10, 1-34.
- Spaulding, S., & Edlund, M. (2009). Thalassiosira. In: Diatoms of the United States. http://westerndiatoms.colorado.edu/taxa/genus/Thalassiosira
- Wehr, J.D., & Sheath, R. G. (2003). (eds): Freshwater Algae of North America: Ecology and Classification, Elsevier Science USA, pp. 255–258. ISBN: 9780123858764
- Wright, S.W., Thomas, D.P., Marchant, H.J., Higgins, H.W., Mackey, M.D., Mackey, D.J. (1996). Analysis of phytoplankton of the Australian sector of the Southern Ocean: comparisons of microscopy and size frequency data with the interpretations of pigment HPLC data using the ‘CHEMTAX’ matrix factorization program. Marine Ecology Progress Series, 144, 285–298. https://doi.org/10.3354/meps144285
- Ye, L., Chang, C.Y., Garcıa-Comas, C. Gong, G.-C., Hsieh, C-H. (2013). Increasing zooplankton size diversity enhances the strength of top-down control on phytoplankton through diet niche partitioning. Journal of Animal Ecology, 82(5), 1052-1061. https://doi.org/10.1111/1365-2656.12067
- Yun, M.S., Lee, D.B., Kim, B.K., Kang, J.J., Lee, J.H., Yang, E.J., Park, W.G., Chung, K.H., Lee, S.H. (2015). Comparison of phytoplankton macromolecular compositions and zooplankton proximate compositions in the northern Chukchi Sea. Deep Sea Research-II: Topical Studies in Oceanography, 120, 82-90. https://doi.org/10.1016/j.dsr2.2014.05.018
- Zarauz L., Irigoien X. (2008) Effects of Lugol’s fixation on the size structure of natural nano–microplankton samples, analyzed by means of an automatic counting method, Journal of Plankton Research, 30(11), 1297–1303. https://doi.org/10.1093/plankt/fbn084