Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, Cilt: 5 Sayı: 4, 275 - 284, 01.10.2022
https://doi.org/10.3153/AR22027

Öz

Kaynakça

  • Albarico, F.P.J., Pador, E.L. (2019). Chemical and Microbial Analyses of Organic Milkfish Farm in Negros Occidental, Philippines. Asia Pacific Journal of Multidisciplinary Research, 7(2), 41-46.
  • Bhuyar, P., Rahim, M.H.A., Sundararaju, S., Maniam, G.P., Govindan, N. (2020). Antioxidant and antibacterial activity of red seaweed Kappaphycus alvarezii against pathogenic bacteria. Global Journal of Environmental Science and Management, 6(1), 47-58.
  • Cabral, E.M., Oliveira, M., Mondala, J.R.M., Curtin, J., Tiwari, B.K., Garcia-Vaquero, M. (2021). Antimicrobials from seaweeds for food applications. Marine Drugs, 19(4), 211. https://doi.org/10.3390/md19040211
  • Caldwell, M.E., Ryerson, D.L. (1939). Salmonellosis in certain reptiles. The Journal of Infectious Diseases, 65, 242-245. https://doi.org/10.1093/infdis/65.3.242
  • Cameron-Veas, K., Fraile, L., Napp, S., Garrido, V., Grilló, M.J., Migura-Garcia, L. (2018). Multidrug resistant Salmonella enterica isolated from conventional pig farms using antimicrobial agents in preventative medicine programmes. Veterinary Journal, 234, 36-42. https://doi.org/10.1016/j.tvjl.2018.02.002
  • Cheung, R.C.F., Wong, J.H., Pan, W.L., Chan, Y.S., Yin, C.M., Dan, X.L., Wang, H.X., Fang, E.F., Lam, S.K., Ngai, P.H.K., Xia, X.L., Liu, F., Ye X.Y., Zhang, G.Q., Liu, Q.H, Sha, O., Lin, P., Ki, C., Bekhit, A.A., Bekhit, A.E.D., Wan, D.C.C., Ye, X.J., Xia, J., Ng, T.B. (2014). Antifungal and antiviral products of marine organisms. Applied Microbiology and Biotechnology, 98, 3475-3494. https://doi.org/10.1007/s00253-014-5575-0
  • Chibane, B.L., Degraeve, P., Ferhout, H., Bouajila, J., Oulahal N. (2019). Plant antimicrobial polyphenols as potential natural food preservatives. Journal of the Science of Food and Agriculture, 99, 1457-1474. https://doi.org/10.1002/jsfa.9357
  • Chuah, X.Q., Mun, W., Teo, S.S. (2017). Comparison study of anti-microbial activity between crude extract of Kappaphycus alvarezii and Andrographis paniculata. Asian Pacific Journal of Tropical Biomedicine, 7, 729-731. https://doi.org/10.1016/j.apjtb.2017.07.003
  • Cordero, P.A. Jr. (2009). Aquatic Resources and Ecology. Rex Bookstore Incorporated, Manila, Philippines, 344p, ISBN: 9789712353543
  • Cotas, J., Leandro, A., Pacheco, D., Gonçalves, A., Pereira, L. (2020). A comprehensive review of the nutraceutical and therapeutic applications of red seaweeds (Rhodophyta). Life (Basel, Switzerland), 10, 19. https://doi.org/10.3390/life10030019
  • Dadgostar, P. (2019). Antimicrobial Resistance: Implications and Costs. Infection and Drug Resistance, 12, 3903-3910. https://doi.org/10.2147/IDR.S234610
  • Dayuti, S. (2017). Antibacterial activity of red algae (Gracilaria verrucosa) extract against Escherichia coli and Salmonella typhimurium. IOP Conference Series: Earth and Environmental Science, 137, 012074. https://doi.org/10.1088/1755-1315/137/1/012074
  • Djouossi, M.G., Tamokou, J.D., Ngnokam, D., Kuiate, J.R., Tapondjou, L.A., Harakat, D., Voutquenne-Nazabadioko, L. (2015). Antimicrobial and antioxidant flavonoids from the leaves of Oncoba spinosa Forssk (Salicaceae). BMC Complementary and Alternative Medicine, 15, 134. https://doi.org/10.1186/s12906-015-0660-1
  • Dhas, T.S., Sowmiya, P., Kumar, V.G., Ravi, M., Suthindhiran, K., Borgio, J.F., Narendrakumar, G., Kumar, V. R., Karthick, V., Kumar, C.M.V. (2020). Antimicrobial effect of Sargassum plagiophyllum mediated gold nanoparticles on Escherichia coli and Salmonella typhi. Biocatalysis and Agricultural Biotechnology, 26, 101627. https://doi.org/10.1016/j.bcab.2020.101627
  • dos Santos, R.R., Xavier, R.G.C., de Oliveira, T.F., Leite, R.C., Figueiredo, H.C.P., Leal, C.A.G. (2019). Occurrence, genetic diversity, and control of Salmonella enterica in native Brazilian farmed fish. Aquaculture, 501, 304-312. https://doi.org/10.1016/j.aquaculture.2018.11.034
  • Gavriil, A., Zilelidou, E., Papadopoulos, A.E., Siderakou, D., Kasiotis, K.M., Haroutounian, S.A., Gardeli, C., Giannenas, I., Skandamis, P.N. (2021). Evaluation of antimicrobial activities of plant aqueous extracts against Salmonella Typhimurium and their application to improve safety of pork meat. Scientific Reports, 11(1), 21971. https://doi.org/10.1038/s41598-021-01251-0
  • Gut, A.M., Vasiljevic, T., Yeager, T., Donkor, O.N. (2022). Antimicrobial properties of traditional kefir: An in vitro screening for antagonistic effect on Salmonella Typhimurium and Salmonella arizonae. International Dairy Journal, 124, 105180. https://doi.org/10.1016/j.idairyj.2021.105180
  • Hoag, J.B., Sessler, C.N. (2005). A comprehensive review of disseminated Salmonella arizona infection with an illustrative case presentation. Southern Medical Journal, 98, 1123-1129. https://doi.org/10.1097/01.smj.0000177346.07719.00
  • Hossain, M.S., Balakrishnan, V., Rahman, N.N., Sarker, M.Z., Kadir, M.O. (2012). Treatment of clinical solid waste using a steam autoclave as a possible alternative technology to incineration. International Journal of Environmental Research and Public Health, 9(3), 855-867. https://doi.org/10.3390/ijerph9030855
  • Jortner, B.S., Larsen, C. (1984). Granulomatous ventriculitis of the brain in arizonosis of turkeys. Veterinary Pathology, 21, 114-115. https://doi.org/10.1177/030098588402100118
  • Khademi, F., Vaez, H., Ghanbari, F., Arzanlou M., Mohammadshahi, J., Sahebkar, A. (2020). Prevalence of fluoroquinolone-resistant Salmonella serotypes in Iran: a meta-analysis. Pathogens and Global Health, 114, 16-29. https://doi.org/10.1080/20477724.2020.1719701
  • Klimjit, A., Praiboon, J., Tiengrim, S., Chirapart, A., Thamlikitkul, V. (2021). Phytochemical composition and antibacterial activity of brown seaweed, Padina australis against human pathogenic bacteria. Journal of Fisheries and Environment, 45(1), 8-22.
  • Kodama, H., Nakanishi, Y., Yamamoto, F., Mikama, T., Izawa H. (1987). Salmonella arizonae isolated from a pirarucu, Arapaima gigas Cuvier, with septicaemia. Journal of Fish Diseases, 10(6), 509-512. https://doi.org/10.1111/j.1365-2761.1987.tb01103.x
  • Kumar, S., Pandey, A.K. (2013). Chemistry and biological activities of flavonoids: an overview. The Scientific World Journal, 2013, 162750. https://doi.org/10.1155/2013/162750
  • Lavanya, R., Veerappan, N. (2011). Antibacterial potential of six seaweeds collected from Gulf of Mannar of southeast coast of India. Advances in Biological Regulation, 5, 38-44.
  • Limbago, J.S., Sosas, J., Gente, A.A., Maderse, P., Rocamora, M.N., Gomez, D.K. (2021). Antibacterial effects of mangrove ethanolic leaf extract against zoonotic fish pathogen Salmonella arizonae. Journal of Fisheries, 9, 92205. https://doi.org/10.17017/j.fish.260
  • Lopez-Santamarina, A., Miranda, J.M., Mondragon, A., Lamas, A., Cardelle-Cobas, A., Franco, C.M., Cepeda, A. (2020). Potential use of marine seaweeds as prebiotics: A review. Molecules (Basel, Switzerland), 25, 1004. https://doi.org/10.3390/molecules25041004
  • Lu, W.J., Hsu, P.H., Chang, C.J., Su, C.K., Huang, Y.J., Lin, H.J., Lai, M., Ooi, G.X., Dai, J.Y., Lin, H.T.V. (2021). Identified seaweed compound diphenylmethane serves as an efflux pump inhibitor in drug-resistant Escherichia coli. Antibiotics, 10(11), 1378. https://doi.org/10.3390/antibiotics10111378
  • Magallanes, J.N., Lauzon, R.D., Emnace, I.C. (2021). Inhibitory potential of Eucheuma denticulatum (N.L. Burman) F.S. Collins & Hervey against selected foodborne pathogens. Philippine Journal of Science, 150(2), 371-376.
  • Mahendran, S., Maheswari, P., Sasikala, V., Rubika, J.J., Pandiarajan, J. (2021). In vitro antioxidant study of polyphenol from red seaweeds dichotomously branched gracilaria Gracilaria edulis and robust sea moss Hypnea valentiae. Toxicology Reports, 8, 1404-1411. https://doi.org/10.1016/j.toxrep.2021.07.006
  • Manilal, A., Sujith, S., Selvin, J., C Shakir, C., Seghal Kiran, G. (2009). Antibacterial activity of Falkenbergia hillebrandii (Born) from the Indian coast against human pathogens. Journal of Experimental Botany, 78, 161-166. https://doi.org/10.32604/phyton.2009.78.161
  • Martelli, F., Cirlini, M., Lazzi, C., Neviani, E., Bernini, V. (2020). Edible seaweeds and spirulina extracts for food application: In vitro and in situ evaluation of antimicrobial activity towards foodborne pathogenic bacteria. Foods, 9(10), 1442. https://doi.org/10.3390/foods9101442
  • Mierziak, J., Kostyn, K., Kulma, A. (2014). Flavonoids as important molecules of plant interactions with the environment. Molecules, 19, 16240-16265. https://doi.org/10.3390/molecules191016240
  • Mishra, M.P., Rath, S., Swain, S.S., Ghosh, G., Das, D & Padhy, R.N. (2017). In vitro antibacterial activity of crude extracts of 9 selected medicinal plants against UTI causing MDR bacteria. Journal of King Saud University-Science, 29, 84-95. https://doi.org/10.1016/j.jksus.2015.05.007
  • Montaño Q.M.C., Poblete, S.S.B., Lavoie, O.G., Fuentes, A.G., Presidente, J.P., Saayo, M.C., Gomez, D.K. (2022). Isolation of Lactobacillus spp. in African Catfish Clarias gariepinus as probable probiotics in aquaculture. International Journal of Fisheries and Aquatic Sciences, 10(1), 125-129. https://doi.org/10.22271/fish.2022.v10.i1b.2632
  • Naz, S., Alam, S., Ahmed, W., Masaud Khan, S., Qayyum, A., Sabir, M., Naz, A., Iqbal, A., Bibi, Y., Nisa, S., Salah Khalifa, A., Gharib, A.F., el Askary, A. (2022). Therapeutic Potential of Selected Medicinal Plant Extracts against Multi-Drug Resistant Salmonella enterica serovar Typhi. Saudi Journal of Biological Sciences, 29(2), 941-954. https://doi.org/10.1016/j.sjbs.2021.10.008
  • Nishioka, H., Doi, A., Takegawa, H. (2017). Pyelonephritis in Japan caused by Salmonella enterica subspecies arizonae. Journal of Infection and Chemothererapy, 23, 841-843. https://doi.org/10.1016/j.jiac.2017.08.001
  • Noorjahan, A., Mahesh, S., Anantharaman, P., Aiyamperumal B. (2022). Antimicrobial Potential of Seaweeds: Critical Review. In A. Ranga Rao, G.A. Ravishankar, (Eds.), Sustainable Global Resources of Seaweeds (p. 399–420). Springer, Cham. ISBN: 978-3-030-91955-9, https://doi.org/10.1007/978-3-030-91955-9_21
  • Nozohour, Y., Jalilzadeh, G. (2021). Antibacterial Activities of Ethanolic Extract of Malva sylvestris L. Against Salmonella enterica and Escherichia coli Isolated from Diarrheic Lambs. Iranian Journal of Medical Microbiology, 15(1), 121-129. https://doi.org/10.30699/ijmm.15.1.121
  • Pérez, M.J., Falqué, E., Domínguez, H. (2016). Antimicrobial action of compounds from marine seaweed. Marine Drugs, 14, 52. https://doi.org/10.3390/md14030052
  • Prasad, M.P., Shekhar, S., Babhulkar, A.P. (2013). Antibacterial activity of seaweed (Kappaphycus) extracts against infectious pathogens. African Journal of Biotechnology, 12, 2968-2971.
  • Rebecca, J.L., Dhanalakshmi, V., Sharmila, S., Das, M.P. (2013). In vitro antimicrobial activity of Gracilaria sp and Enteromorpha sp. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2013, 693-697.
  • Ruangpan, L., Tendencia, E.A. (2004). Laboratory manual of standardized methods for antimicrobial sensitivity tests for bacteria isolated from aquaculture. SEAFDEC Aquaculture Department, Iloilo, Philippines, p. 65, ISBN 971-8511-74-1
  • Salem, W.M., Galal, H., Nasr El-deen, F. (2011). Screening for antibacterial activities in some marine algae from the Red Sea (Hurghada, Egypt). Microbiological Research, 5, 2160-2167. https://doi.org/10.5897/AJMR11.390
  • Sameeh, M.Y., Mohamed, A.A., Elazzazy, A.M. (2016). Polyphenolic contents and antimicrobial activity of different extracts of Padina boryana Thivy and Enteromorpha sp. marine algae. Journal of Applied Pharmaceutical Science, 6, 87-92. https://doi.org/10.7324/JAPS.2016.60913
  • Santos, L., Ramos, F. (2018). Antimicrobial resistance in aquaculture: Current knowledge and alternatives to tackle the problem. International Journal of Antimicrobial Agents, 52(2), 135-143. https://doi.org/10.1016/j.ijantimicag.2018.03.010
  • Seligmann, E., Saphra, L., Wassermann, M. (1944). Occurrence of some unusual Salmonella types in man including a new type, Salmonella georgia. American Journal of Hygiene, 40, 227-231. https://doi.org/10.1093/oxfordjournals.aje.a118990
  • Shen, W., Chen, H., Geng, J., Wu, R. A., Wang, X., & Ding, T. (2022). Prevalence, serovar distribution, and antibiotic resistance of Salmonella spp. isolated from pork in China: A systematic review and meta-analysis. International Journal of Food Microbiology, 361(16), 109473. https://doi.org/10.1016/j.ijfoodmicro.2021.109473
  • Thanigaivel, S., Chandrasekaran, N., Mukherjee, A., Thomas, J. (2015). Investigation of seaweed extracts as a source of treatment against bacterial fish pathogen. Aquaculture, 448, 82-86. https://doi.org/10.1016/j.aquaculture.2015.05.039
  • Torres, M.D., Flórez-Fernández, N., Domínguez, H. (2019). Integral utilization of red seaweed for bioactive production. Marine drugs, 17, 314. https://doi.org/10.3390/md17060314
  • Trono, G.C. Jr. (1997). Field guide and atlas of the seaweed resources of the Philippines. Bookmark Incorporated, Manila, Philippines, p. 303, ISBN 13: 9789715692526 Wang, J., Li, Y., Xu, X., Liang, B., Wu, F., Yang, X., Ma, Q., Yang, C., Hu, X., Liu, H., Li, H., Sheng, C., Du, X, Hao, R., Qiu, S., Song, H. (2017). Antimicrobial resistance of Salmonella enterica serovar typhimurium in Shanghai, China. Frontiers in Microbiology, 8, 510. https://doi.org/10.3389/fmicb.2017.00510
  • Wang, Y., Gou, X., Yue, T., Ren, R., Zhao, H., He, L., Liu, C., Cao, W. (2021). Evaluation of physicochemical properties of Qinling Apis cerana honey and the antimicrobial activity of the extract against Salmonella Typhimurium LT2 in vitro and in vivo. Food Chemistry, 337, 127774. https://doi.org/10.1016/j.foodchem.2020.127774

Antibacterial potential of different red seaweed (Rhodophyta) extracts against ornamental fish pathogen Salmonella arizonae

Yıl 2022, Cilt: 5 Sayı: 4, 275 - 284, 01.10.2022
https://doi.org/10.3153/AR22027

Öz

This study evaluated the antibacterial effects of different red seaweed (Kappaphycus striatus, Eucheuma denticulatum, Hydropuntia edulis) against Salmonella arizonae that caused disease in goldfish Carassius auratus. In vitro antibacterial susceptibility was determined using a standard disc diffusion assay. Further in vivo experiments were conducted on seaweeds with the highest zone of inhibition. Results showed that K. striatus had the highest zone of inhibition with 30.9 ±0.62 mm followed by H. edulis (29.6 ±1.61 mm), and E. denticulatum (27.6 ±0.51 mm). Promisingly, the antibacterial activity of seaweeds tested was comparable with that of cefixime, trimethoprim, and novobiocin and was significantly higher than the other seven antibiotics tested in this study. Moreover, the in vivo treatment of K. striatus to S. arizonae challenged C. auratus significantly decreased the mortality; the positive control group attained 100% mortality while the treated group had 40% mortality after 10 days of post-infection. This study showed the potential use of K. striatus to control S. arizonae infection in aquarium fishes.

Kaynakça

  • Albarico, F.P.J., Pador, E.L. (2019). Chemical and Microbial Analyses of Organic Milkfish Farm in Negros Occidental, Philippines. Asia Pacific Journal of Multidisciplinary Research, 7(2), 41-46.
  • Bhuyar, P., Rahim, M.H.A., Sundararaju, S., Maniam, G.P., Govindan, N. (2020). Antioxidant and antibacterial activity of red seaweed Kappaphycus alvarezii against pathogenic bacteria. Global Journal of Environmental Science and Management, 6(1), 47-58.
  • Cabral, E.M., Oliveira, M., Mondala, J.R.M., Curtin, J., Tiwari, B.K., Garcia-Vaquero, M. (2021). Antimicrobials from seaweeds for food applications. Marine Drugs, 19(4), 211. https://doi.org/10.3390/md19040211
  • Caldwell, M.E., Ryerson, D.L. (1939). Salmonellosis in certain reptiles. The Journal of Infectious Diseases, 65, 242-245. https://doi.org/10.1093/infdis/65.3.242
  • Cameron-Veas, K., Fraile, L., Napp, S., Garrido, V., Grilló, M.J., Migura-Garcia, L. (2018). Multidrug resistant Salmonella enterica isolated from conventional pig farms using antimicrobial agents in preventative medicine programmes. Veterinary Journal, 234, 36-42. https://doi.org/10.1016/j.tvjl.2018.02.002
  • Cheung, R.C.F., Wong, J.H., Pan, W.L., Chan, Y.S., Yin, C.M., Dan, X.L., Wang, H.X., Fang, E.F., Lam, S.K., Ngai, P.H.K., Xia, X.L., Liu, F., Ye X.Y., Zhang, G.Q., Liu, Q.H, Sha, O., Lin, P., Ki, C., Bekhit, A.A., Bekhit, A.E.D., Wan, D.C.C., Ye, X.J., Xia, J., Ng, T.B. (2014). Antifungal and antiviral products of marine organisms. Applied Microbiology and Biotechnology, 98, 3475-3494. https://doi.org/10.1007/s00253-014-5575-0
  • Chibane, B.L., Degraeve, P., Ferhout, H., Bouajila, J., Oulahal N. (2019). Plant antimicrobial polyphenols as potential natural food preservatives. Journal of the Science of Food and Agriculture, 99, 1457-1474. https://doi.org/10.1002/jsfa.9357
  • Chuah, X.Q., Mun, W., Teo, S.S. (2017). Comparison study of anti-microbial activity between crude extract of Kappaphycus alvarezii and Andrographis paniculata. Asian Pacific Journal of Tropical Biomedicine, 7, 729-731. https://doi.org/10.1016/j.apjtb.2017.07.003
  • Cordero, P.A. Jr. (2009). Aquatic Resources and Ecology. Rex Bookstore Incorporated, Manila, Philippines, 344p, ISBN: 9789712353543
  • Cotas, J., Leandro, A., Pacheco, D., Gonçalves, A., Pereira, L. (2020). A comprehensive review of the nutraceutical and therapeutic applications of red seaweeds (Rhodophyta). Life (Basel, Switzerland), 10, 19. https://doi.org/10.3390/life10030019
  • Dadgostar, P. (2019). Antimicrobial Resistance: Implications and Costs. Infection and Drug Resistance, 12, 3903-3910. https://doi.org/10.2147/IDR.S234610
  • Dayuti, S. (2017). Antibacterial activity of red algae (Gracilaria verrucosa) extract against Escherichia coli and Salmonella typhimurium. IOP Conference Series: Earth and Environmental Science, 137, 012074. https://doi.org/10.1088/1755-1315/137/1/012074
  • Djouossi, M.G., Tamokou, J.D., Ngnokam, D., Kuiate, J.R., Tapondjou, L.A., Harakat, D., Voutquenne-Nazabadioko, L. (2015). Antimicrobial and antioxidant flavonoids from the leaves of Oncoba spinosa Forssk (Salicaceae). BMC Complementary and Alternative Medicine, 15, 134. https://doi.org/10.1186/s12906-015-0660-1
  • Dhas, T.S., Sowmiya, P., Kumar, V.G., Ravi, M., Suthindhiran, K., Borgio, J.F., Narendrakumar, G., Kumar, V. R., Karthick, V., Kumar, C.M.V. (2020). Antimicrobial effect of Sargassum plagiophyllum mediated gold nanoparticles on Escherichia coli and Salmonella typhi. Biocatalysis and Agricultural Biotechnology, 26, 101627. https://doi.org/10.1016/j.bcab.2020.101627
  • dos Santos, R.R., Xavier, R.G.C., de Oliveira, T.F., Leite, R.C., Figueiredo, H.C.P., Leal, C.A.G. (2019). Occurrence, genetic diversity, and control of Salmonella enterica in native Brazilian farmed fish. Aquaculture, 501, 304-312. https://doi.org/10.1016/j.aquaculture.2018.11.034
  • Gavriil, A., Zilelidou, E., Papadopoulos, A.E., Siderakou, D., Kasiotis, K.M., Haroutounian, S.A., Gardeli, C., Giannenas, I., Skandamis, P.N. (2021). Evaluation of antimicrobial activities of plant aqueous extracts against Salmonella Typhimurium and their application to improve safety of pork meat. Scientific Reports, 11(1), 21971. https://doi.org/10.1038/s41598-021-01251-0
  • Gut, A.M., Vasiljevic, T., Yeager, T., Donkor, O.N. (2022). Antimicrobial properties of traditional kefir: An in vitro screening for antagonistic effect on Salmonella Typhimurium and Salmonella arizonae. International Dairy Journal, 124, 105180. https://doi.org/10.1016/j.idairyj.2021.105180
  • Hoag, J.B., Sessler, C.N. (2005). A comprehensive review of disseminated Salmonella arizona infection with an illustrative case presentation. Southern Medical Journal, 98, 1123-1129. https://doi.org/10.1097/01.smj.0000177346.07719.00
  • Hossain, M.S., Balakrishnan, V., Rahman, N.N., Sarker, M.Z., Kadir, M.O. (2012). Treatment of clinical solid waste using a steam autoclave as a possible alternative technology to incineration. International Journal of Environmental Research and Public Health, 9(3), 855-867. https://doi.org/10.3390/ijerph9030855
  • Jortner, B.S., Larsen, C. (1984). Granulomatous ventriculitis of the brain in arizonosis of turkeys. Veterinary Pathology, 21, 114-115. https://doi.org/10.1177/030098588402100118
  • Khademi, F., Vaez, H., Ghanbari, F., Arzanlou M., Mohammadshahi, J., Sahebkar, A. (2020). Prevalence of fluoroquinolone-resistant Salmonella serotypes in Iran: a meta-analysis. Pathogens and Global Health, 114, 16-29. https://doi.org/10.1080/20477724.2020.1719701
  • Klimjit, A., Praiboon, J., Tiengrim, S., Chirapart, A., Thamlikitkul, V. (2021). Phytochemical composition and antibacterial activity of brown seaweed, Padina australis against human pathogenic bacteria. Journal of Fisheries and Environment, 45(1), 8-22.
  • Kodama, H., Nakanishi, Y., Yamamoto, F., Mikama, T., Izawa H. (1987). Salmonella arizonae isolated from a pirarucu, Arapaima gigas Cuvier, with septicaemia. Journal of Fish Diseases, 10(6), 509-512. https://doi.org/10.1111/j.1365-2761.1987.tb01103.x
  • Kumar, S., Pandey, A.K. (2013). Chemistry and biological activities of flavonoids: an overview. The Scientific World Journal, 2013, 162750. https://doi.org/10.1155/2013/162750
  • Lavanya, R., Veerappan, N. (2011). Antibacterial potential of six seaweeds collected from Gulf of Mannar of southeast coast of India. Advances in Biological Regulation, 5, 38-44.
  • Limbago, J.S., Sosas, J., Gente, A.A., Maderse, P., Rocamora, M.N., Gomez, D.K. (2021). Antibacterial effects of mangrove ethanolic leaf extract against zoonotic fish pathogen Salmonella arizonae. Journal of Fisheries, 9, 92205. https://doi.org/10.17017/j.fish.260
  • Lopez-Santamarina, A., Miranda, J.M., Mondragon, A., Lamas, A., Cardelle-Cobas, A., Franco, C.M., Cepeda, A. (2020). Potential use of marine seaweeds as prebiotics: A review. Molecules (Basel, Switzerland), 25, 1004. https://doi.org/10.3390/molecules25041004
  • Lu, W.J., Hsu, P.H., Chang, C.J., Su, C.K., Huang, Y.J., Lin, H.J., Lai, M., Ooi, G.X., Dai, J.Y., Lin, H.T.V. (2021). Identified seaweed compound diphenylmethane serves as an efflux pump inhibitor in drug-resistant Escherichia coli. Antibiotics, 10(11), 1378. https://doi.org/10.3390/antibiotics10111378
  • Magallanes, J.N., Lauzon, R.D., Emnace, I.C. (2021). Inhibitory potential of Eucheuma denticulatum (N.L. Burman) F.S. Collins & Hervey against selected foodborne pathogens. Philippine Journal of Science, 150(2), 371-376.
  • Mahendran, S., Maheswari, P., Sasikala, V., Rubika, J.J., Pandiarajan, J. (2021). In vitro antioxidant study of polyphenol from red seaweeds dichotomously branched gracilaria Gracilaria edulis and robust sea moss Hypnea valentiae. Toxicology Reports, 8, 1404-1411. https://doi.org/10.1016/j.toxrep.2021.07.006
  • Manilal, A., Sujith, S., Selvin, J., C Shakir, C., Seghal Kiran, G. (2009). Antibacterial activity of Falkenbergia hillebrandii (Born) from the Indian coast against human pathogens. Journal of Experimental Botany, 78, 161-166. https://doi.org/10.32604/phyton.2009.78.161
  • Martelli, F., Cirlini, M., Lazzi, C., Neviani, E., Bernini, V. (2020). Edible seaweeds and spirulina extracts for food application: In vitro and in situ evaluation of antimicrobial activity towards foodborne pathogenic bacteria. Foods, 9(10), 1442. https://doi.org/10.3390/foods9101442
  • Mierziak, J., Kostyn, K., Kulma, A. (2014). Flavonoids as important molecules of plant interactions with the environment. Molecules, 19, 16240-16265. https://doi.org/10.3390/molecules191016240
  • Mishra, M.P., Rath, S., Swain, S.S., Ghosh, G., Das, D & Padhy, R.N. (2017). In vitro antibacterial activity of crude extracts of 9 selected medicinal plants against UTI causing MDR bacteria. Journal of King Saud University-Science, 29, 84-95. https://doi.org/10.1016/j.jksus.2015.05.007
  • Montaño Q.M.C., Poblete, S.S.B., Lavoie, O.G., Fuentes, A.G., Presidente, J.P., Saayo, M.C., Gomez, D.K. (2022). Isolation of Lactobacillus spp. in African Catfish Clarias gariepinus as probable probiotics in aquaculture. International Journal of Fisheries and Aquatic Sciences, 10(1), 125-129. https://doi.org/10.22271/fish.2022.v10.i1b.2632
  • Naz, S., Alam, S., Ahmed, W., Masaud Khan, S., Qayyum, A., Sabir, M., Naz, A., Iqbal, A., Bibi, Y., Nisa, S., Salah Khalifa, A., Gharib, A.F., el Askary, A. (2022). Therapeutic Potential of Selected Medicinal Plant Extracts against Multi-Drug Resistant Salmonella enterica serovar Typhi. Saudi Journal of Biological Sciences, 29(2), 941-954. https://doi.org/10.1016/j.sjbs.2021.10.008
  • Nishioka, H., Doi, A., Takegawa, H. (2017). Pyelonephritis in Japan caused by Salmonella enterica subspecies arizonae. Journal of Infection and Chemothererapy, 23, 841-843. https://doi.org/10.1016/j.jiac.2017.08.001
  • Noorjahan, A., Mahesh, S., Anantharaman, P., Aiyamperumal B. (2022). Antimicrobial Potential of Seaweeds: Critical Review. In A. Ranga Rao, G.A. Ravishankar, (Eds.), Sustainable Global Resources of Seaweeds (p. 399–420). Springer, Cham. ISBN: 978-3-030-91955-9, https://doi.org/10.1007/978-3-030-91955-9_21
  • Nozohour, Y., Jalilzadeh, G. (2021). Antibacterial Activities of Ethanolic Extract of Malva sylvestris L. Against Salmonella enterica and Escherichia coli Isolated from Diarrheic Lambs. Iranian Journal of Medical Microbiology, 15(1), 121-129. https://doi.org/10.30699/ijmm.15.1.121
  • Pérez, M.J., Falqué, E., Domínguez, H. (2016). Antimicrobial action of compounds from marine seaweed. Marine Drugs, 14, 52. https://doi.org/10.3390/md14030052
  • Prasad, M.P., Shekhar, S., Babhulkar, A.P. (2013). Antibacterial activity of seaweed (Kappaphycus) extracts against infectious pathogens. African Journal of Biotechnology, 12, 2968-2971.
  • Rebecca, J.L., Dhanalakshmi, V., Sharmila, S., Das, M.P. (2013). In vitro antimicrobial activity of Gracilaria sp and Enteromorpha sp. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2013, 693-697.
  • Ruangpan, L., Tendencia, E.A. (2004). Laboratory manual of standardized methods for antimicrobial sensitivity tests for bacteria isolated from aquaculture. SEAFDEC Aquaculture Department, Iloilo, Philippines, p. 65, ISBN 971-8511-74-1
  • Salem, W.M., Galal, H., Nasr El-deen, F. (2011). Screening for antibacterial activities in some marine algae from the Red Sea (Hurghada, Egypt). Microbiological Research, 5, 2160-2167. https://doi.org/10.5897/AJMR11.390
  • Sameeh, M.Y., Mohamed, A.A., Elazzazy, A.M. (2016). Polyphenolic contents and antimicrobial activity of different extracts of Padina boryana Thivy and Enteromorpha sp. marine algae. Journal of Applied Pharmaceutical Science, 6, 87-92. https://doi.org/10.7324/JAPS.2016.60913
  • Santos, L., Ramos, F. (2018). Antimicrobial resistance in aquaculture: Current knowledge and alternatives to tackle the problem. International Journal of Antimicrobial Agents, 52(2), 135-143. https://doi.org/10.1016/j.ijantimicag.2018.03.010
  • Seligmann, E., Saphra, L., Wassermann, M. (1944). Occurrence of some unusual Salmonella types in man including a new type, Salmonella georgia. American Journal of Hygiene, 40, 227-231. https://doi.org/10.1093/oxfordjournals.aje.a118990
  • Shen, W., Chen, H., Geng, J., Wu, R. A., Wang, X., & Ding, T. (2022). Prevalence, serovar distribution, and antibiotic resistance of Salmonella spp. isolated from pork in China: A systematic review and meta-analysis. International Journal of Food Microbiology, 361(16), 109473. https://doi.org/10.1016/j.ijfoodmicro.2021.109473
  • Thanigaivel, S., Chandrasekaran, N., Mukherjee, A., Thomas, J. (2015). Investigation of seaweed extracts as a source of treatment against bacterial fish pathogen. Aquaculture, 448, 82-86. https://doi.org/10.1016/j.aquaculture.2015.05.039
  • Torres, M.D., Flórez-Fernández, N., Domínguez, H. (2019). Integral utilization of red seaweed for bioactive production. Marine drugs, 17, 314. https://doi.org/10.3390/md17060314
  • Trono, G.C. Jr. (1997). Field guide and atlas of the seaweed resources of the Philippines. Bookmark Incorporated, Manila, Philippines, p. 303, ISBN 13: 9789715692526 Wang, J., Li, Y., Xu, X., Liang, B., Wu, F., Yang, X., Ma, Q., Yang, C., Hu, X., Liu, H., Li, H., Sheng, C., Du, X, Hao, R., Qiu, S., Song, H. (2017). Antimicrobial resistance of Salmonella enterica serovar typhimurium in Shanghai, China. Frontiers in Microbiology, 8, 510. https://doi.org/10.3389/fmicb.2017.00510
  • Wang, Y., Gou, X., Yue, T., Ren, R., Zhao, H., He, L., Liu, C., Cao, W. (2021). Evaluation of physicochemical properties of Qinling Apis cerana honey and the antimicrobial activity of the extract against Salmonella Typhimurium LT2 in vitro and in vivo. Food Chemistry, 337, 127774. https://doi.org/10.1016/j.foodchem.2020.127774
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Hidrobiyoloji
Bölüm Research Articles
Yazarlar

Marilyn Galan 0000-0001-5567-7121

Dennis Gomez 0000-0003-3663-4841

Jomel Limbago 0000-0002-6425-5892

Yayımlanma Tarihi 1 Ekim 2022
Gönderilme Tarihi 25 Ocak 2022
Yayımlandığı Sayı Yıl 2022Cilt: 5 Sayı: 4

Kaynak Göster

APA Galan, M., Gomez, D., & Limbago, J. (2022). Antibacterial potential of different red seaweed (Rhodophyta) extracts against ornamental fish pathogen Salmonella arizonae. Aquatic Research, 5(4), 275-284. https://doi.org/10.3153/AR22027

16291

is licensed under a CreativeCommons Attribtion-ShareAlike 4.0 International Licence 14628   1325927040

Diamond Open Access refers to a scholarly publication model in which journals and platforms do not charge fees to either authors or readers.

Open Access Statement:

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.

Archiving Policy:

Archiving is done according to TÜBİTAK ULAKBİM "DergiPark" publication policy (LOCKSS).