Derleme
BibTex RIS Kaynak Göster

Doğal arıtım sistemi: Yapay yüzen ada teknolojisinin Türkiye’deki göl, gölet ve baraj göllerinde uygulanma potansiyeli

Yıl 2021, Cilt: 4 Sayı: 4, 376 - 394, 01.10.2021
https://doi.org/10.3153/AR21032

Öz

Bu çalışmada bir fitoremedasyon stratejisi olan yapay yüzen ada (YYA) teknolojisinin Türkiye göl, gölet ve baraj göllerinde uygulanma potansiyeli incelenmiştir. Küresel ısınma ve buna bağlı olarak meydana gelen iklim değişikliği ile birlikte su kaynakları üzerine olan baskı her geçen gün daha da artmaktadır. Ayrıca artan çevre kirliliği, doğadaki canlılara doğrudan ve/veya dolaylı olarak zarar vermekte ve yaşamlarını olumsuz yönde etkilemektedir. Bu kapsamda ülkemizde bulunan göl, gölet ve baraj göllerinin olumsuz küresel ve çevresel koşullara karşı önem değeri son yıllarda artmıştır. İçme suyu kaynağı, tarımsal alanları sulama, rekreasyon amacıyla kullanımı ve içerisinde bulunan ekosistem dikkate alındığında göl, gölet ve baraj göllerinin iyileştirilmesi için yenilikçi, sürdürülebilir ve ekonomik çözüm önerileri gerekmektedir. Ülkemizde var olan doğal suların mevcut trofik durumu dikkate alındığında ötrofikasyon potansiyeline sahip birçok göl, gölet veya baraj gölü tespit edilmiştir. Bu organik kirlilik yükünü iyileştirmek için dünya üzerinde yaygın olarak uygulanan YYA teknolojisi oldukça ekonomik bir alternatif doğal arıtım sistemidir. Literatürde var olan çalışmalar YYA teknolojisinin genellikle laboratuvar ve pilot ölçekli uygulanmasına odaklanmıştır. İlerleyen süreçte YYA teknolojisinin gerçek ölçekli uygulanması hem bilimsel hem de ülke ekonomisi için önemli bir katma değer sağlayacaktır. 

Kaynakça

  • Atalık, A. (2006). Küresel Isınma, Su Kaynakları ve Tarım Üzerine Etkileri. https://www.zmo.org.tr/resimler/ekler/ce6d3c8830d27ec_ek.pdf (Erişim tarihi: 27.04.2021)
  • Akar, A. (2017). İkizdere Baraj Gölü Fitoplanktonunun Mevsimsel Değişiminin İncelenmesi. Yüksek Lisans Tezi, Adnan Menderes Üniversitesi, Fen Bilimleri Enstitüsü, Aydın. 115s.
  • Aksay, C.S., Ketenoğlu, O., Kurt, L. (2005). Küresel Isınma ve İklim Değişikliği. S. Ü. Fen Fakültesi Dergisi, 25, 29-41. Aküzüm, T., Çakmak, B., Gökalp, Z. (2010). Türkiye’de Su Kaynakları Yönetiminin Değerlendirilmesi. Tarım Bilimleri Araştırma Dergisi, 3(1), 67-74. http://dergipark.gov.tr/tabad/issue/34782/385073
  • Alberto, B., Stefano, B., Maurizio, B. (2021). Plant species for floating treatment wetlands: A decade of experiments in North Italy. Science of the Total Environment, 751(141666). https://doi.org/10.1016/j.scitotenv.2020.141666
  • Altındağ, A., Yiğit, S. (2004). Beyşehir Gölü Zooplankton Faunası ve Mevsimsel Değişimi. GÜ, Gazi Eğitim Fakültesi Dergisi, 24(3), 217-225. https://doi.org/10.17152/gefd.11415
  • Apaydin Yaǧci, M., Ustaoǧlu, M.R. (2012). Zooplankton fauna of lake İznik (Bursa, Turkey). Turkish Journal of Zoology, 36(3), 341-350. https://doi.org/10.3906/zoo-1001-36
  • Ariman, S., Koyuncu, S. (2019). Su Kirliliği Açisindan Hassas Alanların İzlenmesi̇: Kizilirmak Deltasi-Balik Gölü. Mühendislik Bilimleri ve Tasarım Dergisi, 7(4), 705-714. https://doi.org/10.21923/jesd.531195
  • Ayas, Z. S., Bahtiyar, F., Yakan, C., Dagdas, E. (2019). Atıksulardaki Ağır Metallerin Su Mercimeği ile Giderimi Üzerine Güncel Çalışmaların İncelenmesi. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24, 109-117.
  • Aydin, D., Ahiska, S. (2009). Determination of trophic situation of Sarimsakli Dam Lake (Kayseri-Turkey). African Journal of Biotechnology, 8(22), 6295–6300. https://doi.org/10.5897/ajb09.1316
  • Ayvaz, M., Tenekecioglu, E., Koru, E. (2011). Afşar baraj gölü’nün (Manisa-Türkiye)trofik statüsünün belirlenmesi. Ekoloji, 47(81), 37-47. https://doi.org/10.5053/ekoloji.2011.816
  • Barco, A., Borin, M. (2020). Ornamental plants for floating treatment wetlands: Preliminary results. Italian Journal of Agronomy, 15(2), 109-120. https://doi.org/10.4081/ija.2020.1602
  • Bauer, L.H., Arenzon, A., Molle, N.D., Rigotti, J.A., Borges, A.C.A., Machado, N.R., Rodrigues, L.H.R. (2021). Floating treatment wetland for nutrient removal and acute ecotoxicity improvement of untreated urban wastewater. International Journal of Environmental Science and Technology, 1-14. https://doi.org/10.1007/s13762-020-03124-x
  • Beyhan, M., Kaçıkoç, M. (2014). Evaluation of water quality from the perspective of eutrophication in Lake Eǧirdir, Turkey. Water, Air, and Soil Pollution, 225(7), 1994(2014). https://doi.org/10.1007/s11270-014-1994-x
  • Billore, S.K., Prashant, Sharma, J.K. (2009). Treatment performance of artificial floating reed beds in an experimental mesocosm to improve the water quality of river Kshipra. Water Science and Technology, 60(11), 2851-2859. https://doi.org/10.2166/wst.2009.731
  • Boonsong, K., Chansiri, M. (2008). Domestic Wastewater Treatment using Vetiver Grass Cultivated with Floating Platform Technique. Journal of Technology, 12, 73-80.
  • Borne, K.E., Fassman-Beck, E.A., Tanner, C.C. (2014). Floating Treatment Wetland influences on the fate of metals in road runoff retention ponds. Water Research, 48(1), 430-442. https://doi.org/10.1016/j.watres.2013.09.056
  • Boutwell, J.E. (2002). Water Quality and Plant Growth Evaluations of the Floating Islands in Las Vegas Bay, Lake Mead, Nevada. https://www.lvwash.org/assets/pdf/resources_wqresearch_islands.pdf (Erişim Tarihi: 08.01.2021)
  • Bulut, C., Kubilay, A. (2018). Eğirdir Gölü su kalitesinin trofik durum indeksleriyle belirlenmesi. Acta Aquatica Turcica, 14(4), 324-338. https://doi.org/10.22392/egirdir.415073
  • Bulut, C., Kubilay, A. (2019). Eğirdir Gölü (Isparta/Türkiye) su kalitesinin mevsimsel değişimi Seasonal change of water quality in Egirdir Lake (Isparta/Turkey). Ege Journal of Fisheries and Aquatic Sciences, 36(1), 13-23. https://doi.org/10.12714/egejfas.2019.36.1.02
  • Can, Ö., Taş, B. (2012). Ecological and Socio-Economic Importance of Cernek Lake and Wetland in the Ramsar Area (Kizilirmak Delta, Samsun). TÜBAV Bilim Dergisi, 5(2), 1-11.
  • Carlson, R.E., Simpson, J. (1996). A Coordinator’s Guide to Volunteer Lake Monitoring Methods. North American Lake Management Society. https://www.nalms.org/product/a-coordinators-guide-to-volunteer-monitoring/ (Erişim Tarihi: 02.01.2021)
  • Chang, N. Bin, Xuan, Z., Marimon, Z., Islam, K., Wanielista, M.P. (2013). Exploring hydrobiogeochemical processes of floating treatment wetlands in a subtropical stormwater wet detention pond. Ecological Engineering, 54, 66-76. https://doi.org/10.1016/j.ecoleng.2013.01.019
  • Chang, N. B., Islam, M. K., Wanielista, M. P. (2012). Floating wetland mesocosm assessment of nutrient removal to reduce ecotoxicity in stormwater ponds. International Journal of Environmental Science and Technology, 9(3), 453-462. https://doi.org/10.1007/s13762-012-0061-7
  • Chang, Y., Cui, H., Huang, M., He, Y. (2017). Artificial floating islands for water quality improvement. Environmental Reviews, 25(3), 350-357. https://doi.org/10.1139/er-2016-0038
  • Chang, Y.H., Ku, C.R., Lu, H.L. (2014). Effects of aquatic ecological indicators of sustainable green energy landscape facilities. Ecological Engineering, 71, 144-153. https://doi.org/10.1016/j.ecoleng.2014.07.051
  • Chang, Y.H., Ku, C. R., Yeh, N. (2014). Solar powered artificial floating island for landscape ecology and water quality improvement. Ecological Engineering, 69, 8-16. https://doi.org/10.1016/j.ecoleng.2014.03.015
  • Chen, H., Chen, A., Xu, L., Xie, H., Qiao, H., Lin, Q., Cai, K. (2020). A deep learning CNN architecture applied in smart near-infrared analysis of water pollution for agricultural irrigation resources. Agricultural Water Management, 240, 106303. https://doi.org/10.1016/j.agwat.2020.106303
  • Chen, H., Deng, M., Lu, J. (2020). Study on the Purification of TN in Different Concentration Waters by Artificial Floating Bed. IOP Conference Series: Earth and Environmental Science, 440(052053). https://doi.org/10.1088/1755-1315/440/5/052053
  • Chen, J. Z., Meng, S. L., Hu, G. D., Qu, J. H., Fan, L. M. (2010). Effect of Ipomoea aquatica cultivation on artificial floating rafts on water quality of intensive aquaculture ponds. Journal of Ecology and Rural Environment, 26(2), 155-159.
  • Chen, Z., Cuervo, D.P., Müller, J.A., Wiessner, A., Köser, H., Vymazal, J., Kästner, M., Kuschk, P. (2016). Hydroponic root mats for wastewater treatment—a review. Environmental Science and Pollution Research, 23(16), 15911-15928. https://doi.org/10.1007/s11356-016-6801-3
  • Chen, Z., Kuschk, P., Reiche, N., Borsdorf, H., Kästner, M., Köser, H. (2012). Comparative evaluation of pilot scale horizontal subsurface-flow constructed wetlands and plant root mats for treating groundwater contaminated with benzene and MTBE. Journal of Hazardous Materials, 209–210, 510-515. https://doi.org/10.1016/j.jhazmat.2012.01.067
  • Cicek, N.L., Ertan, Ö.O., Erdoğan, Ö., Didinen, H., Boyacı, Y.Ö., Kara, D., Zeybek, M., Diken, G. (2017). Distribution of phytoplankton and its relationship with physicochemical parameters in Lake Eğirdir (Isparta/Turkey). Biological Diversity and Conservation, 10(3), 150-162.
  • Colares, G.S., Dell'Osbel, N., Wiesel, P.G., Oliveira, G.A., Lemos, P.H.Z., da Silva, F.P., Lutterbeck, C.A., Kist, L.T. Machado, Ê.L. (2020). Floating treatment wetlands: A review and bibliometric analysis. Science of the Total Environment, 714, 136776. https://doi.org/10.1016/j.scitotenv.2020.136776
  • Cüce, H., Bakan, G. (2017). Sığ sularda nutrient seviyelerine sediman kalitesinin etkisinin konumsal olarak değerlendirilmesi: Cernek Gölü örneği. Türk Tarım – Gıda Bilim ve Teknoloji Dergisi, 5(5), 546-555.
  • De Stefani, G., Tocchetto, D., Salvato, M., Borin, M. (2011). Performance of a floating treatment wetland for in-stream water amelioration in NE Italy. Hydrobiologia, 674(1), 157-167. https://doi.org/10.1007/s10750-011-0730-4
  • De Stefani, Giovanna. (2012). Performance of floating treatment wetlands (FTW) with the innovative Tech-IA® system. University of Padua.
  • Demir, N. (2008). Beysehir Gölü’nün Trofik Durumunun İncelenmesinde Fitoplankton Topluluklarının Kullanımı. Proje No: 20070711001HD, Ankara Üniversitesi, Bilimsel Araştırma Projeleri, Ankara. http://hdl.handle.net/20.500.12575/66796 (Erişim Tarihi: 15.02.2021)
  • Di Luca, G.A., Mufarrege, M.M., Hadad, H.R., Maine, M.A. (2019). Nitrogen and phosphorus removal and Typha domingensis tolerance in a floating treatment wetland. Science of the Total Environment, 650, 233-240. https://doi.org/10.1016/j.scitotenv.2018.09.042
  • Dodson, S.I., Arnott, S.E., Cottingham, K.L. (2000). The Relationship in Lake Communities Between Primary Productivity and Species Richness. Ecology, 81(10), 2662-2679. https://doi.org/10.1890/0012-9658(2000)081[2662:TRILCB]2.0.CO;2
  • Dotro, G., Molle, P., Nivala, J., Puigagut, J., Stein, O. (2017). Treatment Wetlands. 1st ed. IWA Publishing, London, UK 9781780408767. https://doi.org/10.2166/9781780408774
  • Döver, G. (2012). Yeniçağa (Bolu) Gölü Zooplanktonik Organizma Türleri ve Mevsimsel Dağılımı. Ankara University.
  • Ebrahimi, P.S. (2015). Control of Eutrophication in Anzali Wetland by Artificial Floating Islands. Sharif University of Technology.
  • Egertson, C.J., Kopaska, J.A., Downing, J.A. (2004). A century of change in macrophyte abundance and composition in response to agricultural eutrophication. Hydrobiologia, 524(1), 145-156. https://doi.org/10.1023/B:HYDR.0000036129.40386.ce
  • Erdoğan, S. (2015). Bayındır Baraj Gölü (Ankara) Rotifera Faunasının Taksonomik ve Limnoekolojik Yönden İncelenmesi [Ankara University]. In Institute of science and technology. https://doi.org/10.1377/hlthaff.2013.0625
  • Erdogus, M. (2016). Demirköprü Baraj Gölünün Bazı Fizikokimyasal Parametrelerinin İncelenmesi. Yüksek Lisans Tezi, İzmir Katip Çelebi Üniversitesi, Fen Bilimleri Enstitüsü, İzmir. 78s.
  • Ertosun, B., Altindag, A., Ahiska, S. (2010). The determination trophic status of Ucpinar Dam Lake (Usak, Turkey). In Journal of Animal and Veterinary Advances, 9(3), 491-495. https://doi.org/10.3923/javaa.2010.491.495
  • Faheem, M., Jahan, N., Lone, K. (2016). Histopathological effects of bisphenol-A on liver, kidneys and gills of Indian major carp, Catla catla (Hamilton, 1822). The Journal of Animal and Plant Sciences, 26(2), 514-522. http://thejaps.org.pk/docs/v-26-02/29.pdf
  • Fan, Y., Fang, C. (2020). A comprehensive insight into water pollution and driving forces in Western China—case study of Qinghai. Journal of Cleaner Production, 274, 123950. https://doi.org/10.1016/j.jclepro.2020.123950
  • Flynn, K., Suplee, M.W. (2011). Using a computer water quality model to derive numeric nutrient criteria: Lower Yellowstone River. WQPBDMSTECH-22. Helena, MT: Montana Dept. of Environmental Quality. http://deq.mt.gov/wqinfo/standards/NumericNutrientCriteria.mcpx (Erişim Tarihi: 05.02.2021)
  • Garbett, P. (2005). An investigation into the application of floating reed bed and barley straw techniques for the remediation of eutrophic waters. Water and Environment Journal, 19(3), 174-180. https://doi.org/10.1111/j.1747-6593.2005.tb01584.x
  • Gönülol, A., Obalı, O. (1986). Phytoplankton of Karamık Lake (Afyon), Turkey. 4, 105–128. https://dspace.ankara.edu.tr/xmlui/bitstream/handle/20.500.12575/62080/14434.pdf?sequence=1isAllowed=y
  • Güher, H., Çolak, Ş. (2015). Zooplankton (Rotifera, Cladocera, Copepoda ) faunası. Trakya University Journal of Natural Sciences,, 16(1), 17-24.
  • Gümüş, F., Gönülol, A. (2018). Epilithic Diatom-Based Ecological Assessment in Taşmanli Pond (Sinop, Turkey). Trakya University Journal of Natural Sciences, 19(1), 71-76. https://doi.org/10.23902/trkjnat.339417
  • Hartshorn, N., Marimon, Z., Xuan, Z., Cormier, J., Chang, N. Bin, Wanielista, M. (2016). Complex interactions among nutrients, chlorophyll-a, and microcystins in three stormwater wet detention basins with floating treatment wetlands. Chemosphere, 144, 408-419. https://doi.org/10.1016/j.chemosphere.2015.08.023
  • Henny, C., Jasalesmana, T., Kurniawan, R., Melati, I., Suryono, T., Susanti, E., Yoga, G.P., Rosidah, Sudiono, B.T. (2020). The effectiveness of integrated floating treatment wetlands (FTWs) and lake fountain aeration systems (LFAS) in improving the landscape ecology and water quality of a eutrophic lake in Indonesia. IOP Conference Series: Earth and Environmental Science, 535(012018). https://doi.org/10.1088/1755-1315/535/1/012018
  • Hoeger, B.S. (1988). SCHWIMMKAMPEN Germany’s artificial floating islands. 304-306.
  • Hubbard, R.K., Gascho, G.J., Newton, G.L. (2004). Use of floating vegetation to remove nutrients from swine lagoon wastewater. Transactions of the ASAE, 47(6), 1963-1972. https://doi.org/10.13031/2013.17809
  • Hu, G.J., Zhou, M., Hou, H.B., Zhu, X., Zhang, W.H. (2010). An ecological floating-bed made from dredged lake sludge for purification of eutrophic water. Ecological Engineering, 36(10), 1448-1458. https://doi.org/10.1016/j.ecoleng.2010.06.026
  • Huang, X., Liu, Z., Xue, J., Luo, Y., Zhang, C., Wang, Q., Leng, A., Zhu, Z., Wang, C. (2021). Purifying eutrophic wastewater from geese farm with plant floating bed in winter. Polish Journal of Environmental Studies, 30(2), 1171-1180. https://doi.org/10.15244/pjoes/125771
  • Işık, M. (2018). Ötrofikasyon ve su kalitesi problemleri-Aksaray Örneği. İklim Değişikliği ve Çevre, 3(1), 37-44. https://doi.org/10.1002/2014JD021471
  • Jeppesen, E., Søndergaard, M., Jensen, J.P., Mortensen, E., Hansen, A.M., Jørgensen, T. (1998). Cascading trophic interactions from fish to bacteria and nutrients after reduced sewage loading: An 18-year study of a shallow hypertrophic lake. Ecosystems, 1(3), 250-267. https://doi.org/10.1007/s100219900020
  • Kamble, R., Patil, D. (2012). Artificial Floating Island: Solution to River Water Pollution in India . Case Study : Rivers in Pune City. 41, 136-140. Kanniah, K.D., Zaman, N.A.F.K., Kaskaoutis, D.G., Latif, M.T. (2020). COVID-19's impact on the atmospheric environment in the Southeast Asia region. Science of the Total Environment, 736, 139658. https://doi.org/10.1016/j.scitotenv.2020.139658
  • Karakaya, B. (2018). Çiğ Gölü (Mesudiye, Ordu)’Nün Ekolojik Özelliklerinin İncelenmesi. In Journal of Materials Processing Technology. Ordu University. Kasaka, E. (2014). Küçük Lota Gölünün (Hafik/SİVAS) Fiziksel-Kimyasal Özellikleri ve Fitoplankton Toplulukları. Cumhuriyet Üniversitesi Fen Fakültesi Fen Bilimleri Dergisi, 35(2), 42-53. https://doi.org/10.17776/csj.04425
  • Keizer-Vlek, H.E., Verdonschot, P.F.M., Verdonschot, R.C.M., Dekkers, D. (2014). The contribution of plant uptake to nutrient removal by floating treatment wetlands. Ecological Engineering, 73, 684-690. https://doi.org/10.1016/j.ecoleng.2014.09.081
  • Kıvrak, E. (2011). Karamuk Gölü (Afyonkarahisar) fitoplankton kommunitesinin mevsimsel değişimi ve bazı fiziko-kimyasal özellikleri. Su Ürünleri Dergisi, 28(1), 9-20.
  • Kocasari, F.S., Gulle, I., Kocasari, S., Pekkaya, S., Mor, F. (2015). The occurrence and levels of cyanotoxin nodularin from nodularia spumigena in the alkaline and salty Lake Burdur, Turkey. Journal of Limnology, 74(3), 530-536. https://doi.org/10.4081/jlimnol.2015.1097
  • Kong, L., Wang, L., Wang, Q., Mei, R., Yang, Y. (2019). Study on new artificial floating island removing pollutants. Environmental Science and Pollution Research, 26(17), 17751-17761. https://doi.org/10.1007/s11356-019-05164-4
  • Kristensen, P., Hansen, H. O. (1994). European Rivers and Lakes - Assessment of their Environmental State. European Environment Agency. https://www.eea.europa.eu/publications/87-90198-01-8 (Erişim Tarihi: 05.02.2021)
  • Küçükyılmaz, M., Örnekci, G.N., Uslu, A.A., Özbey, N., Şeker, T., Birici, N., Yıldız, N., Koçer, M.A.T. (2014). Işıktepe Baraj Gölü (Maden, Elâzığ) kıyı bölgesi fizikokimyasal su kalitesi üzerine ilk bulgular. Yunus Araştırma Bülteni, 2, 55-63. https://doi.org/10.17693/yunusae.vi.235397
  • Kutlu, B., Serdar, O., Aydın, R., Danabaş, D. (2017). Uzunçayır Baraj Gölü’nün (Tunceli) Carlson indeksine göre trofik durumunun belirlenmesi. Yunus Araştırma Bülteni, 1, 83-92.
  • Ladislas, S., Gérente, C., Chazarenc, F., Brisson, J., Andrès, Y. (2013). Performances of two macrophytes species in floating treatment wetlands for cadmium, nickel, and zinc removal from urban stormwater runoff. Water, Air, and Soil Pollution, 224(2), 1-10. https://doi.org/10.1007/s11270-012-1408-x
  • Lai, W.L., Wang, S.Q., Peng, C.L., Chen, Z.H. (2011). Root features related to plant growth and nutrient removal of 35 wetland plants. Water Research, 45(13), 3941-3950. https://doi.org/10.1016/j.watres.2011.05.002
  • Lakatos, G., Kiss, M.K., Kiss, M., Juhász, P. (1997). Application of constructed wetlands for wastewater treatment in Hungary. Water Science and Technology, 35(5), 331-336. https://doi.org/10.1016/S0273-1223(97)00087-5
  • Lakatos, G., Veres, Z., Kundrát, J., Mészáros, I. (2014). The management and development of constructed wetlands for treatment of petrochemical waste waters in hungary: 35 years of experience. Ecohydrology and Hydrobiology, 14(1), 83-88. https://doi.org/10.1016/j.ecohyd.2014.01.007
  • Largo, K.M.F., Depablos, J.L.R., Espitia-Sarmiento, E.F., Moreta, N.M.L. (2020). Artificial floating island with vetiver for treatment of arsenic-contaminated water: A real scale study in high-andean reservoir. Water (Switzerland), 12(3086), 1-13. https://doi.org/10.3390/w12113086
  • Li, H., Hao, H., Yang, X., Xiang, L., Zhao, F., Jiang, H., He, Z. (2012). Purification of refinery wastewater by different perennial grasses growing in a floating bed. Journal of Plant Nutrition, 35(1), 93-110. https://doi.org/10.1080/01904167.2012.631670
  • Liu, J.L., Liu, J.K., Anderson, J.T., Zhang, R., Zhang, Z.M. (2016). Potential of aquatic macrophytes and artificial floating island for removing contaminants. Plant Biosystems, 150(4), 702-709. https://doi.org/10.1080/11263504.2014.990535
  • Liu, J., Liu, J., Zhang, R., Zou, Y., Wang, H., Zhang, Z. (2014). Impacts of aquatic macrophytes configuration modes on water quality. Water Science and Technology, 69(2), 253–261. https://doi.org/10.2166/wst.2013.573
  • Lu, H.L., Ku, C.R., Chang, Y.H. (2015). Water quality improvement with artificial floating islands. Ecological Engineering, 74, 371-375. https://doi.org/10.1016/j.ecoleng.2014.11.013
  • Luederitz, V., Eckert, E., Lange-Weber, M., Lange, A., Gersberg, R.M. (2001). Nutrient removal efficiency and resource economics of vertical flow and horizontal flow constructed wetlands. Ecological Engineering, 18(2), 157-171. https://doi.org/10.1016/S0925-8574(01)00075-1
  • Ma, Q., Yu, X. G., Lv, G. A., Liu, Q. J. (2010). Comparative study on dissolved N and P loss and eutrophication risk in runoff water in contour and down-slope. Journal of Food, Agriculture and Environment, 8, 1042-1048.
  • McGill, B.M., Sutton-Grier, A.E., Wright, J.P. (2010). Plant Trait Diversity Buffers Variability in Denitrification Potential over Changes in Season and Soil Conditions. PLoS ONE, 5(7), e11618. https://doi.org/10.1371/journal.pone.0011618
  • Mietto, A., Borin, M., Salvato, M., Ronco, P., Tadiello, N. (2013). Tech-IA floating system introduced in urban wastewater treatment plants in the Veneto region- Italy. Water Science and Technology, 68(5), 1144-1150. https://doi.org/10.2166/wst.2013.357
  • Molina, A.M., Abril, N., Morales-Prieto, N., Monterde, J.G., Lora, A.J., Ayala, N., Moyano, R. (2018). Evaluation of toxicological endpoints in female zebrafish after bisphenol A exposure. Food and Chemical Toxicology, 112, 19-25. https://doi.org/10.1016/j.fct.2017.12.026
  • Nahlik, A. M., Mitsch, W. J., Schiermeier, W. H., River, O. (2006). Tropical treatment wetlands dominated by free-floating macrophytes for water quality improvement in Costa Rica. Ecological Engineering, 28(3), 246-257. https://doi.org/10.1016/j.ecoleng.2006.07.006
  • Nakai, S., Zou, G., Song, X., Pan, Q., Zhou, S., Hosomi, M. (2008). Release of anti-cyanobacterial allelochemicals from aquatic and terrestrial plants applicable for artificial floating islands. Journal of Water and Environment Technology, 6(1), 55-63. https://doi.org/10.2965/jwet.2008.55
  • Nakamura, K., Shimatani, Y. (1997). Water purification and environmental enhancement by artificial floating island. 6th IAWQ Asia-Pacific Regional Conference, April, 888-895.
  • Nane, İ.D., Görmez, Ö., Minaz, M., Nazıroğlu, M., Diler, Ö., Özmen, Ö. (2021). Bisfenol S’nin Japon balığı (Carassius auratus) gonad ve viseral organları üzerine toksik etkileri. Acta Aquatica Turcica, 17(1), 129-135. https://doi.org/10.22392/actaquatr.767061
  • Nassouhi, D., Eegönül, M. B., Fikirdeşici, Ş., Karacakaya, P., Atasağun, S. (2018). Ağır metal kirliliğinin biyoremediasyonunda bazı su içi ve yüzücü sucul makrofitlerin kullanımı. Süleyman Demirel Üniversitesi Eğirdir Su Ürünleri Fakültesi Dergisi, 14(2), 148-165. https://doi.org/10.22392/egirdir.371340
  • Ni, Z., Wu, X., Li, L., Lv, Z., Zhang, Z., Hao, A., Iseri, Y., Kuba, T., Zhang, X., Wu, W. M., Li, C. (2018). Pollution control and in situ bioremediation for lake aquaculture using an ecological dam. Journal of Cleaner Production, 172, 2256-2265. https://doi.org/10.1016/j.jclepro.2017.11.185
  • Orak, T.G. (2019). Suat Uğurlu Baraj Gölü’nün (Samsun) Su Kalitesi ve Trofik Seviyesinin Araştırılması. Yüksek Lisans Tezi, Ordu Üniversitesi, Fen Bilimleri Enstitüsü, Ordu. 140s.
  • Ouyang, Y., Nkedi-Kizza, P., Wu, Q.T., Shinde, D., Huang, C.H. (2006). Assessment of seasonal variations in surface water quality. Water Research, 40(20), 3800-3810. https://doi.org/10.1016/j.watres.2006.08.030
  • Ozbayram, E.G., Koker, L., Akçaalan, R., Aydın, F., Ertürk, A., Ince, O., Albay, M. (2020). Contrasting the water quality and bacterial community patterns in shallow and deep lakes: Manyas vs. Iznik. Environmental Management. https://doi.org/10.1007/s00267-020-01357-7
  • Özyalin, S., Ustaoglu, M. R. (2008). Kemer Baraj Gölü (Aydın) net fitoplankton kompozisyonunun incelenmesi. E.U. Journal of Fisheries Aquatic Sciences, 25(4), 275-282.
  • Palombo, C., Chirici, G., Marchetti, M., Tognetti, R. (2013). Is land abandonment affecting forest dynamics at high elevation in Mediterranean mountains more than climate change? Plant Biosystems - An International Journal Dealing with All Aspects of Plant Biology, 147(1), 1-11. https://doi.org/10.1080/11263504.2013.772081
  • Pappalardo, S.E., Ibrahim, H.M.S., Cerinato, S., Borin, M. (2017). Assessing the water-purification service in an integrated agricultural wetland within the Venetian Lagoon drainage system. Marine and Freshwater Research, 68(12), 2205. https://doi.org/10.1071/MF16083
  • Pavan, F., Breschigliaro, S., Borin, M. (2015). Screening of 18 species for digestate phytodepuration. Environmental Science and Pollution Research, 22(4), 2455-2466. https://doi.org/10.1007/s11356-014-3247-3
  • Pelicice, F. M., Agostinho, A. A. (2006). Feeding ecology of fishes associated with Egeria spp. patches in a tropical reservoir, Brazil. Ecology of Freshwater Fish, 15(1), 10-19. https://doi.org/10.1111/j.1600-0633.2005.00121.x
  • Polat, F., Özmen, H. (2011). Determination of the trophic level of almus dam lake and research its phosphorus carrying capacity. Ekoloji, 59(78), 53-59. https://doi.org/10.5053/ekoloji.2011.789
  • Prashant, Billore, S. K. (2020). Macroinvertebrates associated with artificial floating islands installed in River Kshipra for water quality improvement. Water Science and Technology, 81(6), 1242-1249. https://doi.org/10.2166/wst.2020.219
  • Rehman, K., Imran, A., Amin, I., Afzal, M. (2018). Inoculation with bacteria in floating treatment wetlands positively modulates the phytoremediation of oil field wastewater. Journal of Hazardous Materials, 349, 242-251. https://doi.org/10.1016/j.jhazmat.2018.02.013
  • Revitt, D.M., Shutes, R.B.E., Llewellyn, N.R., Worrall, P. (1997). Experimental reedbed systems for the treatment of airport runoff. Water Science and Technology, 36(8-9), 385-390. https://doi.org/10.1016/S0273-1223(97)00569-6
  • Revitt, D.M., Worrall, P., Brewer, D. (2001). The integration of constructed wetlands into a treatment system for airport runoff. Water Science and Technology, 44(11-12), 469-476. https://doi.org/10.2166/wst.2001.0868
  • Richter, K.M. (2004). Constructed wetlands for the treatment of airport de-icer. Doktora Tezi, University of Sheffield, Department of Civil and Structural Engineering, Sheffield, UK. 253s.
  • Rocha, E.G., Feitosa, P.H.C., de Amorim Coura, M., Barbosa, D.L. (2021). Temporal and spatial trends of a floating islands system’s efficiency. Journal of Environmental Management, 277(111367). https://doi.org/10.1016/j.jenvman.2020.111367
  • Rupani, P.F., Nilashi, M., Abumalloh, R.A., Asadi, S., Samad, S., Wang, S. (2020). Coronavirus pandemic (COVID-19) and its natural environmental impacts. International Journal of Environmental Science and Technology, 1-12. https://doi.org/10.1007/s13762-020-02910-x
  • Saeed, T., Al-Muyeed, A., Afrin, R., Rahman, H., Sun, G. (2014). Pollutant removal from municipal wastewater employing baffled subsurface flow and integrated surface flow-floating treatment wetlands. Journal of Environmental Sciences (China), 26(4), 726-736. https://doi.org/10.1016/S1001-0742(13)60476-3
  • Şahin, P.A., Yüce, A.M., Soylu, E. (2013). Büyük Akgöl (Sakarya) fitoplankton kompozisyonu ve mevsimsel değişimleri. Süleyman Demirel Üniversitesi Eğirdir Su Ürünleri Fakültesi Dergisi, 9(2), 14-21.
  • Saleem, H., Arslan, M., Rehman, K., Tahseen, R., Afzal, M. (2019). Phragmites australis — a helophytic grass — can establish successful partnership with phenol-degrading bacteria in a floating treatment wetland. Saudi Journal of Biological Sciences, 26(6), 11791186. https://doi.org/10.1016/j.sjbs.2018.01.014
  • Saler, S. (2020). Dedeyolu Göleti (Elazığ–Türkiye) Zooplanktonu. Ecological Life Sciences, 15(4), 143-154. https://doi.org/http://dx.doi.org/10.12739/NWSA.2020.15.4.5A0141
  • Saviolo Osti, J.A., do Carmo, C.F., Silva Cerqueira, M. A., Duarte Giamas, M.T., Peixoto, A.C., Vaz-dos-Santos, A.M., Mercante, C.T.J. (2020). Nitrogen and phosphorus removal from fish farming effluents using artificial floating islands colonized by Eichhornia crassipes. Aquaculture Reports, 17(100324). https://doi.org/10.1016/j.aqrep.2020.100324
  • Scheffer, M., Hosper, S.H., Meijer, M.L., Moss, B., Jeppesen, E. (1993). Alternative equilibria in shallow lakes. In Trends in Ecology and Evolution, 8(8), 275-279. https://doi.org/10.1016/0169-5347(93)90254-M
  • Şener, Ş., Davraz, A., Karagüzel, R. (2014). Assessment of trace metal contents in water and bottom sediments from Eǧirdir Lake, Turkey. Environmental Earth Sciences, 71(6), 2807-2819. https://doi.org/10.1007/s12665-013-2659-6
  • Şener, Ş., Şener, E. (2016). Kovada Gölü’Nün (Isparta Kovada Gölü'nün (Isparta) Hidrojeokimyasal İncelemesi. Mühendislik Bilimleri ve Tasarım Dergisi, 4(2), 49. https://doi.org/10.21923/jesd.92987
  • Şener, Ş., Şener, E., Davraz, A., Karagüzel, R., Bulut, C. (2010). Eğirdir Gölü Su Kalitesine Yönelik Ön Bulgular: Yerinde Ölçümlerin Değerlendirilmesi. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, 14(1), 72-83. https://doi.org/10.19113/sdufbed.70687
  • Sezen, G. (2008). Sarımsaklı Baraj Gölü (Kayseri) Fitoplanktonu ve Su Kalitesi Özellikleri. Ankara University.
  • Shahid, M.J., Tahseen, R., Siddique, M., Ali, S., Iqbal, S., Afzal, M. (2019). Remediation of polluted river water by floating treatment wetlands. Water Science and Technology: Water Supply, 19(3), 967-977. https://doi.org/10.2166/ws.2018.154
  • Shrestha, A.M., Shrestha, U.B., Sharma, R., Bhattarai, S., Tran, H.N.T., Rupakheti, M. (2020). Lockdown caused by COVID-19 pandemic reduces air pollution in cities worldwide. https://doi.org/10.31223/osf.io/edt4j
  • Sömek, H., Ustaoğlu, M.R. (2016). Yaz aylarında Batı Anadolu’nun bazı dağ göllerinin (denizli-muğla) fitoplankton kompozisyonu ve trofik durum indeksi değerleri. Ege Journal of Fisheries and Aquatic Sciences, 33(2), 121. https://doi.org/10.12714/egejfas.2016.33.2.05
  • Stewart, F.M., Mulholland, T., Cunningham, A.B., Kania, B.G., Osterlund, M.T. (2008). Floating islands as an alternative to constructed wetlands for treatment of excess nutrients from agricultural and municipal wastes – results of laboratory-scale tests. Land Contamination Reclamation, 16(1). 25-33. https://doi.org/10.2462/09670513.874
  • Sun, S., Gao, L., He, S., Huang, J., Zhou, W. (2019). Nitrogen removal in response to plants harvesting in two kinds of enhanced hydroponic root mats treating secondary effluent. Science of the total environment, 670, 200-209. https://doi.org/10.1016/j.scitotenv.2019.03.182
  • Sun, L., Liu, Y., Jin, H. (2009). Nitrogen removal from polluted river by enhanced floating bed grown canna. Ecological Engineering, 35(1), 135-140. https://doi.org/10.1016/j.ecoleng.2008.09.016
  • Tanner, C.C., Headley, T. (2008). Floating treatment wetlands— an innovative solution to enhance removal of fine particulates, copper and zinc. The Nzwwa Journal.
  • Tara, N., Arslan, M., Hussain, Z., Iqbal, M., Khan, Q. M., Afzal, M. (2019). On-site performance of floating treatment wetland macrocosms augmented with dye-degrading bacteria for the remediation of textile industry wastewater. Journal of Cleaner Production, 217, 541-548. https://doi.org/10.1016/j.jclepro.2019.01.258
  • Taş, B. (2011). Gaga Gölü (Ordu, Türkiye) Su Kalitesinin İncelenmesi. The Black Sea Journal of Sciences, 1(3), 43-61.
  • Taş, B., Hamzaçelebi, E.Ş. (2020). Assessment of algal diversity and hydrobiological preliminary results in a high-mountain lake (Karagöl Lake, Giresun Mountains, Turkey). Review of Hydrobiology, 13(1-2), 11-38.
  • Taş, B., Sahin, H., Yarılgaç, T. (2018). Ulugöl’de (Ulugöl Tabiat Parkı, Ordu) hidrofitlerin artışı üzerine bir ön inceleme. Akademik Ziraat Dergisi, 7(1), 111-120. https://doi.org/10.29278/azd.440704
  • Tatar, S.Y. (2014). İkincil Arıtma Çıkış Suyuna Adapte Edilen Lemna minör L. ile Lemna gibba L. ’da Ağır Metal Akümülasyonu ve Oksidatif Stres Düzeyinin Belirlenmesi. Doktora Tezi, Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Elazığ. 157s.
  • Tepe, R., Karakaya, G., Sahin, A.G., Sesli, A., Küçükyılmaz, M., Aksagan, A. (2018). Karkamış Baraj Gölü Trofik Durumu. International Journal of Innovative Engineering Applications, 2(1), 1-3.
  • Tereshenko, E.T. (2019). Abant Gölü (Bolu) Bentik Makroomurgasız Faunası ve Dağılımı. In Institute of science and technology. Doktora Tezi, Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Ankara. 187s.
  • Topkara, S. (2011). Çambaşı Göleti (Kabadüz, Ordu) Fitoplanktonu ve Trofik Yapısının İncelenmesi. Yüksek Lisans Tezi, Ordu Üniversitesi, Fen Bilimleri Enstitüsü, Ordu. 118s.
  • Tosun, S. (2014). Doğada gizemli bir gerdanlık: Abant Gölü Turbalığı. Abant Mudurnulular Bülteni, 7, 32-38.
  • Vadde, K.K., Jianjun, W., Long, C., Tianma, Y., Alan, J., Raju, S. (2018). Assessment of water quality and identification of pollution rick locations in Tiaoxi river (Taihu watershed), China. Water, 10, 183. https://doi.org/10.3390/w10020183
  • Van Acker, J., Buts, L., Thoeye, C., De Gueldre, G. (2005). Floating plant beds: BAT for CSO treatment. International Symposium on Wetland Pollutant Dynamics and Control, 186-187.
  • Van de Moortel, A.M.K. (2011). Constructed floating wetlands for combined sewer overflow water treatment. Ghent University. https://biblio.ugent.be/publication/1108288 (Erişim Tarihi: 05.02.2021)
  • Van De Moortel, A.M.K., Meers, E., De Pauw, N., Tack, F.M.G. (2010). Effects of vegetation, season and temperature on the removal of pollutants in experimental floating treatment wetlands. Water, Air, and Soil Pollution, 212(1-4), 281-297. https://doi.org/10.1007/s11270-010-0342-z
  • Varol, M. (2010). Dicle Nehri ve Üzerindeki Baraj Göllerinin Fiziksel, Kimyasal ve Algolojik Özellikleri. Doktora Tezi, Fırat Universitesi Fen Bilimleri Enstitüsü.
  • Vera, L. M., Davie, A., Taylor, J. F., Migaud, H. (2010). Differential light intensity and spectral sensitivities of Atlantic salmon, European sea bass and Atlantic cod pineal glands ex vivo. General and Comparative Endocrinology, 165(1), 25-33. https://doi.org/10.1016/j.ygcen.2009.05.021
  • Wang, Q., Su, M. (2020). A preliminary assessment of the impact of COVID-19 on environment–A case study of China. Science of the total environment, 728, 138915. https://doi.org/10.1016/j.scitotenv.2020.138915
  • White, S. A., Cousins, M. M. (2013). Floating treatment wetland aided remediation of nitrogen and phosphorus from simulated stormwater runoff. Ecological Engineering, 61, 207-215. https://doi.org/10.1016/j.ecoleng.2013.09.020
  • WHO, (2019). Results of Round II of the WHO International Scheme to Evaluate Household Water Treatment Technologies. World Health Organization, Geneva, Switzerland.
  • WHO/UNICEF, (2019). Progress on household drinking water, sanitation and hygiene 2000-2017: Special focus on inequalities. United Nations Children’s Fund (UNICEF) and World Health Organization, New York, USA. https://www.unicef.org/reports/progress-on-drinking-water-sanitation-and-hygiene-2019 (Erişim Tarihi: 08.04.2021).
  • Winston, R.J., Hunt, W.F., Kennedy, S.G., Merriman, L.S., Chandler, J., Brown, D. (2013). Evaluation of floating treatment wetlands as retrofits to existing stormwater retention ponds. Ecological Engineering, 54, 254-265. https://doi.org/10.1016/j.ecoleng.2013.01.023
  • Wolverton, B.C., McDonald, R.C. (1975). Water hyacinths and alligator weeds for removal of lead and mercury from polluted waters. https://ntrs.nasa.gov/citations/19750014865 (Erişim Tarihi: 30.12.2020)
  • World Bank, (2019). Working together for a water-secure for all. World Bank, Washington, DC. https://documents1.worldbank.org/curated/en/962901566309738776/Working-Together-for-a-Water-Secure-World.pdf (Erişim Tarihi: 08.04.2021)
  • Xian, Q., Hu, L., Chen, H., Chang, Z., Zou, H. (2010). Removal of nutrients and veterinary antibiotics from swine wastewater by a constructed macrophyte floating bed system. Journal of Environmental Management, 91(12), 2657–2661. https://doi.org/10.1016/j.jenvman.2010.07.036
  • Xiao, R., Duan, Y., Chu, W. (2020). The effectiveness of household water treatment and safe storage in improving drinking water quality: a disinfection by-product (DBP) perspective. Journal of Water Supply: Research and Technology—AQUA, 69(8), 785-806. https://doi.org/10.2166/aqua.2020.052
  • Yang, Z., Zheng, S., Chen, J., Sun, M. (2008). Purification of nitrate-rich agricultural runoff by a hydroponic system. Bioresource Technology, 99(17), 8049-8053. https://doi.org/10.1016/j.biortech.2008.03.040
  • Yao, K., Song, S., Zhang, Z., Xu, J., Zhang, R., Liu, J., Cheng, L., Liu, J. (2011). Vegetation characteristics and water purification by artificial floating island. African Journal of Biotechnology, 10(82), 19119-19125. https://doi.org/10.5897/AJB11.2964
  • Yeh, N., Yeh, P., Chang, Y.H. (2015). Artificial floating islands for environmental improvement. Renewable and Sustainable Energy Reviews, 47, 616-622. https://doi.org/10.1016/j.rser.2015.03.090
  • Yüce, A. (1999). Kovada Gölü ve Kanalı Alglerinin Taksonomik ve Ekolojik Yönden İncelenmesi. Doktora Tezi, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsüi Isparta. 188s.
  • Zhang, C.B., Liu, W.L., Pan, X.C., Guan, M., Liu, S.Y., Ge, Y., Chang, J. (2014). Comparison of effects of plant and biofilm bacterial community parameters on removal performances of pollutants in floating island systems. Ecological Engineering, 73, 58-63. https://doi.org/10.1016/j.ecoleng.2014.09.023
  • Zhang, L., Zhao, J., Cui, N., Dai, Y., Kong, L., Wu, J., Cheng, S. (2016). Enhancing the water purification efficiency of a floating treatment wetland using a biofilm carrier. Environmental Science and Pollution Research, 23(8), 7437-7443. https://doi.org/10.1007/s11356-015-5873-9
  • Zhang, Z., Liu, Y., Hu, S., Wang, J., Qian, J. (2021). A New type of ecological floating bed based on ornamental plants experimented in an artificially made eutrophic water body in the laboratory for nutrient removal. Bulletin of Environmental Contamination and Toxicology, 106, 2-9. https://doi.org/10.1007/s00128-020-03086-3
  • Zhao, F., Xi, S., Yang, X., Yang, W., Li, J., Gu, B., He, Z. (2012). Purifying eutrophic river waters with integrated floating island systems. Ecological Engineering, 40, 53-60. https://doi.org/10.1016/j.ecoleng.2011.12.012
  • Zhao, F., Yang, W., Zeng, Z., Li, H., Yang, X., He, Z., Gu, B., Rafiq, M.T., Peng, H. (2012). Nutrient removal efficiency and biomass production of different bioenergy plants in hypereutrophic water. Biomass and Bioenergy, 42, 212-218. https://doi.org/10.1016/j.biombioe.2012.04.003
  • Zhou, X., Wang, G. (2010). Nutrient concentration variations during Oenanthe javanica growth and decay in the ecological floating bed system. Journal of Environmental Sciences, 22(11), 1710-1717. https://doi.org/10.1016/S1001-0742(09)60310-7
  • Zhu, L., Li, Z., Ketola, T. (2011). Biomass accumulations and nutrient uptake of plants cultivated on artificial floating beds in chinas rural area. Ecological Engineering, 37(10), 1460-1466. https://doi.org/10.1016/j.ecoleng.2011.03.010

Natural water treatment system: the potential of applying artificial floating island technology in lakes, ponds and dam lakes in Turkey

Yıl 2021, Cilt: 4 Sayı: 4, 376 - 394, 01.10.2021
https://doi.org/10.3153/AR21032

Öz

phytoremediation strategy, was investigated in Turkish lakes, ponds and reservoirs. The pressure on water resources is increasing ever with the global warming as well as the effect of climate change. In addition, increasing environmental pollution directly and/or indirectly harms the organisms thus has negative effects on their lives. In this context, the importance of lakes, ponds and dam lakes in Turkey against adverse global and environmental conditions has increased in recent years. Innovative, sustainable and economical solutions are required for the improvement of lakes, ponds and dam lakes, considering that these are main resources of drinking water, irrigation of agricultural lands, and recreational activities. Considering the current trophic state of natural waters in our country, many lakes, ponds or dam lakes have been identified with eutrophication potential. AFI technology, which is widely established globally to remediate such organic pollution load, is a highly economical alternative treatment system. Previous studies have generally focused on the laboratory and pilot scale implementation of AFI technology. In the future, full-scale establishment of AFI technology will provide significant added value for both the scientific and the national economy.

Kaynakça

  • Atalık, A. (2006). Küresel Isınma, Su Kaynakları ve Tarım Üzerine Etkileri. https://www.zmo.org.tr/resimler/ekler/ce6d3c8830d27ec_ek.pdf (Erişim tarihi: 27.04.2021)
  • Akar, A. (2017). İkizdere Baraj Gölü Fitoplanktonunun Mevsimsel Değişiminin İncelenmesi. Yüksek Lisans Tezi, Adnan Menderes Üniversitesi, Fen Bilimleri Enstitüsü, Aydın. 115s.
  • Aksay, C.S., Ketenoğlu, O., Kurt, L. (2005). Küresel Isınma ve İklim Değişikliği. S. Ü. Fen Fakültesi Dergisi, 25, 29-41. Aküzüm, T., Çakmak, B., Gökalp, Z. (2010). Türkiye’de Su Kaynakları Yönetiminin Değerlendirilmesi. Tarım Bilimleri Araştırma Dergisi, 3(1), 67-74. http://dergipark.gov.tr/tabad/issue/34782/385073
  • Alberto, B., Stefano, B., Maurizio, B. (2021). Plant species for floating treatment wetlands: A decade of experiments in North Italy. Science of the Total Environment, 751(141666). https://doi.org/10.1016/j.scitotenv.2020.141666
  • Altındağ, A., Yiğit, S. (2004). Beyşehir Gölü Zooplankton Faunası ve Mevsimsel Değişimi. GÜ, Gazi Eğitim Fakültesi Dergisi, 24(3), 217-225. https://doi.org/10.17152/gefd.11415
  • Apaydin Yaǧci, M., Ustaoǧlu, M.R. (2012). Zooplankton fauna of lake İznik (Bursa, Turkey). Turkish Journal of Zoology, 36(3), 341-350. https://doi.org/10.3906/zoo-1001-36
  • Ariman, S., Koyuncu, S. (2019). Su Kirliliği Açisindan Hassas Alanların İzlenmesi̇: Kizilirmak Deltasi-Balik Gölü. Mühendislik Bilimleri ve Tasarım Dergisi, 7(4), 705-714. https://doi.org/10.21923/jesd.531195
  • Ayas, Z. S., Bahtiyar, F., Yakan, C., Dagdas, E. (2019). Atıksulardaki Ağır Metallerin Su Mercimeği ile Giderimi Üzerine Güncel Çalışmaların İncelenmesi. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24, 109-117.
  • Aydin, D., Ahiska, S. (2009). Determination of trophic situation of Sarimsakli Dam Lake (Kayseri-Turkey). African Journal of Biotechnology, 8(22), 6295–6300. https://doi.org/10.5897/ajb09.1316
  • Ayvaz, M., Tenekecioglu, E., Koru, E. (2011). Afşar baraj gölü’nün (Manisa-Türkiye)trofik statüsünün belirlenmesi. Ekoloji, 47(81), 37-47. https://doi.org/10.5053/ekoloji.2011.816
  • Barco, A., Borin, M. (2020). Ornamental plants for floating treatment wetlands: Preliminary results. Italian Journal of Agronomy, 15(2), 109-120. https://doi.org/10.4081/ija.2020.1602
  • Bauer, L.H., Arenzon, A., Molle, N.D., Rigotti, J.A., Borges, A.C.A., Machado, N.R., Rodrigues, L.H.R. (2021). Floating treatment wetland for nutrient removal and acute ecotoxicity improvement of untreated urban wastewater. International Journal of Environmental Science and Technology, 1-14. https://doi.org/10.1007/s13762-020-03124-x
  • Beyhan, M., Kaçıkoç, M. (2014). Evaluation of water quality from the perspective of eutrophication in Lake Eǧirdir, Turkey. Water, Air, and Soil Pollution, 225(7), 1994(2014). https://doi.org/10.1007/s11270-014-1994-x
  • Billore, S.K., Prashant, Sharma, J.K. (2009). Treatment performance of artificial floating reed beds in an experimental mesocosm to improve the water quality of river Kshipra. Water Science and Technology, 60(11), 2851-2859. https://doi.org/10.2166/wst.2009.731
  • Boonsong, K., Chansiri, M. (2008). Domestic Wastewater Treatment using Vetiver Grass Cultivated with Floating Platform Technique. Journal of Technology, 12, 73-80.
  • Borne, K.E., Fassman-Beck, E.A., Tanner, C.C. (2014). Floating Treatment Wetland influences on the fate of metals in road runoff retention ponds. Water Research, 48(1), 430-442. https://doi.org/10.1016/j.watres.2013.09.056
  • Boutwell, J.E. (2002). Water Quality and Plant Growth Evaluations of the Floating Islands in Las Vegas Bay, Lake Mead, Nevada. https://www.lvwash.org/assets/pdf/resources_wqresearch_islands.pdf (Erişim Tarihi: 08.01.2021)
  • Bulut, C., Kubilay, A. (2018). Eğirdir Gölü su kalitesinin trofik durum indeksleriyle belirlenmesi. Acta Aquatica Turcica, 14(4), 324-338. https://doi.org/10.22392/egirdir.415073
  • Bulut, C., Kubilay, A. (2019). Eğirdir Gölü (Isparta/Türkiye) su kalitesinin mevsimsel değişimi Seasonal change of water quality in Egirdir Lake (Isparta/Turkey). Ege Journal of Fisheries and Aquatic Sciences, 36(1), 13-23. https://doi.org/10.12714/egejfas.2019.36.1.02
  • Can, Ö., Taş, B. (2012). Ecological and Socio-Economic Importance of Cernek Lake and Wetland in the Ramsar Area (Kizilirmak Delta, Samsun). TÜBAV Bilim Dergisi, 5(2), 1-11.
  • Carlson, R.E., Simpson, J. (1996). A Coordinator’s Guide to Volunteer Lake Monitoring Methods. North American Lake Management Society. https://www.nalms.org/product/a-coordinators-guide-to-volunteer-monitoring/ (Erişim Tarihi: 02.01.2021)
  • Chang, N. Bin, Xuan, Z., Marimon, Z., Islam, K., Wanielista, M.P. (2013). Exploring hydrobiogeochemical processes of floating treatment wetlands in a subtropical stormwater wet detention pond. Ecological Engineering, 54, 66-76. https://doi.org/10.1016/j.ecoleng.2013.01.019
  • Chang, N. B., Islam, M. K., Wanielista, M. P. (2012). Floating wetland mesocosm assessment of nutrient removal to reduce ecotoxicity in stormwater ponds. International Journal of Environmental Science and Technology, 9(3), 453-462. https://doi.org/10.1007/s13762-012-0061-7
  • Chang, Y., Cui, H., Huang, M., He, Y. (2017). Artificial floating islands for water quality improvement. Environmental Reviews, 25(3), 350-357. https://doi.org/10.1139/er-2016-0038
  • Chang, Y.H., Ku, C.R., Lu, H.L. (2014). Effects of aquatic ecological indicators of sustainable green energy landscape facilities. Ecological Engineering, 71, 144-153. https://doi.org/10.1016/j.ecoleng.2014.07.051
  • Chang, Y.H., Ku, C. R., Yeh, N. (2014). Solar powered artificial floating island for landscape ecology and water quality improvement. Ecological Engineering, 69, 8-16. https://doi.org/10.1016/j.ecoleng.2014.03.015
  • Chen, H., Chen, A., Xu, L., Xie, H., Qiao, H., Lin, Q., Cai, K. (2020). A deep learning CNN architecture applied in smart near-infrared analysis of water pollution for agricultural irrigation resources. Agricultural Water Management, 240, 106303. https://doi.org/10.1016/j.agwat.2020.106303
  • Chen, H., Deng, M., Lu, J. (2020). Study on the Purification of TN in Different Concentration Waters by Artificial Floating Bed. IOP Conference Series: Earth and Environmental Science, 440(052053). https://doi.org/10.1088/1755-1315/440/5/052053
  • Chen, J. Z., Meng, S. L., Hu, G. D., Qu, J. H., Fan, L. M. (2010). Effect of Ipomoea aquatica cultivation on artificial floating rafts on water quality of intensive aquaculture ponds. Journal of Ecology and Rural Environment, 26(2), 155-159.
  • Chen, Z., Cuervo, D.P., Müller, J.A., Wiessner, A., Köser, H., Vymazal, J., Kästner, M., Kuschk, P. (2016). Hydroponic root mats for wastewater treatment—a review. Environmental Science and Pollution Research, 23(16), 15911-15928. https://doi.org/10.1007/s11356-016-6801-3
  • Chen, Z., Kuschk, P., Reiche, N., Borsdorf, H., Kästner, M., Köser, H. (2012). Comparative evaluation of pilot scale horizontal subsurface-flow constructed wetlands and plant root mats for treating groundwater contaminated with benzene and MTBE. Journal of Hazardous Materials, 209–210, 510-515. https://doi.org/10.1016/j.jhazmat.2012.01.067
  • Cicek, N.L., Ertan, Ö.O., Erdoğan, Ö., Didinen, H., Boyacı, Y.Ö., Kara, D., Zeybek, M., Diken, G. (2017). Distribution of phytoplankton and its relationship with physicochemical parameters in Lake Eğirdir (Isparta/Turkey). Biological Diversity and Conservation, 10(3), 150-162.
  • Colares, G.S., Dell'Osbel, N., Wiesel, P.G., Oliveira, G.A., Lemos, P.H.Z., da Silva, F.P., Lutterbeck, C.A., Kist, L.T. Machado, Ê.L. (2020). Floating treatment wetlands: A review and bibliometric analysis. Science of the Total Environment, 714, 136776. https://doi.org/10.1016/j.scitotenv.2020.136776
  • Cüce, H., Bakan, G. (2017). Sığ sularda nutrient seviyelerine sediman kalitesinin etkisinin konumsal olarak değerlendirilmesi: Cernek Gölü örneği. Türk Tarım – Gıda Bilim ve Teknoloji Dergisi, 5(5), 546-555.
  • De Stefani, G., Tocchetto, D., Salvato, M., Borin, M. (2011). Performance of a floating treatment wetland for in-stream water amelioration in NE Italy. Hydrobiologia, 674(1), 157-167. https://doi.org/10.1007/s10750-011-0730-4
  • De Stefani, Giovanna. (2012). Performance of floating treatment wetlands (FTW) with the innovative Tech-IA® system. University of Padua.
  • Demir, N. (2008). Beysehir Gölü’nün Trofik Durumunun İncelenmesinde Fitoplankton Topluluklarının Kullanımı. Proje No: 20070711001HD, Ankara Üniversitesi, Bilimsel Araştırma Projeleri, Ankara. http://hdl.handle.net/20.500.12575/66796 (Erişim Tarihi: 15.02.2021)
  • Di Luca, G.A., Mufarrege, M.M., Hadad, H.R., Maine, M.A. (2019). Nitrogen and phosphorus removal and Typha domingensis tolerance in a floating treatment wetland. Science of the Total Environment, 650, 233-240. https://doi.org/10.1016/j.scitotenv.2018.09.042
  • Dodson, S.I., Arnott, S.E., Cottingham, K.L. (2000). The Relationship in Lake Communities Between Primary Productivity and Species Richness. Ecology, 81(10), 2662-2679. https://doi.org/10.1890/0012-9658(2000)081[2662:TRILCB]2.0.CO;2
  • Dotro, G., Molle, P., Nivala, J., Puigagut, J., Stein, O. (2017). Treatment Wetlands. 1st ed. IWA Publishing, London, UK 9781780408767. https://doi.org/10.2166/9781780408774
  • Döver, G. (2012). Yeniçağa (Bolu) Gölü Zooplanktonik Organizma Türleri ve Mevsimsel Dağılımı. Ankara University.
  • Ebrahimi, P.S. (2015). Control of Eutrophication in Anzali Wetland by Artificial Floating Islands. Sharif University of Technology.
  • Egertson, C.J., Kopaska, J.A., Downing, J.A. (2004). A century of change in macrophyte abundance and composition in response to agricultural eutrophication. Hydrobiologia, 524(1), 145-156. https://doi.org/10.1023/B:HYDR.0000036129.40386.ce
  • Erdoğan, S. (2015). Bayındır Baraj Gölü (Ankara) Rotifera Faunasının Taksonomik ve Limnoekolojik Yönden İncelenmesi [Ankara University]. In Institute of science and technology. https://doi.org/10.1377/hlthaff.2013.0625
  • Erdogus, M. (2016). Demirköprü Baraj Gölünün Bazı Fizikokimyasal Parametrelerinin İncelenmesi. Yüksek Lisans Tezi, İzmir Katip Çelebi Üniversitesi, Fen Bilimleri Enstitüsü, İzmir. 78s.
  • Ertosun, B., Altindag, A., Ahiska, S. (2010). The determination trophic status of Ucpinar Dam Lake (Usak, Turkey). In Journal of Animal and Veterinary Advances, 9(3), 491-495. https://doi.org/10.3923/javaa.2010.491.495
  • Faheem, M., Jahan, N., Lone, K. (2016). Histopathological effects of bisphenol-A on liver, kidneys and gills of Indian major carp, Catla catla (Hamilton, 1822). The Journal of Animal and Plant Sciences, 26(2), 514-522. http://thejaps.org.pk/docs/v-26-02/29.pdf
  • Fan, Y., Fang, C. (2020). A comprehensive insight into water pollution and driving forces in Western China—case study of Qinghai. Journal of Cleaner Production, 274, 123950. https://doi.org/10.1016/j.jclepro.2020.123950
  • Flynn, K., Suplee, M.W. (2011). Using a computer water quality model to derive numeric nutrient criteria: Lower Yellowstone River. WQPBDMSTECH-22. Helena, MT: Montana Dept. of Environmental Quality. http://deq.mt.gov/wqinfo/standards/NumericNutrientCriteria.mcpx (Erişim Tarihi: 05.02.2021)
  • Garbett, P. (2005). An investigation into the application of floating reed bed and barley straw techniques for the remediation of eutrophic waters. Water and Environment Journal, 19(3), 174-180. https://doi.org/10.1111/j.1747-6593.2005.tb01584.x
  • Gönülol, A., Obalı, O. (1986). Phytoplankton of Karamık Lake (Afyon), Turkey. 4, 105–128. https://dspace.ankara.edu.tr/xmlui/bitstream/handle/20.500.12575/62080/14434.pdf?sequence=1isAllowed=y
  • Güher, H., Çolak, Ş. (2015). Zooplankton (Rotifera, Cladocera, Copepoda ) faunası. Trakya University Journal of Natural Sciences,, 16(1), 17-24.
  • Gümüş, F., Gönülol, A. (2018). Epilithic Diatom-Based Ecological Assessment in Taşmanli Pond (Sinop, Turkey). Trakya University Journal of Natural Sciences, 19(1), 71-76. https://doi.org/10.23902/trkjnat.339417
  • Hartshorn, N., Marimon, Z., Xuan, Z., Cormier, J., Chang, N. Bin, Wanielista, M. (2016). Complex interactions among nutrients, chlorophyll-a, and microcystins in three stormwater wet detention basins with floating treatment wetlands. Chemosphere, 144, 408-419. https://doi.org/10.1016/j.chemosphere.2015.08.023
  • Henny, C., Jasalesmana, T., Kurniawan, R., Melati, I., Suryono, T., Susanti, E., Yoga, G.P., Rosidah, Sudiono, B.T. (2020). The effectiveness of integrated floating treatment wetlands (FTWs) and lake fountain aeration systems (LFAS) in improving the landscape ecology and water quality of a eutrophic lake in Indonesia. IOP Conference Series: Earth and Environmental Science, 535(012018). https://doi.org/10.1088/1755-1315/535/1/012018
  • Hoeger, B.S. (1988). SCHWIMMKAMPEN Germany’s artificial floating islands. 304-306.
  • Hubbard, R.K., Gascho, G.J., Newton, G.L. (2004). Use of floating vegetation to remove nutrients from swine lagoon wastewater. Transactions of the ASAE, 47(6), 1963-1972. https://doi.org/10.13031/2013.17809
  • Hu, G.J., Zhou, M., Hou, H.B., Zhu, X., Zhang, W.H. (2010). An ecological floating-bed made from dredged lake sludge for purification of eutrophic water. Ecological Engineering, 36(10), 1448-1458. https://doi.org/10.1016/j.ecoleng.2010.06.026
  • Huang, X., Liu, Z., Xue, J., Luo, Y., Zhang, C., Wang, Q., Leng, A., Zhu, Z., Wang, C. (2021). Purifying eutrophic wastewater from geese farm with plant floating bed in winter. Polish Journal of Environmental Studies, 30(2), 1171-1180. https://doi.org/10.15244/pjoes/125771
  • Işık, M. (2018). Ötrofikasyon ve su kalitesi problemleri-Aksaray Örneği. İklim Değişikliği ve Çevre, 3(1), 37-44. https://doi.org/10.1002/2014JD021471
  • Jeppesen, E., Søndergaard, M., Jensen, J.P., Mortensen, E., Hansen, A.M., Jørgensen, T. (1998). Cascading trophic interactions from fish to bacteria and nutrients after reduced sewage loading: An 18-year study of a shallow hypertrophic lake. Ecosystems, 1(3), 250-267. https://doi.org/10.1007/s100219900020
  • Kamble, R., Patil, D. (2012). Artificial Floating Island: Solution to River Water Pollution in India . Case Study : Rivers in Pune City. 41, 136-140. Kanniah, K.D., Zaman, N.A.F.K., Kaskaoutis, D.G., Latif, M.T. (2020). COVID-19's impact on the atmospheric environment in the Southeast Asia region. Science of the Total Environment, 736, 139658. https://doi.org/10.1016/j.scitotenv.2020.139658
  • Karakaya, B. (2018). Çiğ Gölü (Mesudiye, Ordu)’Nün Ekolojik Özelliklerinin İncelenmesi. In Journal of Materials Processing Technology. Ordu University. Kasaka, E. (2014). Küçük Lota Gölünün (Hafik/SİVAS) Fiziksel-Kimyasal Özellikleri ve Fitoplankton Toplulukları. Cumhuriyet Üniversitesi Fen Fakültesi Fen Bilimleri Dergisi, 35(2), 42-53. https://doi.org/10.17776/csj.04425
  • Keizer-Vlek, H.E., Verdonschot, P.F.M., Verdonschot, R.C.M., Dekkers, D. (2014). The contribution of plant uptake to nutrient removal by floating treatment wetlands. Ecological Engineering, 73, 684-690. https://doi.org/10.1016/j.ecoleng.2014.09.081
  • Kıvrak, E. (2011). Karamuk Gölü (Afyonkarahisar) fitoplankton kommunitesinin mevsimsel değişimi ve bazı fiziko-kimyasal özellikleri. Su Ürünleri Dergisi, 28(1), 9-20.
  • Kocasari, F.S., Gulle, I., Kocasari, S., Pekkaya, S., Mor, F. (2015). The occurrence and levels of cyanotoxin nodularin from nodularia spumigena in the alkaline and salty Lake Burdur, Turkey. Journal of Limnology, 74(3), 530-536. https://doi.org/10.4081/jlimnol.2015.1097
  • Kong, L., Wang, L., Wang, Q., Mei, R., Yang, Y. (2019). Study on new artificial floating island removing pollutants. Environmental Science and Pollution Research, 26(17), 17751-17761. https://doi.org/10.1007/s11356-019-05164-4
  • Kristensen, P., Hansen, H. O. (1994). European Rivers and Lakes - Assessment of their Environmental State. European Environment Agency. https://www.eea.europa.eu/publications/87-90198-01-8 (Erişim Tarihi: 05.02.2021)
  • Küçükyılmaz, M., Örnekci, G.N., Uslu, A.A., Özbey, N., Şeker, T., Birici, N., Yıldız, N., Koçer, M.A.T. (2014). Işıktepe Baraj Gölü (Maden, Elâzığ) kıyı bölgesi fizikokimyasal su kalitesi üzerine ilk bulgular. Yunus Araştırma Bülteni, 2, 55-63. https://doi.org/10.17693/yunusae.vi.235397
  • Kutlu, B., Serdar, O., Aydın, R., Danabaş, D. (2017). Uzunçayır Baraj Gölü’nün (Tunceli) Carlson indeksine göre trofik durumunun belirlenmesi. Yunus Araştırma Bülteni, 1, 83-92.
  • Ladislas, S., Gérente, C., Chazarenc, F., Brisson, J., Andrès, Y. (2013). Performances of two macrophytes species in floating treatment wetlands for cadmium, nickel, and zinc removal from urban stormwater runoff. Water, Air, and Soil Pollution, 224(2), 1-10. https://doi.org/10.1007/s11270-012-1408-x
  • Lai, W.L., Wang, S.Q., Peng, C.L., Chen, Z.H. (2011). Root features related to plant growth and nutrient removal of 35 wetland plants. Water Research, 45(13), 3941-3950. https://doi.org/10.1016/j.watres.2011.05.002
  • Lakatos, G., Kiss, M.K., Kiss, M., Juhász, P. (1997). Application of constructed wetlands for wastewater treatment in Hungary. Water Science and Technology, 35(5), 331-336. https://doi.org/10.1016/S0273-1223(97)00087-5
  • Lakatos, G., Veres, Z., Kundrát, J., Mészáros, I. (2014). The management and development of constructed wetlands for treatment of petrochemical waste waters in hungary: 35 years of experience. Ecohydrology and Hydrobiology, 14(1), 83-88. https://doi.org/10.1016/j.ecohyd.2014.01.007
  • Largo, K.M.F., Depablos, J.L.R., Espitia-Sarmiento, E.F., Moreta, N.M.L. (2020). Artificial floating island with vetiver for treatment of arsenic-contaminated water: A real scale study in high-andean reservoir. Water (Switzerland), 12(3086), 1-13. https://doi.org/10.3390/w12113086
  • Li, H., Hao, H., Yang, X., Xiang, L., Zhao, F., Jiang, H., He, Z. (2012). Purification of refinery wastewater by different perennial grasses growing in a floating bed. Journal of Plant Nutrition, 35(1), 93-110. https://doi.org/10.1080/01904167.2012.631670
  • Liu, J.L., Liu, J.K., Anderson, J.T., Zhang, R., Zhang, Z.M. (2016). Potential of aquatic macrophytes and artificial floating island for removing contaminants. Plant Biosystems, 150(4), 702-709. https://doi.org/10.1080/11263504.2014.990535
  • Liu, J., Liu, J., Zhang, R., Zou, Y., Wang, H., Zhang, Z. (2014). Impacts of aquatic macrophytes configuration modes on water quality. Water Science and Technology, 69(2), 253–261. https://doi.org/10.2166/wst.2013.573
  • Lu, H.L., Ku, C.R., Chang, Y.H. (2015). Water quality improvement with artificial floating islands. Ecological Engineering, 74, 371-375. https://doi.org/10.1016/j.ecoleng.2014.11.013
  • Luederitz, V., Eckert, E., Lange-Weber, M., Lange, A., Gersberg, R.M. (2001). Nutrient removal efficiency and resource economics of vertical flow and horizontal flow constructed wetlands. Ecological Engineering, 18(2), 157-171. https://doi.org/10.1016/S0925-8574(01)00075-1
  • Ma, Q., Yu, X. G., Lv, G. A., Liu, Q. J. (2010). Comparative study on dissolved N and P loss and eutrophication risk in runoff water in contour and down-slope. Journal of Food, Agriculture and Environment, 8, 1042-1048.
  • McGill, B.M., Sutton-Grier, A.E., Wright, J.P. (2010). Plant Trait Diversity Buffers Variability in Denitrification Potential over Changes in Season and Soil Conditions. PLoS ONE, 5(7), e11618. https://doi.org/10.1371/journal.pone.0011618
  • Mietto, A., Borin, M., Salvato, M., Ronco, P., Tadiello, N. (2013). Tech-IA floating system introduced in urban wastewater treatment plants in the Veneto region- Italy. Water Science and Technology, 68(5), 1144-1150. https://doi.org/10.2166/wst.2013.357
  • Molina, A.M., Abril, N., Morales-Prieto, N., Monterde, J.G., Lora, A.J., Ayala, N., Moyano, R. (2018). Evaluation of toxicological endpoints in female zebrafish after bisphenol A exposure. Food and Chemical Toxicology, 112, 19-25. https://doi.org/10.1016/j.fct.2017.12.026
  • Nahlik, A. M., Mitsch, W. J., Schiermeier, W. H., River, O. (2006). Tropical treatment wetlands dominated by free-floating macrophytes for water quality improvement in Costa Rica. Ecological Engineering, 28(3), 246-257. https://doi.org/10.1016/j.ecoleng.2006.07.006
  • Nakai, S., Zou, G., Song, X., Pan, Q., Zhou, S., Hosomi, M. (2008). Release of anti-cyanobacterial allelochemicals from aquatic and terrestrial plants applicable for artificial floating islands. Journal of Water and Environment Technology, 6(1), 55-63. https://doi.org/10.2965/jwet.2008.55
  • Nakamura, K., Shimatani, Y. (1997). Water purification and environmental enhancement by artificial floating island. 6th IAWQ Asia-Pacific Regional Conference, April, 888-895.
  • Nane, İ.D., Görmez, Ö., Minaz, M., Nazıroğlu, M., Diler, Ö., Özmen, Ö. (2021). Bisfenol S’nin Japon balığı (Carassius auratus) gonad ve viseral organları üzerine toksik etkileri. Acta Aquatica Turcica, 17(1), 129-135. https://doi.org/10.22392/actaquatr.767061
  • Nassouhi, D., Eegönül, M. B., Fikirdeşici, Ş., Karacakaya, P., Atasağun, S. (2018). Ağır metal kirliliğinin biyoremediasyonunda bazı su içi ve yüzücü sucul makrofitlerin kullanımı. Süleyman Demirel Üniversitesi Eğirdir Su Ürünleri Fakültesi Dergisi, 14(2), 148-165. https://doi.org/10.22392/egirdir.371340
  • Ni, Z., Wu, X., Li, L., Lv, Z., Zhang, Z., Hao, A., Iseri, Y., Kuba, T., Zhang, X., Wu, W. M., Li, C. (2018). Pollution control and in situ bioremediation for lake aquaculture using an ecological dam. Journal of Cleaner Production, 172, 2256-2265. https://doi.org/10.1016/j.jclepro.2017.11.185
  • Orak, T.G. (2019). Suat Uğurlu Baraj Gölü’nün (Samsun) Su Kalitesi ve Trofik Seviyesinin Araştırılması. Yüksek Lisans Tezi, Ordu Üniversitesi, Fen Bilimleri Enstitüsü, Ordu. 140s.
  • Ouyang, Y., Nkedi-Kizza, P., Wu, Q.T., Shinde, D., Huang, C.H. (2006). Assessment of seasonal variations in surface water quality. Water Research, 40(20), 3800-3810. https://doi.org/10.1016/j.watres.2006.08.030
  • Ozbayram, E.G., Koker, L., Akçaalan, R., Aydın, F., Ertürk, A., Ince, O., Albay, M. (2020). Contrasting the water quality and bacterial community patterns in shallow and deep lakes: Manyas vs. Iznik. Environmental Management. https://doi.org/10.1007/s00267-020-01357-7
  • Özyalin, S., Ustaoglu, M. R. (2008). Kemer Baraj Gölü (Aydın) net fitoplankton kompozisyonunun incelenmesi. E.U. Journal of Fisheries Aquatic Sciences, 25(4), 275-282.
  • Palombo, C., Chirici, G., Marchetti, M., Tognetti, R. (2013). Is land abandonment affecting forest dynamics at high elevation in Mediterranean mountains more than climate change? Plant Biosystems - An International Journal Dealing with All Aspects of Plant Biology, 147(1), 1-11. https://doi.org/10.1080/11263504.2013.772081
  • Pappalardo, S.E., Ibrahim, H.M.S., Cerinato, S., Borin, M. (2017). Assessing the water-purification service in an integrated agricultural wetland within the Venetian Lagoon drainage system. Marine and Freshwater Research, 68(12), 2205. https://doi.org/10.1071/MF16083
  • Pavan, F., Breschigliaro, S., Borin, M. (2015). Screening of 18 species for digestate phytodepuration. Environmental Science and Pollution Research, 22(4), 2455-2466. https://doi.org/10.1007/s11356-014-3247-3
  • Pelicice, F. M., Agostinho, A. A. (2006). Feeding ecology of fishes associated with Egeria spp. patches in a tropical reservoir, Brazil. Ecology of Freshwater Fish, 15(1), 10-19. https://doi.org/10.1111/j.1600-0633.2005.00121.x
  • Polat, F., Özmen, H. (2011). Determination of the trophic level of almus dam lake and research its phosphorus carrying capacity. Ekoloji, 59(78), 53-59. https://doi.org/10.5053/ekoloji.2011.789
  • Prashant, Billore, S. K. (2020). Macroinvertebrates associated with artificial floating islands installed in River Kshipra for water quality improvement. Water Science and Technology, 81(6), 1242-1249. https://doi.org/10.2166/wst.2020.219
  • Rehman, K., Imran, A., Amin, I., Afzal, M. (2018). Inoculation with bacteria in floating treatment wetlands positively modulates the phytoremediation of oil field wastewater. Journal of Hazardous Materials, 349, 242-251. https://doi.org/10.1016/j.jhazmat.2018.02.013
  • Revitt, D.M., Shutes, R.B.E., Llewellyn, N.R., Worrall, P. (1997). Experimental reedbed systems for the treatment of airport runoff. Water Science and Technology, 36(8-9), 385-390. https://doi.org/10.1016/S0273-1223(97)00569-6
  • Revitt, D.M., Worrall, P., Brewer, D. (2001). The integration of constructed wetlands into a treatment system for airport runoff. Water Science and Technology, 44(11-12), 469-476. https://doi.org/10.2166/wst.2001.0868
  • Richter, K.M. (2004). Constructed wetlands for the treatment of airport de-icer. Doktora Tezi, University of Sheffield, Department of Civil and Structural Engineering, Sheffield, UK. 253s.
  • Rocha, E.G., Feitosa, P.H.C., de Amorim Coura, M., Barbosa, D.L. (2021). Temporal and spatial trends of a floating islands system’s efficiency. Journal of Environmental Management, 277(111367). https://doi.org/10.1016/j.jenvman.2020.111367
  • Rupani, P.F., Nilashi, M., Abumalloh, R.A., Asadi, S., Samad, S., Wang, S. (2020). Coronavirus pandemic (COVID-19) and its natural environmental impacts. International Journal of Environmental Science and Technology, 1-12. https://doi.org/10.1007/s13762-020-02910-x
  • Saeed, T., Al-Muyeed, A., Afrin, R., Rahman, H., Sun, G. (2014). Pollutant removal from municipal wastewater employing baffled subsurface flow and integrated surface flow-floating treatment wetlands. Journal of Environmental Sciences (China), 26(4), 726-736. https://doi.org/10.1016/S1001-0742(13)60476-3
  • Şahin, P.A., Yüce, A.M., Soylu, E. (2013). Büyük Akgöl (Sakarya) fitoplankton kompozisyonu ve mevsimsel değişimleri. Süleyman Demirel Üniversitesi Eğirdir Su Ürünleri Fakültesi Dergisi, 9(2), 14-21.
  • Saleem, H., Arslan, M., Rehman, K., Tahseen, R., Afzal, M. (2019). Phragmites australis — a helophytic grass — can establish successful partnership with phenol-degrading bacteria in a floating treatment wetland. Saudi Journal of Biological Sciences, 26(6), 11791186. https://doi.org/10.1016/j.sjbs.2018.01.014
  • Saler, S. (2020). Dedeyolu Göleti (Elazığ–Türkiye) Zooplanktonu. Ecological Life Sciences, 15(4), 143-154. https://doi.org/http://dx.doi.org/10.12739/NWSA.2020.15.4.5A0141
  • Saviolo Osti, J.A., do Carmo, C.F., Silva Cerqueira, M. A., Duarte Giamas, M.T., Peixoto, A.C., Vaz-dos-Santos, A.M., Mercante, C.T.J. (2020). Nitrogen and phosphorus removal from fish farming effluents using artificial floating islands colonized by Eichhornia crassipes. Aquaculture Reports, 17(100324). https://doi.org/10.1016/j.aqrep.2020.100324
  • Scheffer, M., Hosper, S.H., Meijer, M.L., Moss, B., Jeppesen, E. (1993). Alternative equilibria in shallow lakes. In Trends in Ecology and Evolution, 8(8), 275-279. https://doi.org/10.1016/0169-5347(93)90254-M
  • Şener, Ş., Davraz, A., Karagüzel, R. (2014). Assessment of trace metal contents in water and bottom sediments from Eǧirdir Lake, Turkey. Environmental Earth Sciences, 71(6), 2807-2819. https://doi.org/10.1007/s12665-013-2659-6
  • Şener, Ş., Şener, E. (2016). Kovada Gölü’Nün (Isparta Kovada Gölü'nün (Isparta) Hidrojeokimyasal İncelemesi. Mühendislik Bilimleri ve Tasarım Dergisi, 4(2), 49. https://doi.org/10.21923/jesd.92987
  • Şener, Ş., Şener, E., Davraz, A., Karagüzel, R., Bulut, C. (2010). Eğirdir Gölü Su Kalitesine Yönelik Ön Bulgular: Yerinde Ölçümlerin Değerlendirilmesi. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, 14(1), 72-83. https://doi.org/10.19113/sdufbed.70687
  • Sezen, G. (2008). Sarımsaklı Baraj Gölü (Kayseri) Fitoplanktonu ve Su Kalitesi Özellikleri. Ankara University.
  • Shahid, M.J., Tahseen, R., Siddique, M., Ali, S., Iqbal, S., Afzal, M. (2019). Remediation of polluted river water by floating treatment wetlands. Water Science and Technology: Water Supply, 19(3), 967-977. https://doi.org/10.2166/ws.2018.154
  • Shrestha, A.M., Shrestha, U.B., Sharma, R., Bhattarai, S., Tran, H.N.T., Rupakheti, M. (2020). Lockdown caused by COVID-19 pandemic reduces air pollution in cities worldwide. https://doi.org/10.31223/osf.io/edt4j
  • Sömek, H., Ustaoğlu, M.R. (2016). Yaz aylarında Batı Anadolu’nun bazı dağ göllerinin (denizli-muğla) fitoplankton kompozisyonu ve trofik durum indeksi değerleri. Ege Journal of Fisheries and Aquatic Sciences, 33(2), 121. https://doi.org/10.12714/egejfas.2016.33.2.05
  • Stewart, F.M., Mulholland, T., Cunningham, A.B., Kania, B.G., Osterlund, M.T. (2008). Floating islands as an alternative to constructed wetlands for treatment of excess nutrients from agricultural and municipal wastes – results of laboratory-scale tests. Land Contamination Reclamation, 16(1). 25-33. https://doi.org/10.2462/09670513.874
  • Sun, S., Gao, L., He, S., Huang, J., Zhou, W. (2019). Nitrogen removal in response to plants harvesting in two kinds of enhanced hydroponic root mats treating secondary effluent. Science of the total environment, 670, 200-209. https://doi.org/10.1016/j.scitotenv.2019.03.182
  • Sun, L., Liu, Y., Jin, H. (2009). Nitrogen removal from polluted river by enhanced floating bed grown canna. Ecological Engineering, 35(1), 135-140. https://doi.org/10.1016/j.ecoleng.2008.09.016
  • Tanner, C.C., Headley, T. (2008). Floating treatment wetlands— an innovative solution to enhance removal of fine particulates, copper and zinc. The Nzwwa Journal.
  • Tara, N., Arslan, M., Hussain, Z., Iqbal, M., Khan, Q. M., Afzal, M. (2019). On-site performance of floating treatment wetland macrocosms augmented with dye-degrading bacteria for the remediation of textile industry wastewater. Journal of Cleaner Production, 217, 541-548. https://doi.org/10.1016/j.jclepro.2019.01.258
  • Taş, B. (2011). Gaga Gölü (Ordu, Türkiye) Su Kalitesinin İncelenmesi. The Black Sea Journal of Sciences, 1(3), 43-61.
  • Taş, B., Hamzaçelebi, E.Ş. (2020). Assessment of algal diversity and hydrobiological preliminary results in a high-mountain lake (Karagöl Lake, Giresun Mountains, Turkey). Review of Hydrobiology, 13(1-2), 11-38.
  • Taş, B., Sahin, H., Yarılgaç, T. (2018). Ulugöl’de (Ulugöl Tabiat Parkı, Ordu) hidrofitlerin artışı üzerine bir ön inceleme. Akademik Ziraat Dergisi, 7(1), 111-120. https://doi.org/10.29278/azd.440704
  • Tatar, S.Y. (2014). İkincil Arıtma Çıkış Suyuna Adapte Edilen Lemna minör L. ile Lemna gibba L. ’da Ağır Metal Akümülasyonu ve Oksidatif Stres Düzeyinin Belirlenmesi. Doktora Tezi, Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Elazığ. 157s.
  • Tepe, R., Karakaya, G., Sahin, A.G., Sesli, A., Küçükyılmaz, M., Aksagan, A. (2018). Karkamış Baraj Gölü Trofik Durumu. International Journal of Innovative Engineering Applications, 2(1), 1-3.
  • Tereshenko, E.T. (2019). Abant Gölü (Bolu) Bentik Makroomurgasız Faunası ve Dağılımı. In Institute of science and technology. Doktora Tezi, Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Ankara. 187s.
  • Topkara, S. (2011). Çambaşı Göleti (Kabadüz, Ordu) Fitoplanktonu ve Trofik Yapısının İncelenmesi. Yüksek Lisans Tezi, Ordu Üniversitesi, Fen Bilimleri Enstitüsü, Ordu. 118s.
  • Tosun, S. (2014). Doğada gizemli bir gerdanlık: Abant Gölü Turbalığı. Abant Mudurnulular Bülteni, 7, 32-38.
  • Vadde, K.K., Jianjun, W., Long, C., Tianma, Y., Alan, J., Raju, S. (2018). Assessment of water quality and identification of pollution rick locations in Tiaoxi river (Taihu watershed), China. Water, 10, 183. https://doi.org/10.3390/w10020183
  • Van Acker, J., Buts, L., Thoeye, C., De Gueldre, G. (2005). Floating plant beds: BAT for CSO treatment. International Symposium on Wetland Pollutant Dynamics and Control, 186-187.
  • Van de Moortel, A.M.K. (2011). Constructed floating wetlands for combined sewer overflow water treatment. Ghent University. https://biblio.ugent.be/publication/1108288 (Erişim Tarihi: 05.02.2021)
  • Van De Moortel, A.M.K., Meers, E., De Pauw, N., Tack, F.M.G. (2010). Effects of vegetation, season and temperature on the removal of pollutants in experimental floating treatment wetlands. Water, Air, and Soil Pollution, 212(1-4), 281-297. https://doi.org/10.1007/s11270-010-0342-z
  • Varol, M. (2010). Dicle Nehri ve Üzerindeki Baraj Göllerinin Fiziksel, Kimyasal ve Algolojik Özellikleri. Doktora Tezi, Fırat Universitesi Fen Bilimleri Enstitüsü.
  • Vera, L. M., Davie, A., Taylor, J. F., Migaud, H. (2010). Differential light intensity and spectral sensitivities of Atlantic salmon, European sea bass and Atlantic cod pineal glands ex vivo. General and Comparative Endocrinology, 165(1), 25-33. https://doi.org/10.1016/j.ygcen.2009.05.021
  • Wang, Q., Su, M. (2020). A preliminary assessment of the impact of COVID-19 on environment–A case study of China. Science of the total environment, 728, 138915. https://doi.org/10.1016/j.scitotenv.2020.138915
  • White, S. A., Cousins, M. M. (2013). Floating treatment wetland aided remediation of nitrogen and phosphorus from simulated stormwater runoff. Ecological Engineering, 61, 207-215. https://doi.org/10.1016/j.ecoleng.2013.09.020
  • WHO, (2019). Results of Round II of the WHO International Scheme to Evaluate Household Water Treatment Technologies. World Health Organization, Geneva, Switzerland.
  • WHO/UNICEF, (2019). Progress on household drinking water, sanitation and hygiene 2000-2017: Special focus on inequalities. United Nations Children’s Fund (UNICEF) and World Health Organization, New York, USA. https://www.unicef.org/reports/progress-on-drinking-water-sanitation-and-hygiene-2019 (Erişim Tarihi: 08.04.2021).
  • Winston, R.J., Hunt, W.F., Kennedy, S.G., Merriman, L.S., Chandler, J., Brown, D. (2013). Evaluation of floating treatment wetlands as retrofits to existing stormwater retention ponds. Ecological Engineering, 54, 254-265. https://doi.org/10.1016/j.ecoleng.2013.01.023
  • Wolverton, B.C., McDonald, R.C. (1975). Water hyacinths and alligator weeds for removal of lead and mercury from polluted waters. https://ntrs.nasa.gov/citations/19750014865 (Erişim Tarihi: 30.12.2020)
  • World Bank, (2019). Working together for a water-secure for all. World Bank, Washington, DC. https://documents1.worldbank.org/curated/en/962901566309738776/Working-Together-for-a-Water-Secure-World.pdf (Erişim Tarihi: 08.04.2021)
  • Xian, Q., Hu, L., Chen, H., Chang, Z., Zou, H. (2010). Removal of nutrients and veterinary antibiotics from swine wastewater by a constructed macrophyte floating bed system. Journal of Environmental Management, 91(12), 2657–2661. https://doi.org/10.1016/j.jenvman.2010.07.036
  • Xiao, R., Duan, Y., Chu, W. (2020). The effectiveness of household water treatment and safe storage in improving drinking water quality: a disinfection by-product (DBP) perspective. Journal of Water Supply: Research and Technology—AQUA, 69(8), 785-806. https://doi.org/10.2166/aqua.2020.052
  • Yang, Z., Zheng, S., Chen, J., Sun, M. (2008). Purification of nitrate-rich agricultural runoff by a hydroponic system. Bioresource Technology, 99(17), 8049-8053. https://doi.org/10.1016/j.biortech.2008.03.040
  • Yao, K., Song, S., Zhang, Z., Xu, J., Zhang, R., Liu, J., Cheng, L., Liu, J. (2011). Vegetation characteristics and water purification by artificial floating island. African Journal of Biotechnology, 10(82), 19119-19125. https://doi.org/10.5897/AJB11.2964
  • Yeh, N., Yeh, P., Chang, Y.H. (2015). Artificial floating islands for environmental improvement. Renewable and Sustainable Energy Reviews, 47, 616-622. https://doi.org/10.1016/j.rser.2015.03.090
  • Yüce, A. (1999). Kovada Gölü ve Kanalı Alglerinin Taksonomik ve Ekolojik Yönden İncelenmesi. Doktora Tezi, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsüi Isparta. 188s.
  • Zhang, C.B., Liu, W.L., Pan, X.C., Guan, M., Liu, S.Y., Ge, Y., Chang, J. (2014). Comparison of effects of plant and biofilm bacterial community parameters on removal performances of pollutants in floating island systems. Ecological Engineering, 73, 58-63. https://doi.org/10.1016/j.ecoleng.2014.09.023
  • Zhang, L., Zhao, J., Cui, N., Dai, Y., Kong, L., Wu, J., Cheng, S. (2016). Enhancing the water purification efficiency of a floating treatment wetland using a biofilm carrier. Environmental Science and Pollution Research, 23(8), 7437-7443. https://doi.org/10.1007/s11356-015-5873-9
  • Zhang, Z., Liu, Y., Hu, S., Wang, J., Qian, J. (2021). A New type of ecological floating bed based on ornamental plants experimented in an artificially made eutrophic water body in the laboratory for nutrient removal. Bulletin of Environmental Contamination and Toxicology, 106, 2-9. https://doi.org/10.1007/s00128-020-03086-3
  • Zhao, F., Xi, S., Yang, X., Yang, W., Li, J., Gu, B., He, Z. (2012). Purifying eutrophic river waters with integrated floating island systems. Ecological Engineering, 40, 53-60. https://doi.org/10.1016/j.ecoleng.2011.12.012
  • Zhao, F., Yang, W., Zeng, Z., Li, H., Yang, X., He, Z., Gu, B., Rafiq, M.T., Peng, H. (2012). Nutrient removal efficiency and biomass production of different bioenergy plants in hypereutrophic water. Biomass and Bioenergy, 42, 212-218. https://doi.org/10.1016/j.biombioe.2012.04.003
  • Zhou, X., Wang, G. (2010). Nutrient concentration variations during Oenanthe javanica growth and decay in the ecological floating bed system. Journal of Environmental Sciences, 22(11), 1710-1717. https://doi.org/10.1016/S1001-0742(09)60310-7
  • Zhu, L., Li, Z., Ketola, T. (2011). Biomass accumulations and nutrient uptake of plants cultivated on artificial floating beds in chinas rural area. Ecological Engineering, 37(10), 1460-1466. https://doi.org/10.1016/j.ecoleng.2011.03.010
Toplam 158 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Deniz Mühendisliği
Bölüm Review Articles
Yazarlar

Mert Minaz 0000-0003-1894-9807

Ayşegül Kubilay 0000-0002-6043-2599

Yayımlanma Tarihi 1 Ekim 2021
Gönderilme Tarihi 3 Mart 2021
Yayımlandığı Sayı Yıl 2021Cilt: 4 Sayı: 4

Kaynak Göster

APA Minaz, M., & Kubilay, A. (2021). Doğal arıtım sistemi: Yapay yüzen ada teknolojisinin Türkiye’deki göl, gölet ve baraj göllerinde uygulanma potansiyeli. Aquatic Research, 4(4), 376-394. https://doi.org/10.3153/AR21032

16291

is licensed under a CreativeCommons Attribtion-ShareAlike 4.0 International Licence 14628   1325927040

Diamond Open Access refers to a scholarly publication model in which journals and platforms do not charge fees to either authors or readers.

Open Access Statement:

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.

Archiving Policy:

Archiving is done according to TÜBİTAK ULAKBİM "DergiPark" publication policy (LOCKSS).