Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 4 Sayı: 3, 150 - 156, 30.12.2023
https://doi.org/10.51753/flsrt.1357325

Öz

Kaynakça

  • Acet, T., Corbaci, C., & Ozcan, K. (2021). Phenolic contents and biological activities of two endemic plants in Turkey. South African Journal of Botany, 143, 457-461.
  • Van Alphen, J. G., & de los Ríos Romero, F. (1971). Gypsiferous soils: notes on their characteristics and management. (pp. 1-44). International Institute for Land Reclamation and Improvement, Wageningen, The Netherlands.
  • Alizadeh, Z., & Fattahi, M. (2021). Essential oil, total phenolic, flavonoids, anthocyanins, carotenoids and antioxidant activity of cultivated Damask Rose (Rosa damascena) from Iran: With chemotyping approach concerning morphology and composition. Scientia Horticulturae, 288, 110341.
  • Arituluk, Z. C., Cankaya, I. I. T., & Ozkan, A. M. G. (2016). Antioxidant activity, total phenolic and flavonoid contents of some Tanacetum L. (Asteraceae) taxa growing in Turkey. FABAD Journal of Pharmaceutical Sciences, 41(1), 17-25.
  • Bayan, Y., & Genc, N. (2016). Determination of antioxidant capacity and total phenolic matter of Salvia verticillata subsp. amasiaca. Nevşehir Bilim ve Teknoloji Dergisi, 5(2), 158-166.
  • Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199-1200. Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colometric methods. Journal of Food and Drug Analysis, 10(3), 3.
  • Chang, M. Y., Lin, Y. Y., Chang, Y. C., Huang, W. Y., Lin, W. S., Chen, C. Y., ... & Lin, Y. S. (2020). Effects of infusion and storage on antioxidant activity and total phenolic content of black tea. Applied Sciences, 10(8), 2685.
  • Chepel, V., Lisun, V., & Skrypnik, L. (2020). Changes in the content of some groups of phenolic compounds and biological activity of extracts of various parts of heather (Calluna vulgaris (L.) Hull) at different growth stages. Plants, 9(8), 926.
  • Colak, S., Dağlı, F., Comlekcioglu, N., Kocabas, Y. Z., & Aygan, A. (2020). Antimicrobial activity and some phytochemical properties of extracts from Achillea aleppica subsp. aleppica. GIDA-Journal of Food, 45(5), 929-941.
  • Comlekcioglu, N. (2020). Bazı endemik ve doğal Isatis L. türlerine ait kök ve gövde ekstraktlarının biyoaktivitesi ile tohum yağlarının analizi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 23(4), 860-869.
  • El Atki, Y., Aouam, I., Taroq, A., Lyoussi, B., Taleb, M., & Abdellaoui, A. (2019). Total phenolic and flavonoid contents and antioxidant activities of extracts from Teucrium polium growing wild in Morocco. Materials Today: Proceedings, 13, 777-783.
  • Ergun, F. (2021). Erzurum Olur yöresinden toplanan Berberis vulgaris L. meyvelerinin antioksidan aktivitelerinin belirlenmesi. Türk Tarım ve Doğa Bilimleri Dergisi, 8(4), 1028-1034.
  • Feduraev, P., Chupakhina, G., Maslennikov, P., Tacenko, N., & Skrypnik, L. (2019). Variation in phenolic compounds content and antioxidant activity of different plant organs from Rumex crispus L. and Rumex obtusifolius L. at different growth stages. Antioxidants, 8(7), 237.
  • Fitriansyah, S. N., Aulifa, D. L., Febriani, Y., & Sapitri, E. (2018). Correlation of total phenolic, flavonoid and carotenoid content of Phyllanthus emblica extract from Bandung with DPPH scavenging activities. Pharmacognosy Journal, 10(3), 447-452.
  • Gentile, D., Fornai, M., Pellegrini, C., Colucci, R., Blandizzi, C., & Antonioli, L. (2018). Dietary flavonoids as a potential intervention to improve redox balance in obesity and related co-morbidities: a review. Nutrition Research Reviews, 31(2), 239-247.
  • Ghafar, M. F., Prasad, K. N., Weng, K. K., & Ismail, A. (2010). Flavonoid, hesperidine, total phenolic contents and antioxidant activities from Citrus species. African Journal of Biotechnology, 9(3), 326-330.
  • Guven, H., Arici, A., & Simsek, O. (2019). Flavonoids in our foods: a short review. Journal of Basic and Clinical Health Sciences, 3(2), 96-106.
  • Herrero, J., & Porta, J. (2000). The terminology and the concepts of gypsum-rich soils. Geoderma, 96(1-2), 47-61.
  • Indradi, R. B., Fidrianny, I., & Wirasutisna, K. R. (2017). DPPH scavenging activities and phytochemical content of four Asteraceae plants. International Journal of Pharmacognosy and Phytochemical Research, 9(6), 755-759.
  • Karatas, I., Karatas, R., & Elmastas, M. (2019). Yaygın olarak kullanılan bazı tıbbi ve aromatik bitkilerin sıcak su infüzyonlarının sekonder metabolit içeriği ve antioksidan aktivitelerinin belirlen-mesi. Gaziosmanpaşa Bilimsel Araştırma Dergisi, 8(2), 49-57.
  • Kruckeberg, A. R. (2002). The influences of lithology on plant life. Geology and plant life: the effects of landforms and rock type on plants, 160-81.
  • Larson, R. A. (1988). The antioxidants of higher plants. Phytochemistry, 27, 969-978.
  • Mikulajová, A., Sedivá, D., Hybenová, E., & Mosovská, S. (2016). Buckwheat cultivars--phenolic compounds profiles and antioxidant properties. Acta Chimica Slovaca, 9(2), 124-129.
  • Murathan, Z. T., & Ozdinc, M. (2018). Ardahan ve Elazığ illerinde yetişen Anchusa azurea Miller var. Azurea bitkisinin biyoaktif bileşenleri ve antioksidan kapasitesi üzerine bir araştırma. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 21(4), 529-534.
  • Oyaizu, M. (1986). Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese Journal of Nutrition and Dietetics, 44(6), 307-315.
  • Ozdeniz, E., Ozbey, B. G., Kurt, L., & Bolukbasi, A. (2017). Serpentine ecology and contributions to the serpentine flora of Turkey. Toprak Bilimi ve Bitki Besleme Dergisi, 5(1), 22-33.
  • Ozdeniz, E., Bolukbasi, A., Kurt, L., & Ozbey, B. G. (2016). Ecology of gypsophile plants. Toprak Bilimi ve Bitki Besleme Dergisi, 4(2), 57-62.
  • Ozyigit, I. I., Dogan, I., Hocaoglu-Ozyigit, A., Yalcin, B., Erdogan, A., Yalcin, I. E., ... & Kaya, Y. (2023). Production of secondary metabolites using tissue culture-based biotechnological applications. Frontiers in Plant Science, 14, 1132555.
  • Percival, M. (1996). Antioxidants. Clinical Nutrition Insights, NUT031 1/96 Rev.10/98.
  • Politycka, B., & Adamska, D. (2003). Release of phenolic compounds from apple residues decomposing in soil and the influence of temperature on their degradation. Polish Journal of Environmental Studies, 12(1), 95-98.
  • Rumbaoa, R. G. O., Cornago, D. F., & Geronimo, I. M. (2009). Phenolic content and antioxidant capacity of Philippine potato (Solanum tuberosum) tubers. Journal of Food Composition and Analysis, 22(6), 546-550.
  • Saffaryazdi, A., Ganjeali, A., Farhoosh, R., & Cheniany, M. (2020). Variation in phenolic compounds, a-linolenic acid and linoleic acid contents and antioxidant activity of purslane (Portulaca oleracea L.) during phenological growth stages. Physiology and Molecular Biology of Plants, 26(7), 1519-1529.
  • Saral, O., Sahin, H., & Karakose, M. (2015). Vinca major subsp. hirsuta’nın antioksidan aktivitesinin ve RP-HPLC-UV ile fenolik bileşenlerinin belirlenmesi. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 16(2), 124-131.
  • Shen, N., Wang, T., Gan, Q., Liu, S., Wang, L., & Jin, B. (2022). Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chemistry, 383, 132531.
  • Singh, T. S., Roy, S. S., Kshetri, P., Ansari, M. A., Sharma, S. K., Verma, M. R., ... & Kandpal, B. (2021). Comparative study on phenolic, flavonoids and in vitro antioxidant activity of wild edible plants from Loktak Lake wetland ecosystem under North East Indian Himalayan Region. Natural Product Research, 35(24), 6045-6048.
  • Singanusong, R., Nipornram, S., Tochampa, W., & Rattanatraiwong, P. (2015). Low power ultrasound-assisted extraction of phenolic compounds from mandarin (Citrus reticulata Blanco cv. Sainampueng) and lime (Citrus aurantifolia) peels and the antioxidant. Food Analytical Methods, 8, 1112-1123.
  • Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in enzymology (Vol. 299, pp. 152-178). Academic press.
  • Stankovic, M. S., Petrovic, M., Godjevac, D., & Stevanovic, Z. D. (2015). Screening inland halophytes from the central Balkan for their antioxidant activity in relation to total phenolic compounds and flavonoids: Are there any prospective medicinal plants?. Journal of Arid Environments, 120, 26-32.
  • Tajik, S., Zarinkamar, F., Soltani, B. M., & Nazari, M. (2019). Induction of phenolic and flavonoid compounds in leaves of saffron (Crocus sativus L.) by salicylic acid. Scientia Horticulturae, 257, 108751.
  • Verheye, W. H., & Boyadgiev, T. G. (1997). Evaluating the land use potential of gypsiferous soils from field pedogenic characteristics. Soil Use and Management, 13(2), 97-103.
  • Yildiz, S., Gurgen, A., Kilic, C., Tabbouche, S., Kilic, A. O., & Can, Z. (2019). Antioxidant, antimicrobial and anti-quorum sensing activities of Usnea filipendula and Viscum album. Journal of Anatolian Environmental and Animal Sciences, 4(4), 613-620.
  • Zugic, A., Dorđevic, S., Arsic, I., Markovic, G., Zivkovic, J., Jovanovic, S., & Tadic, V. (2014). Antioxidant activity and phenolic compounds in 10 selected herbs from Vrujci Spa, Serbia. Industrial Crops and Products, 52, 519-527.
  • Williamson, G., Kay, C. D., & Crozier, A. (2018). The bioavailability, transport, and bioactivity of dietary flavonoids: A review from a historical perspective. Comprehensive Reviews in Food Science and Food Safety, 17(5), 1054-1112.

Antioxidant activities of plant species growing in different habitats (serpentine, gypsum and limestone)

Yıl 2023, Cilt: 4 Sayı: 3, 150 - 156, 30.12.2023
https://doi.org/10.51753/flsrt.1357325

Öz

In this study, plant species (gypsum, limestone, and serpentine) growing in different habitats in Erzincan province were investigated. Gypsum [Verbascum alyssifolium Boiss., Tanacetum heterotomum (Bornm.) Grierson, Psephellus recepii Wagenitz & Kandemir, Gypsophila lepidioides Boiss.], limestone [Cyclotrichium niveum (Boiss.) Manden. & Scheng, Chrysophthalmum montanum (DC.) Boiss, Teucrium leucophyllum Montbret & Aucher ex Bentham, Phlomis oppositiflora Boiss. & Hausskn] serpentine [Fumana aciphylla Boiss., Convolvulus pseudoscammania C. Koch., Hypericum thymbrifolium Boiss & Noé, Salvia indica L., Gladiolus halophilus Boiss. & Heldr.] were examined. The total phenolic contents (TPC), total flavonoid content (TFC), and the amount of antioxidant activity (DPPH, FRAP) were analyzed in different organs of the plants, including leaves, branches, and roots. According to the obtained data, when plant parts and habitats were taken into consideration, it was observed that the plant with the highest flavonoid content (29.71±0.57 mg QE g-1 extract) was S. indica growing in the serpentine area with its leaf parts. In terms of total phenolic content, it was determined that the root part of S. indica growing in the serpentine area had high values (91.53±2.48 mg GAE g-1 extract value). When evaluated in terms of the Iron (III) Ion Reducing Antioxidant Power (FRAP) method, it was observed that the highest value was the stem part of F. aciphylla growing in a serpentine area (100.35±1.60 mg TE g-1). In terms of DPPH radical capacity, the highest value belonged to the leaf part of Salvia indica (15.75±1.74 μg mL-1), which is also grown in the serpentine area. The results were evaluated utilizing the SPSS Statistical Program and differences were observed between habitats. A strong correlation was found between the phenolic and flavonoid contents of plants and their antioxidant activities. The findings showed that the phenolic, flavonoid content, and antioxidant activities of plants grown in different ecological conditions vary significantly.

Kaynakça

  • Acet, T., Corbaci, C., & Ozcan, K. (2021). Phenolic contents and biological activities of two endemic plants in Turkey. South African Journal of Botany, 143, 457-461.
  • Van Alphen, J. G., & de los Ríos Romero, F. (1971). Gypsiferous soils: notes on their characteristics and management. (pp. 1-44). International Institute for Land Reclamation and Improvement, Wageningen, The Netherlands.
  • Alizadeh, Z., & Fattahi, M. (2021). Essential oil, total phenolic, flavonoids, anthocyanins, carotenoids and antioxidant activity of cultivated Damask Rose (Rosa damascena) from Iran: With chemotyping approach concerning morphology and composition. Scientia Horticulturae, 288, 110341.
  • Arituluk, Z. C., Cankaya, I. I. T., & Ozkan, A. M. G. (2016). Antioxidant activity, total phenolic and flavonoid contents of some Tanacetum L. (Asteraceae) taxa growing in Turkey. FABAD Journal of Pharmaceutical Sciences, 41(1), 17-25.
  • Bayan, Y., & Genc, N. (2016). Determination of antioxidant capacity and total phenolic matter of Salvia verticillata subsp. amasiaca. Nevşehir Bilim ve Teknoloji Dergisi, 5(2), 158-166.
  • Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199-1200. Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colometric methods. Journal of Food and Drug Analysis, 10(3), 3.
  • Chang, M. Y., Lin, Y. Y., Chang, Y. C., Huang, W. Y., Lin, W. S., Chen, C. Y., ... & Lin, Y. S. (2020). Effects of infusion and storage on antioxidant activity and total phenolic content of black tea. Applied Sciences, 10(8), 2685.
  • Chepel, V., Lisun, V., & Skrypnik, L. (2020). Changes in the content of some groups of phenolic compounds and biological activity of extracts of various parts of heather (Calluna vulgaris (L.) Hull) at different growth stages. Plants, 9(8), 926.
  • Colak, S., Dağlı, F., Comlekcioglu, N., Kocabas, Y. Z., & Aygan, A. (2020). Antimicrobial activity and some phytochemical properties of extracts from Achillea aleppica subsp. aleppica. GIDA-Journal of Food, 45(5), 929-941.
  • Comlekcioglu, N. (2020). Bazı endemik ve doğal Isatis L. türlerine ait kök ve gövde ekstraktlarının biyoaktivitesi ile tohum yağlarının analizi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 23(4), 860-869.
  • El Atki, Y., Aouam, I., Taroq, A., Lyoussi, B., Taleb, M., & Abdellaoui, A. (2019). Total phenolic and flavonoid contents and antioxidant activities of extracts from Teucrium polium growing wild in Morocco. Materials Today: Proceedings, 13, 777-783.
  • Ergun, F. (2021). Erzurum Olur yöresinden toplanan Berberis vulgaris L. meyvelerinin antioksidan aktivitelerinin belirlenmesi. Türk Tarım ve Doğa Bilimleri Dergisi, 8(4), 1028-1034.
  • Feduraev, P., Chupakhina, G., Maslennikov, P., Tacenko, N., & Skrypnik, L. (2019). Variation in phenolic compounds content and antioxidant activity of different plant organs from Rumex crispus L. and Rumex obtusifolius L. at different growth stages. Antioxidants, 8(7), 237.
  • Fitriansyah, S. N., Aulifa, D. L., Febriani, Y., & Sapitri, E. (2018). Correlation of total phenolic, flavonoid and carotenoid content of Phyllanthus emblica extract from Bandung with DPPH scavenging activities. Pharmacognosy Journal, 10(3), 447-452.
  • Gentile, D., Fornai, M., Pellegrini, C., Colucci, R., Blandizzi, C., & Antonioli, L. (2018). Dietary flavonoids as a potential intervention to improve redox balance in obesity and related co-morbidities: a review. Nutrition Research Reviews, 31(2), 239-247.
  • Ghafar, M. F., Prasad, K. N., Weng, K. K., & Ismail, A. (2010). Flavonoid, hesperidine, total phenolic contents and antioxidant activities from Citrus species. African Journal of Biotechnology, 9(3), 326-330.
  • Guven, H., Arici, A., & Simsek, O. (2019). Flavonoids in our foods: a short review. Journal of Basic and Clinical Health Sciences, 3(2), 96-106.
  • Herrero, J., & Porta, J. (2000). The terminology and the concepts of gypsum-rich soils. Geoderma, 96(1-2), 47-61.
  • Indradi, R. B., Fidrianny, I., & Wirasutisna, K. R. (2017). DPPH scavenging activities and phytochemical content of four Asteraceae plants. International Journal of Pharmacognosy and Phytochemical Research, 9(6), 755-759.
  • Karatas, I., Karatas, R., & Elmastas, M. (2019). Yaygın olarak kullanılan bazı tıbbi ve aromatik bitkilerin sıcak su infüzyonlarının sekonder metabolit içeriği ve antioksidan aktivitelerinin belirlen-mesi. Gaziosmanpaşa Bilimsel Araştırma Dergisi, 8(2), 49-57.
  • Kruckeberg, A. R. (2002). The influences of lithology on plant life. Geology and plant life: the effects of landforms and rock type on plants, 160-81.
  • Larson, R. A. (1988). The antioxidants of higher plants. Phytochemistry, 27, 969-978.
  • Mikulajová, A., Sedivá, D., Hybenová, E., & Mosovská, S. (2016). Buckwheat cultivars--phenolic compounds profiles and antioxidant properties. Acta Chimica Slovaca, 9(2), 124-129.
  • Murathan, Z. T., & Ozdinc, M. (2018). Ardahan ve Elazığ illerinde yetişen Anchusa azurea Miller var. Azurea bitkisinin biyoaktif bileşenleri ve antioksidan kapasitesi üzerine bir araştırma. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 21(4), 529-534.
  • Oyaizu, M. (1986). Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese Journal of Nutrition and Dietetics, 44(6), 307-315.
  • Ozdeniz, E., Ozbey, B. G., Kurt, L., & Bolukbasi, A. (2017). Serpentine ecology and contributions to the serpentine flora of Turkey. Toprak Bilimi ve Bitki Besleme Dergisi, 5(1), 22-33.
  • Ozdeniz, E., Bolukbasi, A., Kurt, L., & Ozbey, B. G. (2016). Ecology of gypsophile plants. Toprak Bilimi ve Bitki Besleme Dergisi, 4(2), 57-62.
  • Ozyigit, I. I., Dogan, I., Hocaoglu-Ozyigit, A., Yalcin, B., Erdogan, A., Yalcin, I. E., ... & Kaya, Y. (2023). Production of secondary metabolites using tissue culture-based biotechnological applications. Frontiers in Plant Science, 14, 1132555.
  • Percival, M. (1996). Antioxidants. Clinical Nutrition Insights, NUT031 1/96 Rev.10/98.
  • Politycka, B., & Adamska, D. (2003). Release of phenolic compounds from apple residues decomposing in soil and the influence of temperature on their degradation. Polish Journal of Environmental Studies, 12(1), 95-98.
  • Rumbaoa, R. G. O., Cornago, D. F., & Geronimo, I. M. (2009). Phenolic content and antioxidant capacity of Philippine potato (Solanum tuberosum) tubers. Journal of Food Composition and Analysis, 22(6), 546-550.
  • Saffaryazdi, A., Ganjeali, A., Farhoosh, R., & Cheniany, M. (2020). Variation in phenolic compounds, a-linolenic acid and linoleic acid contents and antioxidant activity of purslane (Portulaca oleracea L.) during phenological growth stages. Physiology and Molecular Biology of Plants, 26(7), 1519-1529.
  • Saral, O., Sahin, H., & Karakose, M. (2015). Vinca major subsp. hirsuta’nın antioksidan aktivitesinin ve RP-HPLC-UV ile fenolik bileşenlerinin belirlenmesi. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 16(2), 124-131.
  • Shen, N., Wang, T., Gan, Q., Liu, S., Wang, L., & Jin, B. (2022). Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chemistry, 383, 132531.
  • Singh, T. S., Roy, S. S., Kshetri, P., Ansari, M. A., Sharma, S. K., Verma, M. R., ... & Kandpal, B. (2021). Comparative study on phenolic, flavonoids and in vitro antioxidant activity of wild edible plants from Loktak Lake wetland ecosystem under North East Indian Himalayan Region. Natural Product Research, 35(24), 6045-6048.
  • Singanusong, R., Nipornram, S., Tochampa, W., & Rattanatraiwong, P. (2015). Low power ultrasound-assisted extraction of phenolic compounds from mandarin (Citrus reticulata Blanco cv. Sainampueng) and lime (Citrus aurantifolia) peels and the antioxidant. Food Analytical Methods, 8, 1112-1123.
  • Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in enzymology (Vol. 299, pp. 152-178). Academic press.
  • Stankovic, M. S., Petrovic, M., Godjevac, D., & Stevanovic, Z. D. (2015). Screening inland halophytes from the central Balkan for their antioxidant activity in relation to total phenolic compounds and flavonoids: Are there any prospective medicinal plants?. Journal of Arid Environments, 120, 26-32.
  • Tajik, S., Zarinkamar, F., Soltani, B. M., & Nazari, M. (2019). Induction of phenolic and flavonoid compounds in leaves of saffron (Crocus sativus L.) by salicylic acid. Scientia Horticulturae, 257, 108751.
  • Verheye, W. H., & Boyadgiev, T. G. (1997). Evaluating the land use potential of gypsiferous soils from field pedogenic characteristics. Soil Use and Management, 13(2), 97-103.
  • Yildiz, S., Gurgen, A., Kilic, C., Tabbouche, S., Kilic, A. O., & Can, Z. (2019). Antioxidant, antimicrobial and anti-quorum sensing activities of Usnea filipendula and Viscum album. Journal of Anatolian Environmental and Animal Sciences, 4(4), 613-620.
  • Zugic, A., Dorđevic, S., Arsic, I., Markovic, G., Zivkovic, J., Jovanovic, S., & Tadic, V. (2014). Antioxidant activity and phenolic compounds in 10 selected herbs from Vrujci Spa, Serbia. Industrial Crops and Products, 52, 519-527.
  • Williamson, G., Kay, C. D., & Crozier, A. (2018). The bioavailability, transport, and bioactivity of dietary flavonoids: A review from a historical perspective. Comprehensive Reviews in Food Science and Food Safety, 17(5), 1054-1112.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bitki Biyokimyası
Bölüm Araştırma Makaleleri
Yazarlar

Tuğçe Varol 0000-0001-7027-462X

Etem Osma 0000-0002-5250-8194

Samed Şimşek 0000-0001-8451-3425

Müjgan Elveren 0000-0002-6110-8088

Yayımlanma Tarihi 30 Aralık 2023
Gönderilme Tarihi 8 Eylül 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 4 Sayı: 3

Kaynak Göster

APA Varol, T., Osma, E., Şimşek, S., Elveren, M. (2023). Antioxidant activities of plant species growing in different habitats (serpentine, gypsum and limestone). Frontiers in Life Sciences and Related Technologies, 4(3), 150-156. https://doi.org/10.51753/flsrt.1357325

Creative Commons License

Frontiers in Life Sciences and Related Technologies is licensed under a Creative Commons Attribution 4.0 International License.