Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 33 Sayı: 1, 43 - 51
https://doi.org/10.38042/biotechstudies.1442102

Öz

Proje Numarası

17L0430007

Kaynakça

  • Adıgüzel, A., O. (2013). Biyoetanolün Genel Özellikleri ve Üretimi İçin Gerekli Hammadde Kaynakları. BEÜ Journal of Science, 2(2), 204-220.
  • Adney, B. & Baker, J. (2008). Measurement of Cellulase Activities Laboratory Analytical Procedure (LAP) Issue Date : 08 / 12 / 1996 Measurement of Cellulase Activities Laboratory Analytical Procedure (LAP). Renewable Energy, January, 8.
  • Aytaş, Z. G., Tunçer, M., Kul, Ç. S., Cilmeli, S., Aydın, N., Doruk, T., & Adıgüzel, A. O. (2023). Partial characterization of β-glucosidase, β-xylosidase, and α-l-arabinofuranosidase from Jiangella alba DSM 45237 and their potential in lignocellulose-based biorefining. Sustainable Chemistry and Pharmacy, 31, 100900. https://doi.org/10.1016/j.scp.2022.100900.
  • Balakrishnan, R., Reddy Tadi, S. R., Sivaprakasam, S. & Rajaram, S. (2018). Optimization of acid and enzymatic hydrolysis of kodo millet (Paspalum scrobiculatum) bran residue to obtain fermentable sugars for the production of optically pure D (−) lactic acid. Industrial Crops and Products, 111, 731–742. https://doi.org/10.1016/j.indcrop.2017.11.041.
  • Chen, X., Shekiro, J., Franden, M. A., Wang, W., Zhang, M., Kuhn, E., Johnson, D. K. & Tucker, M. P. (2012). The impacts of deacetylation prior to dilute acid pretreatment on the bioethanol process. Biotechnology for Biofuels, 5, 1-14. https://doi.org/10.1186/1754-6834-5-8.
  • Chen, L., Wei, Y., Shi, M., Li, Z., & Zhang, S. H. (2020). Statistical optimization of a cellulase from Aspergillus glaucus CCHA for hydrolyzing corn and rice straw by RSM to enhance yield of reducing sugar. Biotechnology letters, 42, 583-595. https://doi.org/10.1007/s10529-020-02804-5.
  • Dutra, E. D., Santos, F. A., Alencar, B. R. A., Reis, A. L. S., de Souza, R. de F. R., Aquino, K. A. da S., Morais, M. A. & Menezes, R. S. C. (2018). Alkaline hydrogen peroxide pretreatment of lignocellulosic biomass: status and perspectives. Biomass Conversion and Biorefinery, 8(1), 225–234. https://doi.org/10.1007/s13399-017-0277-3.
  • Glass, N. L. & Donaldson, G. C. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology, 61(4), 1323–1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995.
  • Gonçalves, D. B., Batista, A. F., Rodrigues, M. Q. R. B., Nogueira, K. M. V. & Santos, V. L. (2013). Ethanol production from macaúba (Acrocomia aculeata) presscake hemicellulosic hydrolysate by Candida boidinii UFMG14. Bioresource Technology, 146, 261–266. https://doi.org/10.1016/j.biortech.2013.07.075.
  • Gul, A., Irfan, M., Nadeem, M., Syed, Q. & Haq, I. ul. (2018). Kallar grass (Leptochloa fusca L. Kunth) as a feedstock for ethanol fermentation with the aid of response surface methodology. Environmental Progress and Sustainable Energy, 37(1), 569–576. https://doi.org/10.1002/ep.12701.
  • Günan Yücel, H. & Aksu, Z. (2015). Ethanol fermentation characteristics of Pichia stipitis yeast from sugar beet pulp hydrolysate: Use of new detoxification methods. Fuel, 158, 793–799. https://doi.org/10.1016/j.fuel.2015.06.016.
  • Huang, C. F., Lin, T. H., Guo, G. L. & Hwang, W. S. (2009). Enhanced ethanol production by fermentation of rice straw hydrolysate without detoxification using a newly adapted strain of Pichia stipitis. Bioresource Technology, 100(17), 3914–3920. https://doi.org/10.1016/j.biortech.2009.02.064.
  • Itiki, R. & Chowdhury, R. P. (2020). Fast deployment of COVID-19 disinfectant from common ethanol of gas stations in Brazil: COVID-19 disinfectant from common ethanol. Health Policy and Technology, 9(3), 384–390. https://doi.org/10.1016/j.hlpt.2020.07.002.
  • Kim, T. H. & Lee, Y. Y. (2007). Pretreatment of Corn Stover by Soaking in Aqueous Ammonia at Moderate Temperatures. Applied Biochemistry And Biotechnology, 136(7), 81–82. https://doi.org/10.1007/978-1-60327-181-3_8.
  • Kim, J. K., Oh, B. R., Shin, H. J., Eom, C. Y., & Kim, S. W. (2008). Statistical optimization of enzymatic saccharification and ethanol fermentation using food waste. Process Biochemistry, 43(11), 1308-1312. https://doi.org/10.1016/j.procbio.2008.07.007.
  • Kshirsagar, S. D., Waghmare, P. R., Loni, P. C., Patil, S. A., & Govindwar, S. P. (2015). Dilute acid pretreatment of rice straw, structural characterization and optimization of enzymatic hydrolysis conditions by response surface methodology. RSC Advances, 5(58), 46525-46533. https://doi.org/10.1039/C5RA04430H.
  • Kumar, A. K., Parikh, B. S. & Pravakar, M. (2016). Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue. Environmental Science and Pollution Research, 23(10), 9265–9275. https://doi.org/10.1007/s11356-015-4780-4.
  • Lin, T. H., Huang, C. F., Guo, G. L., Hwang, W. S. & Huang, S. L. (2012). Pilot-scale ethanol production from rice straw hydrolysates using xylose-fermenting Pichia stipitis. Bioresource Technology, 116, 314–319. https://doi.org/10.1016/j.biortech.2012.03.089.
  • Loow, Y. L., Wu, T. Y., Md. Jahim, J., Mohammad, A. W., & Teoh, W. H. (2016). Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose, 23, 1491-1520. https://doi.org/10.1007/s10570-016-0936-8.
  • Mahlia, T. M. I., Ismail, N., Hossain, N., Silitonga, A. S., & Shamsuddin, A. H. (2019). Palm oil and its wastes as bioenergy sources: a comprehensive review. Environmental Science and Pollution Research, 26, 14849-14866. https://doi.org/10.1007/s11356-019-04563-x.
  • Manmai, N., Unpaprom, Y., & Ramaraj, R. (2021). Bioethanol production from sunflower stalk: application of chemical and biological pretreatments by response surface methodology (RSM). Biomass Conversion and Biorefinery, 11, 1759-1773. https://doi.org/10.1007/s13399-020-00602-7.
  • Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3), 426–428. https://doi.org/10.1021/ac60147a030.
  • Mithra, M. G. & Padmaja, G. (2017a). Comparative Alterations in the Compositional Profile of Selected Root and Vegetable Peels Subjected to Three Pretreatments for Enhanced Saccharification. International Journal of Environment, Agriculture and Biotechnology, 2(4), 1732–1744. https://doi.org/10.22161/ijeab/2.4.34.
  • Mithra, M. G. & Padmaja, G. (2017b). Strategies for enzyme saving during saccharification of pretreated lignocellulo-starch biomass: effect of enzyme dosage and detoxification chemicals. Heliyon, 3(8), e00384. https://doi.org/10.1016/j.heliyon.2017.e00384.
  • Motoda, T., Yamaguchi, M., Tsuyama, T. & Kamei, I. (2019). Down-regulation of pyruvate decarboxylase gene of white-rot fungus Phlebia sp. MG-60 modify the metabolism of sugars and productivity of extracellular peroxidase activity. Journal of Bioscience and Bioengineering, 127(1), 66–72. https://doi.org/10.1016/j.jbiosc.2018.06.017.
  • Naik, S. N., Goud, V. V., Rout, P. K. & Dalai, A. K. (2010). Production of first and second generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews, 14(2), 578–597. https://doi.org/10.1016/j.rser.2009.10.003.
  • Nowicka, A., Zieliński, M. & Dębowski, M. (2020). Microwave support of the alcoholic fermentation process of cyanobacteria Arthrospira platensis. Environmental Science and Pollution Research, 27(1), 118–124. https://doi.org/10.1007/s11356-019-05427-0.
  • Osawa, F., Fujii, T., Nishida, T., Tada, N., Ohnishi, T., Kobayashi, O., Komeda, T. & Yoshida, S. (2009). Efficient production of L-lactic acid by Crabtree-negative yeast Candida boidinii. Yeast, 26, 485–496. https://doi.org/10.1002/yea.1702.
  • Palmqvist, E., & Hahn-Hägerdal, B. (2000). Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresource technology, 74(1), 17-24. https://doi.org/10.1016/S0960-8524(99)00160-1
  • Palupi, B., Fachri, B. A., Rahmawati, I., Susanti, A., Setiawan, F. A., Adinurani, P. G. & Mel, M. (2020). Bioethanol used as topical antiseptics: Pretreatment optimization of bioethanol production from tobacco industrial waste. Annals of Tropical Medicine and Public Health, 23(8), 1213–1219. https://doi.org/10.36295/ASRO.2020.2384.
  • Parajó, J. C., Domínguez, H. & Domínguez, J. M. (1998). Biotechnological production of xylitol. Part 3: Operation in culture media made from lignocellulose hydrolysates. Bioresource Technology, 66(1), 25–40. https://doi.org/10.1016/S0960-8524(98)00037-6.
  • Paul, S. & Dutta, A. (2018). Challenges and opportunities of lignocellulosic biomass for anaerobic digestion. Resources, Conservation and Recycling, 130, 164–174. https://doi.org/10.1016/j.resconrec.2017.12.005.
  • Pereira, L. M. S., Milan, T. M., & Tapia-Blácido, D. R. (2021). Using Response Surface Methodology (RSM) to optimize 2G bioethanol production: A review. Biomass and Bioenergy, 151, 106166. https://doi.org/10.1016/j.biombioe.2021.106166.
  • Roca, C. & Olsson, L. (2003). Increasing ethanol productivity during xylose fermentation by cell recycling of recombinant Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 60(5), 560–563. https://doi.org/10.1007/s00253-002-1147-9.
  • Santana, N. B., Teixeira Dias, J. C., Rezende, R. P., Franco, M., Silva Oliveira, L. K. & Souza, L. O. (2018). Production of xylitol and bio-detoxification of cocoa pod husk hemicellulose hydrolysate by Candida boidinii XM02G. PLoS ONE, 13(4), 1–15. https://doi.org/10.1371/journal.pone.0195206.
  • Schieber, A., Stintzing, F. C. & Carle, R. (2001). By-Products of Plant Food Processing as a Source of Valuable Compounds-recent developments. Trends in Food Science and Technology, 12(2001), 401–413. https://doi.org/10.1016/S0924-2244(02)00012-2.
  • Sindhu, R., Kuttiraja, M., Binod, P., Sukumaran, R. K. & Pandey, A. (2014). Physicochemical characterization of alkali pretreated sugarcane tops and optimization of enzymatic saccharification using response surface methodology. Renewable Energy, 62, 362–368. https://doi.org/10.1016/j.renene.2013.07.041.
  • Song, Y., Gyo Lee, Y., Jin Cho, E. & Bae, H. J. (2020). Production of xylose, xylulose, xylitol, and bioethanol from waste bamboo using hydrogen peroxicde-acetic acid pretreatment. Fuel, 278, 118247. https://doi.org/10.1016/j.fuel.2020.118247.
  • Uncu, O. N. & Cekmecelioglu, D. (2011). Cost-effective approach to ethanol production and optimization by response surface methodology. Waste Management, 31(4), 636–643. https://doi.org/10.1016/j.wasman.2010.12.007.
  • Vandeska, E., Kuzmanova, S. & Jeffries, T. W. (1995). Xylitol formation and key enzyme activities in Candida boidinii under different oxygen transfer rates. Journal of Fermentation and Bioengineering, 80(5), 513–516. https://doi.org/10.1016/0922-338X(96)80929-9.
  • Wang, L., Luo, Z. & Shahbazi, A. (2013). Optimization of simultaneous saccharification and fermentation for the production of ethanol from sweet sorghum (Sorghum bicolor) bagasse using response surface methodology. Industrial Crops and Products, 42(1), 280–291. https://doi.org/10.1016/j.indcrop.2012.06.005.
  • Wistara, N. J., Pelawi, R. & Fatriasari, W. (2016). The Effect of Lignin Content and Freeness of Pulp on the Bioethanol Productivity of Jabon Wood. Waste and Biomass Valorization, 7(5), 1141–1146. https://doi.org/10.1007/s12649-016-9510-8. Yolmeh, M. & Jafari, S. M. (2017). Applications of Response Surface Methodology in the Food Industry Processes. Food and Bioprocess Technology, 10(3), 413–433.https://doi.org/10.1007/s11947-016-1855-2.
  • Yücel, Y., & Göycıncık, S. (2015). Optimization and modelling of process conditions using response surface methodology (RSM) for enzymatic saccharification of spent tea waste (STW). Waste and biomass valorization, 6, 1077-1084. https://doi.org/10.1007/s12649-015-9395-y.
  • Zhao, X., Xiong, L., Zhang, M. & Bai, F. (2016). Towards efficient bioethanol production from agricultural and forestry residues: Exploration of unique natural microorganisms in combination with advanced strain engineering. Bioresource Technology, 215, 84–91. https://doi.org/10.1016/j.biortech.2016.03.158.

Response surface methodology based optimization studies about bioethanol production by Candida boidinii from pumpkin residues

Yıl 2024, Cilt: 33 Sayı: 1, 43 - 51
https://doi.org/10.38042/biotechstudies.1442102

Öz

For sustainable bioethanol production, the investigation of novel fermentative microorganisms and feedstocks is crucial. In this context, the goals of the current study are suggesting pumpkin residues as new raw material for bioethanol production and investigating the fermentative capacity of the Candida boidinii, which is a newly isolated yeast from sugar factory wastes. Response surface methodology was used to determine the effect of enzyme (cellulase and hemicellulase) concentration and enzymatic hydrolysis time. The maximum bioethanol concentration was 29.19 g/L when fermentation parameters were optimized. However, it is revealed that enzymatic hydrolysis and hydrolysis duration (48-72 h) have significant effects on reducing sugar concentration. The highest reducing sugar was 108.86 g/L when the 20% initial pumpkin residue was hydrolyzed at 37.5 FPU/g substrate cellulase and 37.5 U/mL hemicellulase at the end of 72 h. Under these optimized conditions, the bioethanol production of C. boidinii increased by 22.91% and reached 35.88 g/L. This study shows pumpkin residues are promising feedstocks and C. boidinii is a suitable microorganism for efficient bioethanol production.

Destekleyen Kurum

This work was supported by Research Foundation of Ankara University

Proje Numarası

17L0430007

Kaynakça

  • Adıgüzel, A., O. (2013). Biyoetanolün Genel Özellikleri ve Üretimi İçin Gerekli Hammadde Kaynakları. BEÜ Journal of Science, 2(2), 204-220.
  • Adney, B. & Baker, J. (2008). Measurement of Cellulase Activities Laboratory Analytical Procedure (LAP) Issue Date : 08 / 12 / 1996 Measurement of Cellulase Activities Laboratory Analytical Procedure (LAP). Renewable Energy, January, 8.
  • Aytaş, Z. G., Tunçer, M., Kul, Ç. S., Cilmeli, S., Aydın, N., Doruk, T., & Adıgüzel, A. O. (2023). Partial characterization of β-glucosidase, β-xylosidase, and α-l-arabinofuranosidase from Jiangella alba DSM 45237 and their potential in lignocellulose-based biorefining. Sustainable Chemistry and Pharmacy, 31, 100900. https://doi.org/10.1016/j.scp.2022.100900.
  • Balakrishnan, R., Reddy Tadi, S. R., Sivaprakasam, S. & Rajaram, S. (2018). Optimization of acid and enzymatic hydrolysis of kodo millet (Paspalum scrobiculatum) bran residue to obtain fermentable sugars for the production of optically pure D (−) lactic acid. Industrial Crops and Products, 111, 731–742. https://doi.org/10.1016/j.indcrop.2017.11.041.
  • Chen, X., Shekiro, J., Franden, M. A., Wang, W., Zhang, M., Kuhn, E., Johnson, D. K. & Tucker, M. P. (2012). The impacts of deacetylation prior to dilute acid pretreatment on the bioethanol process. Biotechnology for Biofuels, 5, 1-14. https://doi.org/10.1186/1754-6834-5-8.
  • Chen, L., Wei, Y., Shi, M., Li, Z., & Zhang, S. H. (2020). Statistical optimization of a cellulase from Aspergillus glaucus CCHA for hydrolyzing corn and rice straw by RSM to enhance yield of reducing sugar. Biotechnology letters, 42, 583-595. https://doi.org/10.1007/s10529-020-02804-5.
  • Dutra, E. D., Santos, F. A., Alencar, B. R. A., Reis, A. L. S., de Souza, R. de F. R., Aquino, K. A. da S., Morais, M. A. & Menezes, R. S. C. (2018). Alkaline hydrogen peroxide pretreatment of lignocellulosic biomass: status and perspectives. Biomass Conversion and Biorefinery, 8(1), 225–234. https://doi.org/10.1007/s13399-017-0277-3.
  • Glass, N. L. & Donaldson, G. C. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology, 61(4), 1323–1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995.
  • Gonçalves, D. B., Batista, A. F., Rodrigues, M. Q. R. B., Nogueira, K. M. V. & Santos, V. L. (2013). Ethanol production from macaúba (Acrocomia aculeata) presscake hemicellulosic hydrolysate by Candida boidinii UFMG14. Bioresource Technology, 146, 261–266. https://doi.org/10.1016/j.biortech.2013.07.075.
  • Gul, A., Irfan, M., Nadeem, M., Syed, Q. & Haq, I. ul. (2018). Kallar grass (Leptochloa fusca L. Kunth) as a feedstock for ethanol fermentation with the aid of response surface methodology. Environmental Progress and Sustainable Energy, 37(1), 569–576. https://doi.org/10.1002/ep.12701.
  • Günan Yücel, H. & Aksu, Z. (2015). Ethanol fermentation characteristics of Pichia stipitis yeast from sugar beet pulp hydrolysate: Use of new detoxification methods. Fuel, 158, 793–799. https://doi.org/10.1016/j.fuel.2015.06.016.
  • Huang, C. F., Lin, T. H., Guo, G. L. & Hwang, W. S. (2009). Enhanced ethanol production by fermentation of rice straw hydrolysate without detoxification using a newly adapted strain of Pichia stipitis. Bioresource Technology, 100(17), 3914–3920. https://doi.org/10.1016/j.biortech.2009.02.064.
  • Itiki, R. & Chowdhury, R. P. (2020). Fast deployment of COVID-19 disinfectant from common ethanol of gas stations in Brazil: COVID-19 disinfectant from common ethanol. Health Policy and Technology, 9(3), 384–390. https://doi.org/10.1016/j.hlpt.2020.07.002.
  • Kim, T. H. & Lee, Y. Y. (2007). Pretreatment of Corn Stover by Soaking in Aqueous Ammonia at Moderate Temperatures. Applied Biochemistry And Biotechnology, 136(7), 81–82. https://doi.org/10.1007/978-1-60327-181-3_8.
  • Kim, J. K., Oh, B. R., Shin, H. J., Eom, C. Y., & Kim, S. W. (2008). Statistical optimization of enzymatic saccharification and ethanol fermentation using food waste. Process Biochemistry, 43(11), 1308-1312. https://doi.org/10.1016/j.procbio.2008.07.007.
  • Kshirsagar, S. D., Waghmare, P. R., Loni, P. C., Patil, S. A., & Govindwar, S. P. (2015). Dilute acid pretreatment of rice straw, structural characterization and optimization of enzymatic hydrolysis conditions by response surface methodology. RSC Advances, 5(58), 46525-46533. https://doi.org/10.1039/C5RA04430H.
  • Kumar, A. K., Parikh, B. S. & Pravakar, M. (2016). Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue. Environmental Science and Pollution Research, 23(10), 9265–9275. https://doi.org/10.1007/s11356-015-4780-4.
  • Lin, T. H., Huang, C. F., Guo, G. L., Hwang, W. S. & Huang, S. L. (2012). Pilot-scale ethanol production from rice straw hydrolysates using xylose-fermenting Pichia stipitis. Bioresource Technology, 116, 314–319. https://doi.org/10.1016/j.biortech.2012.03.089.
  • Loow, Y. L., Wu, T. Y., Md. Jahim, J., Mohammad, A. W., & Teoh, W. H. (2016). Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose, 23, 1491-1520. https://doi.org/10.1007/s10570-016-0936-8.
  • Mahlia, T. M. I., Ismail, N., Hossain, N., Silitonga, A. S., & Shamsuddin, A. H. (2019). Palm oil and its wastes as bioenergy sources: a comprehensive review. Environmental Science and Pollution Research, 26, 14849-14866. https://doi.org/10.1007/s11356-019-04563-x.
  • Manmai, N., Unpaprom, Y., & Ramaraj, R. (2021). Bioethanol production from sunflower stalk: application of chemical and biological pretreatments by response surface methodology (RSM). Biomass Conversion and Biorefinery, 11, 1759-1773. https://doi.org/10.1007/s13399-020-00602-7.
  • Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3), 426–428. https://doi.org/10.1021/ac60147a030.
  • Mithra, M. G. & Padmaja, G. (2017a). Comparative Alterations in the Compositional Profile of Selected Root and Vegetable Peels Subjected to Three Pretreatments for Enhanced Saccharification. International Journal of Environment, Agriculture and Biotechnology, 2(4), 1732–1744. https://doi.org/10.22161/ijeab/2.4.34.
  • Mithra, M. G. & Padmaja, G. (2017b). Strategies for enzyme saving during saccharification of pretreated lignocellulo-starch biomass: effect of enzyme dosage and detoxification chemicals. Heliyon, 3(8), e00384. https://doi.org/10.1016/j.heliyon.2017.e00384.
  • Motoda, T., Yamaguchi, M., Tsuyama, T. & Kamei, I. (2019). Down-regulation of pyruvate decarboxylase gene of white-rot fungus Phlebia sp. MG-60 modify the metabolism of sugars and productivity of extracellular peroxidase activity. Journal of Bioscience and Bioengineering, 127(1), 66–72. https://doi.org/10.1016/j.jbiosc.2018.06.017.
  • Naik, S. N., Goud, V. V., Rout, P. K. & Dalai, A. K. (2010). Production of first and second generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews, 14(2), 578–597. https://doi.org/10.1016/j.rser.2009.10.003.
  • Nowicka, A., Zieliński, M. & Dębowski, M. (2020). Microwave support of the alcoholic fermentation process of cyanobacteria Arthrospira platensis. Environmental Science and Pollution Research, 27(1), 118–124. https://doi.org/10.1007/s11356-019-05427-0.
  • Osawa, F., Fujii, T., Nishida, T., Tada, N., Ohnishi, T., Kobayashi, O., Komeda, T. & Yoshida, S. (2009). Efficient production of L-lactic acid by Crabtree-negative yeast Candida boidinii. Yeast, 26, 485–496. https://doi.org/10.1002/yea.1702.
  • Palmqvist, E., & Hahn-Hägerdal, B. (2000). Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresource technology, 74(1), 17-24. https://doi.org/10.1016/S0960-8524(99)00160-1
  • Palupi, B., Fachri, B. A., Rahmawati, I., Susanti, A., Setiawan, F. A., Adinurani, P. G. & Mel, M. (2020). Bioethanol used as topical antiseptics: Pretreatment optimization of bioethanol production from tobacco industrial waste. Annals of Tropical Medicine and Public Health, 23(8), 1213–1219. https://doi.org/10.36295/ASRO.2020.2384.
  • Parajó, J. C., Domínguez, H. & Domínguez, J. M. (1998). Biotechnological production of xylitol. Part 3: Operation in culture media made from lignocellulose hydrolysates. Bioresource Technology, 66(1), 25–40. https://doi.org/10.1016/S0960-8524(98)00037-6.
  • Paul, S. & Dutta, A. (2018). Challenges and opportunities of lignocellulosic biomass for anaerobic digestion. Resources, Conservation and Recycling, 130, 164–174. https://doi.org/10.1016/j.resconrec.2017.12.005.
  • Pereira, L. M. S., Milan, T. M., & Tapia-Blácido, D. R. (2021). Using Response Surface Methodology (RSM) to optimize 2G bioethanol production: A review. Biomass and Bioenergy, 151, 106166. https://doi.org/10.1016/j.biombioe.2021.106166.
  • Roca, C. & Olsson, L. (2003). Increasing ethanol productivity during xylose fermentation by cell recycling of recombinant Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 60(5), 560–563. https://doi.org/10.1007/s00253-002-1147-9.
  • Santana, N. B., Teixeira Dias, J. C., Rezende, R. P., Franco, M., Silva Oliveira, L. K. & Souza, L. O. (2018). Production of xylitol and bio-detoxification of cocoa pod husk hemicellulose hydrolysate by Candida boidinii XM02G. PLoS ONE, 13(4), 1–15. https://doi.org/10.1371/journal.pone.0195206.
  • Schieber, A., Stintzing, F. C. & Carle, R. (2001). By-Products of Plant Food Processing as a Source of Valuable Compounds-recent developments. Trends in Food Science and Technology, 12(2001), 401–413. https://doi.org/10.1016/S0924-2244(02)00012-2.
  • Sindhu, R., Kuttiraja, M., Binod, P., Sukumaran, R. K. & Pandey, A. (2014). Physicochemical characterization of alkali pretreated sugarcane tops and optimization of enzymatic saccharification using response surface methodology. Renewable Energy, 62, 362–368. https://doi.org/10.1016/j.renene.2013.07.041.
  • Song, Y., Gyo Lee, Y., Jin Cho, E. & Bae, H. J. (2020). Production of xylose, xylulose, xylitol, and bioethanol from waste bamboo using hydrogen peroxicde-acetic acid pretreatment. Fuel, 278, 118247. https://doi.org/10.1016/j.fuel.2020.118247.
  • Uncu, O. N. & Cekmecelioglu, D. (2011). Cost-effective approach to ethanol production and optimization by response surface methodology. Waste Management, 31(4), 636–643. https://doi.org/10.1016/j.wasman.2010.12.007.
  • Vandeska, E., Kuzmanova, S. & Jeffries, T. W. (1995). Xylitol formation and key enzyme activities in Candida boidinii under different oxygen transfer rates. Journal of Fermentation and Bioengineering, 80(5), 513–516. https://doi.org/10.1016/0922-338X(96)80929-9.
  • Wang, L., Luo, Z. & Shahbazi, A. (2013). Optimization of simultaneous saccharification and fermentation for the production of ethanol from sweet sorghum (Sorghum bicolor) bagasse using response surface methodology. Industrial Crops and Products, 42(1), 280–291. https://doi.org/10.1016/j.indcrop.2012.06.005.
  • Wistara, N. J., Pelawi, R. & Fatriasari, W. (2016). The Effect of Lignin Content and Freeness of Pulp on the Bioethanol Productivity of Jabon Wood. Waste and Biomass Valorization, 7(5), 1141–1146. https://doi.org/10.1007/s12649-016-9510-8. Yolmeh, M. & Jafari, S. M. (2017). Applications of Response Surface Methodology in the Food Industry Processes. Food and Bioprocess Technology, 10(3), 413–433.https://doi.org/10.1007/s11947-016-1855-2.
  • Yücel, Y., & Göycıncık, S. (2015). Optimization and modelling of process conditions using response surface methodology (RSM) for enzymatic saccharification of spent tea waste (STW). Waste and biomass valorization, 6, 1077-1084. https://doi.org/10.1007/s12649-015-9395-y.
  • Zhao, X., Xiong, L., Zhang, M. & Bai, F. (2016). Towards efficient bioethanol production from agricultural and forestry residues: Exploration of unique natural microorganisms in combination with advanced strain engineering. Bioresource Technology, 215, 84–91. https://doi.org/10.1016/j.biortech.2016.03.158.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyoişlem, Biyoüretim ve Biyoürünler, Endüstriyel Mikrobiyoloji , Fermantasyon
Bölüm Research Articles
Yazarlar

Ekin Demiray 0000-0003-2675-134X

Sevgi Ertuğrul Karatay 0000-0001-9544-0276

Gönül Dönmez 0000-0001-7972-5570

Proje Numarası 17L0430007
Erken Görünüm Tarihi 23 Şubat 2024
Yayımlanma Tarihi
Yayımlandığı Sayı Yıl 2024 Cilt: 33 Sayı: 1

Kaynak Göster

APA Demiray, E., Karatay, S. E., & Dönmez, G. (2024). Response surface methodology based optimization studies about bioethanol production by Candida boidinii from pumpkin residues. Biotech Studies, 33(1), 43-51. https://doi.org/10.38042/biotechstudies.1442102


ULAKBIM TR Index, Scopus, Google Scholar, Crossref, Scientific Indexing Services