Araştırma Makalesi
BibTex RIS Kaynak Göster

Yetiştirilen gökkuşağı alabalığı, kaynak alabalığı ve benekli alabalığının boy-ağırlık ilişkileri ve kondisyon faktörleri, doğal ortamda bulunan türlerden farklı mı?

Yıl 2023, , 253 - 259, 11.10.2023
https://doi.org/10.3153/AR23024

Öz

Bu çalışma, üç çiftlik balığı türünün boy-ağırlık ilişkilerini (LWR) ve kondisyon faktörlerini (CF) incelemektedir: gökkuşağı alabalığı (Oncorhynchus mykiss), kaynak alabalığı (Salvelinus fontinalis) ve benekli alabalık (Salmo trutta). Daha sonra bu bulguları, akuakültürün büyüme modelleri üzerindeki etkisi hakkında fikir edinmek için yabani muadillerine ilişkin mevcut literatür verileriyle karşılaştırmaktadır. W=α〖L_T〗^βşeklinde fonksiyon kullanılarak, W'nin balık ağırlığını ve LT'nin balık toplam uzunluğunu temsil ettiği LWR belirlenmiştir. Tahmini β değerleri gökkuşağı ve kaynak alabalığı için pozitif allometrik büyümeye işaret ederken, benekli alabalık izometrik bir büyüme modeli sergilemektedir. Tahmini kondisyon faktörleri gökkuşağı alabalığı için 0,992 ila 1,442, kaynak alabalığı için 0,665 ila 1,731 ve benekli alabalık için 0,841 ila 1,321 arasında değişmektedir ve aralarında önemli farklılıklar gözlenmiştir (Kruskal-Wallis testi, p <0,05). Yabani muadillerinden elde edilen literatür verileriyle karşılaştırıldığında, büyüme modellerinde, özellikle gökkuşağı ve kaynak alabalığında belirgin olmak üzere, muhtemelen yetiştiriciliğin zıt etkilerini gösteren kayda değer farklılıklar ortaya çıkmaktadır.

Kaynakça

  • Adams, P., James, C., & Speas, C. (2008). Brook trout (Salvelinus fontinalis). Species and Conservation Assessment. Grand Mesa, Uncompahgre, and Gunnison National Forests.: https://www.fs.usda.gov/Internet/FSEDOCUMENTS/stelprdb5199816.pdf (accessed on 27 September 2023).
  • Ahmad, I., & Ahmed, I. (2019). Length weight relationship and condition factor of cultured rainbow trout, Oncorhynchus mykiss (Walabum, 1792). Journal of Ecophysiology and Occupational Health, 19(1&2), 24-27. https://doi.org/:10.18311/jeoh/2019/22304
  • Arechavala-Lopez, P., Fernandez-Jover, D., Black, K.D., Ladoukakis, E., Bayle-Sempere, J.T., Sanchez-Jerez, P., & Dempster, T. (2013). Differentiating the wild or farmed origin of Mediterranean fish: a review of tools for sea bream and sea bass. Reviews in Aquaculture, 5(3), 137-157. https://doi.org/10.1111/raq.12006
  • Arslan, M., Yıldırım, A., & Bektaş, S. (2004). Length-weight relationship of brown trout, Salmo trutta L., inhabiting Kan stream, Coruh Basin, north-eastern Turkey. Turkish Journal of Fisheries and Aquatic Sciences, 4(1), 45-48.
  • Atalah, J., & Sanchez-Jerez, P. (2020). Global assessment of ecological risks associated with farmed fish escapes. Global Ecology and Conservation, 21, e00842. https://doi.org/10.1016/j.gecco.2019.e00842
  • Babu, S.C., & Joshi, P.K. (2019). Agricultural Extension Reforms in South Asia: Status, Challenges, and Policy Options: Academic Press, Cambridge, Massachusetts, USA.
  • Bal, H. (2021). Length-Weight Relationship, Sex Ratio and Condition Factor of Merlangius merlangus (Linnaeus, 1758) From the Sea of Marmara, Turkey. Marine Science and Technology Bulletin, 10(1), 99-105. https://doi.org/10.33714/masteb.832250
  • Başçinar, N., Okumuş, İ., Kocabaş, M., & Gümrükçü, F. (2007). Comparison of weight loses, head, carcass, fin, liver, viscera ratios of rainbow trout, Oncorhynchus mykiss, and brook trout, Salvelinus fontinalis, during 45 days fasting. Aquaculture Europe 2007 (pp.64-65). İstanbul, Turkey. Basusta, N., & Dürrani, Ö. (2021). Sexual dimorphism in the otolith shape of shi drum, Umbrina cirrosa (L.), in the eastern Mediterranean Sea: Fish size-otolith size relationships. Journal of Fish Biology, 99(1), 164-174. https://doi.org/10.1111/jfb.14708
  • Bell, J.G., McGhee, F., Campbell, P.J., & Sargent, J.R. (2003). Rapeseed oil as an alternative to marine fish oil in diets of post-smolt Atlantic salmon (Salmo salar): changes in flesh fatty acid composition and effectiveness of subsequent fish oil “wash out”. Aquaculture, 218(1), 515-528. https://doi.org/10.1016/S0044-8486(02)00462-3
  • Bravo, S., Whelan, K., & Silva, M.T. (2021). Assessment of trout populations inhabiting the Palena River, southern Chile. Latin American Journal of Aquatic Research, 49(1), 29-39. https://doi.org/10.3856/vol49-issue1-fulltext-2577
  • Deng, O.O., Mohamed, A.H., Agib, M., Fl-faki, F., & Ali, M. (2016). Comparative studies on nutritive value of wild and farmed African catfish Clarias gariepinus. International Journal of Fisheries and Aquatic Studies, 4(3), 327-329.
  • Dürrani, Ö., Ateşşahin, T., Eroğlu, M., & Düşükcan, M. (2023). Morphological variations of an invasive cyprinid fish (Carassius gibelio) in lentic and lotic environments inferred from the body, otolith, and scale shapes. Acta Zoologica, 104(3), 458-472. https://doi.org/10.1111/azo.12431
  • FAO (2022). The State of World Fisheries and Aquaculture. Towards Blue Transformation. 2022. https://www.fao.org/3/cc0461en/cc0461en.pdf (accessed on 8 June 2023).
  • FishStatJ (2023). Fishery and Aquaculture Statistics. Global aquaculture production 1950-2021 (FishStatJ). In: FAO Fisheries and Aquaculture Division [online]. Rome. Updated 2023. www.fao.org/fishery/statistics/software/fishstatj/en (accessed on 8 June 2023).
  • Gaviglio, A., & Demartini, E. (2009). Consumer attitudes towards farm-raised and wild-caught fish: variables of product perception. New Medit: Mediterranean Journal of Economics, Agriculture and Environment= Revue Méditerranéenne dʹEconomie Agriculture et Environment, 8(3), 34.
  • Gjedrem, T. (1997). Flesh quality improvement in fish through breeding. Aquaculture International, 5(3), 197-206. https://doi.org/10.1023/A:1014546816984
  • Grigorakis, K., & Rigos, G. (2011). Aquaculture effects on environmental and public welfare - The case of Mediterranean mariculture. Chemosphere, 85(6), 899-919. https://doi.org/10.1016/j.chemosphere.2011.07.015
  • Hassan, S. (2021). Morphometrics and pharyngeal characteristics of farmed and wild Nile tilapia. (PhD). Makerere University. http://hdl.handle.net/20.500.12281/9127 (accessed on 8 June 2023).
  • Jawad, L.A., Ibáñez, A.L., Kiki, M., & Gnohossou, P. (2020). Determination of body shape and meristic characters variations in wild and cultured populations of cichlid fish, Oreochromis niloticus, from the Republic of Benin, West of Africa. Fisheries & Aquatic Life, 28(3), 186-194. https://doi.org/10.2478/aopf-2020-0022
  • Joergensen, M. (2017). Fulton's condition factor calculator: A simple tool to calculate trout condition (K-factor), length or weight from the two other numbers. https://globalflyfisher.com/fish-better/fultons-condition-factor-calculator (accessed on 19 June 2023).
  • Johnston, I.A., Li, X., Vieira, V.L.A., Nickell, D., Dingwall, A., Alderson, R., . . . Bickerdike, R. (2006). Muscle and flesh quality traits in wild and farmed Atlantic salmon. Aquaculture, 256(1), 323-336. https://doi.org/10.1016/j.aquaculture.2006.02.048
  • Jonsson, B., & Jonsson, N. (2006). Cultured Atlantic salmon in nature: A review of their ecology and interaction with wild fish. Ices Journal of Marine Science, 63(7), 1162-1181. https://doi.org/10.1016/j.icesjms.2006.03.004
  • Kobayashi, M., Msangi, S., Batka, M., Vannuccini, S., Dey, M.M., & Anderson, J.L. (2015). Fish to 2030: The Role and Opportunity for Aquaculture. Aquaculture Economics & Management, 19(3), 282-300. https://doi.org/10.1080/13657305.2015.994240
  • Laird, L. (1997). Salmon and trout farming. Nutrition & Food Science, 97(3), 101-104. https://doi.org/10.1108/00346659710161939
  • Lem, A., Bjørndal, T., & Lappo, A. (2014). Economic analysis of supply and demand for food up to 2030. Special focus on fish and fishery products: (FAO Fisheries and Aquaculture Circular No. 1089). Rome, Italy: FAO. http://www.fao.org/3/a-i3822e.pdf
  • Luther, G. (1963). Some observations on the biology of Liza macrolepis (Smith) and Mugil cephalus Linnaeus (Mugilidae) with notes on the fishery of grey mullets near Mandapam. Indian Journal of Fisheries, 10(2), 642-666.
  • Mazlum, R.E., & Turan, D. (2018). Length-Weight Relationship for Twelve Species of the Genus Salmo L., 1758 (Actinopterygii: Salmonidae) from Inland Waters of Turkey. Acta Zoologica Bulgarica, 70(3), 407-413.
  • McAfee, W.R. (1966). Rainbow trout. In: Calhoun, A. (Ed.), Calif. Dept. Fish Game, Inland Fisheries Management, p. 192-216.
  • Molversmyr, E., Devle, H.M., Naess-Andresen, C.F., & Ekeberg, D. (2022). Identification and quantification of lipids in wild and farmed Atlantic salmon (Salmo salar), and salmon feed by GC-MS. Food Science & Nutrition, 10(9), 3117-3127. https://doi.org/10.1002/fsn3.2911
  • Morrison, D. J., Preston, T., Bron, J. E., Hemderson, R. J., Cooper, K., Strachan, F., & Bell, J. G. (2007). Authenticating production origin of gilthead sea bream (Sparus aurata) by chemical and isotopic fingerprinting. Lipids, 42(6), 537-545. https://doi.org/10.1007/s11745-007-3055-3
  • Naeem, M., Salam, A., & Ishtiaq, A. (2011). Length–weight relationships of wild and farmed Tor putitora from Pakistan. Journal of Applied Ichthyology, 27(4), 1133-1134. https://doi.org/10.1111/j.1439-0426.2010.01613.x
  • Onder, M.Y., & Khan, U. (2016). Effects of mono-and duoculture on the survival and growth rate of juvenile abant trout (Salmo trutta abanticus) and brook trout (Salvelinus fontinalis). Pakistan Journal of Zoology, 48(3), 895-898. Piper, R.G. (1972). Managing hatcheries by the numbers. American Fishes and US Trout News, 17(3), 10-25. https://doi.org/10.1111/j.1542-2011.1972.tb00082.x
  • Quinton, C.D., McMillan, I., & Glebe, B.D. (2005). Development of an Atlantic salmon (Salmo salar) genetic improvement program: Genetic parameters of harvest body weight and carcass quality traits estimated with animal models. Aquaculture, 247(1-4), 211-217. https://doi.org/10.1016/j.aquaculture.2005.02.030
  • Rios, J.M., & Teixeira de Mello, F. (2020). Length-weight relationship of fish from high mountain freshwater environments of the central Andes, Argentina. Pan-American Journal of Aquatic Sciences, 15(4), 320-323.
  • Ruiz-Campos, G., Pister, E.P., & Compean-Jimenez, G.A. (1997). Age and Growth of Nelson’s Trout, Oncorhynchus Mykiss Nelsoni, from Arroyo San Rafael, Sierra San Pedro Martir, Baja California, Mexico. The Southwestern Naturalist, 42(1), 74-85.
  • Verreycken, H., Van Thuyne, G., & Belpaire, C. (2011). Length–weight relationships of 40 freshwater fish species from two decades of monitoring in Flanders (Belgium). Journal of Applied Ichthyology, 27(6), 1416-1421. https://doi.org/10.1111/j.1439-0426.2011.01815.x
  • Von Cramon-Taubadel, N., Ling, E.N., Cotter, D., & Wilkins, N.P. (2005). Determination of body shape variation in Irish hatchery-reared and wild Atlantic salmon. Journal of Fish Biology, 66(5), 1471-1482. https://doi.org/10.1111/j.0022-1112.2005.00698.x
  • Wali, A., Shah, T.H., Balkhi, M., Bhat, B.A., Bhat, F., Qadri, S., & Mohamad, I. (2019). Morphometry and length-weight relationship of rainbow trout Oncorhynchus mykiss Walbaum, 1792 (Salmoniformes: Salmonidae) from Kashmir. Journal of Entomology and Zoology Studies, 7(1), 1653-1656.
  • Ye, Y., & Beddington, J.R. (1996). Bioeconomic interactions between the capture fishery and aquaculture. Marine Resource Economics, 11(2), 105-123. https://doi.org/10.1086/mre.11.2.42629149

Do the length-weight relationships and condition factors of farmed rainbow trout, brook, and brown trout differ from their wild counterparts?

Yıl 2023, , 253 - 259, 11.10.2023
https://doi.org/10.3153/AR23024

Öz

This study examines the length-weight relationships (LWR) and condition factors (CF) of three farmed fish species: rainbow trout (Oncorhynchus mykiss), brook trout (Salvelinus fontinalis), and brown trout (Salmo trutta). It then compares these findings with existing literature data for their wild counterparts to gain insights into the influence of aquaculture on their growth patterns. Using a simple power function, W=α〖L_T〗^β where W represents the fish's weight, and LT represents the fish's total length, the LWR is determined. The estimated β values indicate positive allometric growth for rainbow and brook trout, whereas brown trout exhibit an isometric growth pattern. The estimated condition factors ranged from 0.992 to 1.442 for rainbow trout, 0.665 to 1.731 for brook trout, and 0.841 to 1.321 for brown trout, with significant differences observed among them (Kruskal-Wallis test, p < 0.05). Compared with literature data from their wild counterparts, notable variations in growth patterns emerge, particularly evident in rainbow and brook trout, possibly illustrating the contrasting effects of aquaculture.

Kaynakça

  • Adams, P., James, C., & Speas, C. (2008). Brook trout (Salvelinus fontinalis). Species and Conservation Assessment. Grand Mesa, Uncompahgre, and Gunnison National Forests.: https://www.fs.usda.gov/Internet/FSEDOCUMENTS/stelprdb5199816.pdf (accessed on 27 September 2023).
  • Ahmad, I., & Ahmed, I. (2019). Length weight relationship and condition factor of cultured rainbow trout, Oncorhynchus mykiss (Walabum, 1792). Journal of Ecophysiology and Occupational Health, 19(1&2), 24-27. https://doi.org/:10.18311/jeoh/2019/22304
  • Arechavala-Lopez, P., Fernandez-Jover, D., Black, K.D., Ladoukakis, E., Bayle-Sempere, J.T., Sanchez-Jerez, P., & Dempster, T. (2013). Differentiating the wild or farmed origin of Mediterranean fish: a review of tools for sea bream and sea bass. Reviews in Aquaculture, 5(3), 137-157. https://doi.org/10.1111/raq.12006
  • Arslan, M., Yıldırım, A., & Bektaş, S. (2004). Length-weight relationship of brown trout, Salmo trutta L., inhabiting Kan stream, Coruh Basin, north-eastern Turkey. Turkish Journal of Fisheries and Aquatic Sciences, 4(1), 45-48.
  • Atalah, J., & Sanchez-Jerez, P. (2020). Global assessment of ecological risks associated with farmed fish escapes. Global Ecology and Conservation, 21, e00842. https://doi.org/10.1016/j.gecco.2019.e00842
  • Babu, S.C., & Joshi, P.K. (2019). Agricultural Extension Reforms in South Asia: Status, Challenges, and Policy Options: Academic Press, Cambridge, Massachusetts, USA.
  • Bal, H. (2021). Length-Weight Relationship, Sex Ratio and Condition Factor of Merlangius merlangus (Linnaeus, 1758) From the Sea of Marmara, Turkey. Marine Science and Technology Bulletin, 10(1), 99-105. https://doi.org/10.33714/masteb.832250
  • Başçinar, N., Okumuş, İ., Kocabaş, M., & Gümrükçü, F. (2007). Comparison of weight loses, head, carcass, fin, liver, viscera ratios of rainbow trout, Oncorhynchus mykiss, and brook trout, Salvelinus fontinalis, during 45 days fasting. Aquaculture Europe 2007 (pp.64-65). İstanbul, Turkey. Basusta, N., & Dürrani, Ö. (2021). Sexual dimorphism in the otolith shape of shi drum, Umbrina cirrosa (L.), in the eastern Mediterranean Sea: Fish size-otolith size relationships. Journal of Fish Biology, 99(1), 164-174. https://doi.org/10.1111/jfb.14708
  • Bell, J.G., McGhee, F., Campbell, P.J., & Sargent, J.R. (2003). Rapeseed oil as an alternative to marine fish oil in diets of post-smolt Atlantic salmon (Salmo salar): changes in flesh fatty acid composition and effectiveness of subsequent fish oil “wash out”. Aquaculture, 218(1), 515-528. https://doi.org/10.1016/S0044-8486(02)00462-3
  • Bravo, S., Whelan, K., & Silva, M.T. (2021). Assessment of trout populations inhabiting the Palena River, southern Chile. Latin American Journal of Aquatic Research, 49(1), 29-39. https://doi.org/10.3856/vol49-issue1-fulltext-2577
  • Deng, O.O., Mohamed, A.H., Agib, M., Fl-faki, F., & Ali, M. (2016). Comparative studies on nutritive value of wild and farmed African catfish Clarias gariepinus. International Journal of Fisheries and Aquatic Studies, 4(3), 327-329.
  • Dürrani, Ö., Ateşşahin, T., Eroğlu, M., & Düşükcan, M. (2023). Morphological variations of an invasive cyprinid fish (Carassius gibelio) in lentic and lotic environments inferred from the body, otolith, and scale shapes. Acta Zoologica, 104(3), 458-472. https://doi.org/10.1111/azo.12431
  • FAO (2022). The State of World Fisheries and Aquaculture. Towards Blue Transformation. 2022. https://www.fao.org/3/cc0461en/cc0461en.pdf (accessed on 8 June 2023).
  • FishStatJ (2023). Fishery and Aquaculture Statistics. Global aquaculture production 1950-2021 (FishStatJ). In: FAO Fisheries and Aquaculture Division [online]. Rome. Updated 2023. www.fao.org/fishery/statistics/software/fishstatj/en (accessed on 8 June 2023).
  • Gaviglio, A., & Demartini, E. (2009). Consumer attitudes towards farm-raised and wild-caught fish: variables of product perception. New Medit: Mediterranean Journal of Economics, Agriculture and Environment= Revue Méditerranéenne dʹEconomie Agriculture et Environment, 8(3), 34.
  • Gjedrem, T. (1997). Flesh quality improvement in fish through breeding. Aquaculture International, 5(3), 197-206. https://doi.org/10.1023/A:1014546816984
  • Grigorakis, K., & Rigos, G. (2011). Aquaculture effects on environmental and public welfare - The case of Mediterranean mariculture. Chemosphere, 85(6), 899-919. https://doi.org/10.1016/j.chemosphere.2011.07.015
  • Hassan, S. (2021). Morphometrics and pharyngeal characteristics of farmed and wild Nile tilapia. (PhD). Makerere University. http://hdl.handle.net/20.500.12281/9127 (accessed on 8 June 2023).
  • Jawad, L.A., Ibáñez, A.L., Kiki, M., & Gnohossou, P. (2020). Determination of body shape and meristic characters variations in wild and cultured populations of cichlid fish, Oreochromis niloticus, from the Republic of Benin, West of Africa. Fisheries & Aquatic Life, 28(3), 186-194. https://doi.org/10.2478/aopf-2020-0022
  • Joergensen, M. (2017). Fulton's condition factor calculator: A simple tool to calculate trout condition (K-factor), length or weight from the two other numbers. https://globalflyfisher.com/fish-better/fultons-condition-factor-calculator (accessed on 19 June 2023).
  • Johnston, I.A., Li, X., Vieira, V.L.A., Nickell, D., Dingwall, A., Alderson, R., . . . Bickerdike, R. (2006). Muscle and flesh quality traits in wild and farmed Atlantic salmon. Aquaculture, 256(1), 323-336. https://doi.org/10.1016/j.aquaculture.2006.02.048
  • Jonsson, B., & Jonsson, N. (2006). Cultured Atlantic salmon in nature: A review of their ecology and interaction with wild fish. Ices Journal of Marine Science, 63(7), 1162-1181. https://doi.org/10.1016/j.icesjms.2006.03.004
  • Kobayashi, M., Msangi, S., Batka, M., Vannuccini, S., Dey, M.M., & Anderson, J.L. (2015). Fish to 2030: The Role and Opportunity for Aquaculture. Aquaculture Economics & Management, 19(3), 282-300. https://doi.org/10.1080/13657305.2015.994240
  • Laird, L. (1997). Salmon and trout farming. Nutrition & Food Science, 97(3), 101-104. https://doi.org/10.1108/00346659710161939
  • Lem, A., Bjørndal, T., & Lappo, A. (2014). Economic analysis of supply and demand for food up to 2030. Special focus on fish and fishery products: (FAO Fisheries and Aquaculture Circular No. 1089). Rome, Italy: FAO. http://www.fao.org/3/a-i3822e.pdf
  • Luther, G. (1963). Some observations on the biology of Liza macrolepis (Smith) and Mugil cephalus Linnaeus (Mugilidae) with notes on the fishery of grey mullets near Mandapam. Indian Journal of Fisheries, 10(2), 642-666.
  • Mazlum, R.E., & Turan, D. (2018). Length-Weight Relationship for Twelve Species of the Genus Salmo L., 1758 (Actinopterygii: Salmonidae) from Inland Waters of Turkey. Acta Zoologica Bulgarica, 70(3), 407-413.
  • McAfee, W.R. (1966). Rainbow trout. In: Calhoun, A. (Ed.), Calif. Dept. Fish Game, Inland Fisheries Management, p. 192-216.
  • Molversmyr, E., Devle, H.M., Naess-Andresen, C.F., & Ekeberg, D. (2022). Identification and quantification of lipids in wild and farmed Atlantic salmon (Salmo salar), and salmon feed by GC-MS. Food Science & Nutrition, 10(9), 3117-3127. https://doi.org/10.1002/fsn3.2911
  • Morrison, D. J., Preston, T., Bron, J. E., Hemderson, R. J., Cooper, K., Strachan, F., & Bell, J. G. (2007). Authenticating production origin of gilthead sea bream (Sparus aurata) by chemical and isotopic fingerprinting. Lipids, 42(6), 537-545. https://doi.org/10.1007/s11745-007-3055-3
  • Naeem, M., Salam, A., & Ishtiaq, A. (2011). Length–weight relationships of wild and farmed Tor putitora from Pakistan. Journal of Applied Ichthyology, 27(4), 1133-1134. https://doi.org/10.1111/j.1439-0426.2010.01613.x
  • Onder, M.Y., & Khan, U. (2016). Effects of mono-and duoculture on the survival and growth rate of juvenile abant trout (Salmo trutta abanticus) and brook trout (Salvelinus fontinalis). Pakistan Journal of Zoology, 48(3), 895-898. Piper, R.G. (1972). Managing hatcheries by the numbers. American Fishes and US Trout News, 17(3), 10-25. https://doi.org/10.1111/j.1542-2011.1972.tb00082.x
  • Quinton, C.D., McMillan, I., & Glebe, B.D. (2005). Development of an Atlantic salmon (Salmo salar) genetic improvement program: Genetic parameters of harvest body weight and carcass quality traits estimated with animal models. Aquaculture, 247(1-4), 211-217. https://doi.org/10.1016/j.aquaculture.2005.02.030
  • Rios, J.M., & Teixeira de Mello, F. (2020). Length-weight relationship of fish from high mountain freshwater environments of the central Andes, Argentina. Pan-American Journal of Aquatic Sciences, 15(4), 320-323.
  • Ruiz-Campos, G., Pister, E.P., & Compean-Jimenez, G.A. (1997). Age and Growth of Nelson’s Trout, Oncorhynchus Mykiss Nelsoni, from Arroyo San Rafael, Sierra San Pedro Martir, Baja California, Mexico. The Southwestern Naturalist, 42(1), 74-85.
  • Verreycken, H., Van Thuyne, G., & Belpaire, C. (2011). Length–weight relationships of 40 freshwater fish species from two decades of monitoring in Flanders (Belgium). Journal of Applied Ichthyology, 27(6), 1416-1421. https://doi.org/10.1111/j.1439-0426.2011.01815.x
  • Von Cramon-Taubadel, N., Ling, E.N., Cotter, D., & Wilkins, N.P. (2005). Determination of body shape variation in Irish hatchery-reared and wild Atlantic salmon. Journal of Fish Biology, 66(5), 1471-1482. https://doi.org/10.1111/j.0022-1112.2005.00698.x
  • Wali, A., Shah, T.H., Balkhi, M., Bhat, B.A., Bhat, F., Qadri, S., & Mohamad, I. (2019). Morphometry and length-weight relationship of rainbow trout Oncorhynchus mykiss Walbaum, 1792 (Salmoniformes: Salmonidae) from Kashmir. Journal of Entomology and Zoology Studies, 7(1), 1653-1656.
  • Ye, Y., & Beddington, J.R. (1996). Bioeconomic interactions between the capture fishery and aquaculture. Marine Resource Economics, 11(2), 105-123. https://doi.org/10.1086/mre.11.2.42629149
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sucul Kültür ve Balıkçılık Stok Değerlendirmesi
Bölüm Research Articles
Yazarlar

Ömerhan Dürrani 0000-0003-1775-8662

Erken Görünüm Tarihi 29 Eylül 2023
Yayımlanma Tarihi 11 Ekim 2023
Gönderilme Tarihi 23 Ağustos 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Dürrani, Ö. (2023). Do the length-weight relationships and condition factors of farmed rainbow trout, brook, and brown trout differ from their wild counterparts?. Aquatic Research, 6(4), 253-259. https://doi.org/10.3153/AR23024

16291

is licensed under a CreativeCommons Attribtion-ShareAlike 4.0 International Licence 14628   1325927040

Diamond Open Access refers to a scholarly publication model in which journals and platforms do not charge fees to either authors or readers.

Open Access Statement:

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.

Archiving Policy:

Archiving is done according to TÜBİTAK ULAKBİM "DergiPark" publication policy (LOCKSS).