Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı LED ışıklar altında yetiştirilen köksüz su mercimeğinin (Wolffia arrhiza) Dumas yöntemi kullanılarak ham protein içeriğinin belirlenmesi

Yıl 2023, , 189 - 200, 17.07.2023
https://doi.org/10.3153/AR23019

Öz

Köksüz su mercimeği insanlar için potansiyel bir yüksek proteinli gıda kaynağıdır. Lemnaceae familyasının kök, gövde ve yaprakları indirgenmiş bir üyesi olan Wolffia, dünyanın en küçük spermatofitidir. Wolffia türleri ile yapılan bilimsel araştırmalar oldukça yeni olup, bu türün Türkiye’de nadir olduğu düşünülmektedir. Doğal ya da kültür ortamındaki çevresel faktörler, bitkilerin fitokimyasalları ve besinsel bileşimleri üzerinde önemli bir etki gösterir. Bu çalışmada, Yeşilırmak Deltası’nda (Samsun) lokal bir alandan toplanıp kültüre alınan Wolffia arrhiza, kontrollü koşullarda farklı LED ışıklar altında yetiştirilmiştir. Ham protein miktarının belirlenmesinde Dumas metodu kullanılmıştır. Azot (%) içeriğinin standart dönüşüm faktörü 6.25 ile çarpılmasıyla hesaplanan protein içeriği, literatürlerdeki farklı dönüşüm faktörleri kullanılarak da değerlendirilmiştir. Araştırma sonucunda, köksüz su mercimeğinin farklı ışık spektrumları ile yapay aydınlatma koşullarında başarılı bir şekilde yetiştirildiği kanıtlanmıştır. Doğal ortamdaki köksüz su mercimeğinin %10 civarında olan protein içeriği, kırmızı LED ışıkta oldukça yükselmiştir (%41.6 protein). Farklı ışıkların W. arrhiza protein içeriğine etkisi kırmızı LED > mavi LED > mor LED > floresan şeklinde gözlenmiştir. Yüksek protein içeriği, çevre dostu ve sürdürülebilir üretimi ile Wolffia, yakın gelecekte geleneksel mahsullere alternatif bir ürün olarak, bitki bazlı protein ve fonksiyonel gıda pazarında hızla yer alabilir potansiyele sahiptir.

Destekleyen Kurum

Bu araştırma, Ordu Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından desteklenmiştir.

Proje Numarası

Proje No: B-2310

Teşekkür

Türü tanımlayan ve doğal ortamdan köksüz su mercimeği örneklemesinde yardımcı olan Dr. Halim TOPALDEMİR’e teşekkür ederiz.

Kaynakça

  • Angell, A.R., Mata, L., de Nys, R., Paul, N.A. (2016). The protein content of seaweeds: A universal nitrogen-to-protein conversion factor of five. Journal of Applied Phycology, 28, 511–524. https://doi.org/10.1007/s10811-015-0650-1
  • Appenroth, K.J., Sree, K. S., Bog, M., Ecker, J., Seeliger, C., Böhm, V., . . . Tolzin-Banasch, K. (2018). Nutritional value of the duckweed species of the genus Wolffia (Lemnaceae) as human food. Frontiers in Chemistry, 6, 483. https://doi.org/10.3389/fchem.2018.00483
  • Arslan Günal, S., Taş, B. (2022). Uzay çalışmalarında biyorejeneratif yaşam destek sistemleri için potansiyel bir tür: Dünyanın en küçük spermatofiti, köksüz su mercimeği (Wolffia arrhiza). International Scientific Research Congress Dedicated to the 30th Anniversary of Baku Eurasia University, Proceedings Book, 305–316.
  • Bog, M., Appenroth, K.J., Sree, K.S. (2019). Duckweed (Lemnaceae): Its molecular taxonomy. Frontiers in Sustainable Food Systems, 3, 117. https://doi.org/10.3389/fsufs.2019.00117
  • Bog, M., Sree, K.S., Fuchs, J., Hoang, P.T., Schubert, I., Kuever, J., . . . Appenroth, K.J. (2020). A taxonomic revision of Lemna sect. Uninerves (Lemnaceae). Taxon, 69(1), 56–66. https://doi.org/10.1002/tax.12188
  • Casal, J., Vermaat, J., Wiegman, F. (2000). A test of two methods for plant protein determination using duckweed. Aquatic Botany, 67(1), 61–67. https://doi.org/10.1016/S0304-3770(99)00093-5
  • Cui, W., Cheng, J. (2015). Growing duckweed for biofuel production: A review. Plant Biology, 17, 16–23. https://doi:10.1111/plb.12216
  • Daun, J.K., DeClercq, D.R. (1994). Comparison of combustion and Kjeldahl methods for determination of nitrogen in oilseeds. Journal of the American Oil Chemists’ Society, 71, 1069–1072. https://doi.org/10.1007/BF02675898
  • Devlamynck, R., de Souza, M.F., Bog, M., Leenknegt, J., Eeckhout, M., Meers, E. (2020). Effect of the growth medium composition on nitrate accumulation in the novel protein crop Lemna minor. Ecotoxicology and Environmental Safety, 206, 111380. https://doi.org/10.1016/j.ecoenv.2020.111380
  • Diwan, F. (2023). Duckweed and its broad-spectrum applications. Climate Survival Solutions, Inc., and Climate Survival Solutions Pvt. Ltd., 1–18.
  • Etheridge, R., Pesti, G., Foster, E. (1998). A comparison of nitrogen values obtained utilizing the Kjeldahl nitrogen and Dumas combustion methodologies (Leco CNS 2000) on samples typical of an animal nutrition analytical laboratory. Animal Feed Science and Technology, 73(1-2), 21–28. https://doi.org/10.1016/S0377-8401(98)00136-9 Hoffland, E., Dicke, M., Van Tintelen, W., Dijkman, H., Van Beusichem, M.L. (2000). Nitrogen availability and defense of tomato against two-spotted spider mite. Journal of Chemical Ecology, 26, 2697–2711. https://doi.org/10.1023/A:1026477423988
  • Jones, D.B. (1931). Factors for converting percentages of nitrogen in foods and feeds into percentages of proteins. Circular No. 18, US Department of Agriculture, Washington, D.C.
  • Kaplan, A., Zelicha, H., Tsaban, G., Meir, A.Y., Rinott, E., Kovsan, J., ... Shai, I. (2019). Protein bioavailability of Wolffia globosa duckweed, a novel aquatic plant–a randomized controlled trial. Clinical Nutrition, 38(6), 2576–2582. https://doi.org/10.1016/j.clnu.2018.12.009
  • Kjeldahl, J. (1883). Neue methode zur bestimmung des stickstoffs in organischen körpern. Zeitschrift für analytische Chemie, 22(1), 366–382. https://doi.org/10.1007/BF01338151 Landolt, E., Kandeler, R. (1987). The family of Lemnaceae—a monographic study, 2. Biosystematic Investigations in the Family of Duckweeds (Lemnaceae). Veröffentlichungen des Geobotanischen Instutes der ETH. Stiftung Rübel, Zurich.
  • Lourenço, S.O., Barbarino, E., De‐Paula, J.C., Pereira, L.O., Marquez, U.M.L. (2002). Amino acid composition, protein content and calculation of nitrogen‐to‐protein conversion factors for 19 tropical seaweeds. Phycological Research, 50(3), 233–241. https://doi.org/10.1046/j.1440-1835.2002.00278.x
  • Mæhre, H.K., Dalheim, L., Edvinsen, G.K., Elvevoll, E.O., Jensen, I.J. (2018). Protein determination—method matters. Foods, 7(1), 5. https://doi.org/10.3390/foods7010005
  • Mariotti, F., Tomé, D., Mirand, P.P. (2008). Converting nitrogen into protein—beyond 6.25 and Jones' factors. Critical Reviews in Food Science and Nutrition, 48(2), 177–184. https://doi.org/10.1080/10408390701279749
  • Muñoz-Huerta, R.F., Guevara-Gonzalez, R.G., Contreras-Medina, L.M., Torres-Pacheco, I., Prado-Olivarez, J., Ocampo-Velazquez, R.V. (2013). A review of methods for sensing the nitrogen status in plants: Advantages, disadvantages and recent advances. Sensors, 13(8), 10823–10843. https://doi.org/10.3390/s130810823
  • Nieuwland, M., Geerdink, P., Engelen-Smit, N.P., Van Der Meer, I.M., America, A.H., Mes, J.J., . . . Mulder, W.J. (2021). Isolation and gelling properties of duckweed protein concentrate. ACS Food Science & Technology, 1(5), 908-916. https://doi.org/10.1021/acsfoodscitech.1c00009
  • Paolacci, S., Harrison, S., Jansen, M.A. (2018). The invasive duckweed Lemna minuta Kunth displays a different light utilisation strategy than native Lemna minor Linnaeus. Aquatic Botany, 146, 8–14. https://doi.org/10.1016/j.aquabot.2018.01.002
  • Petersen, F., Demann, J., Restemeyer, D., Olfs, H.W., Westendarp, H., Appenroth, K.J., Ulbrich, A. (2022). Influence of light intensity and spectrum on duckweed growth and proteins in a small-scale, re-circulating indoor vertical farm. Plants, 11(8), 1010. https://doi.org/10.3390/plants11081010
  • Sinfield, J.V., Fagerman, D., Colic, O. (2010). Evaluation of sensing technologies for on-the-go detection of macro-nutrients in cultivated soils. Computers and Electronics in Agriculture, 70(1), 1–18. https://doi.org/10.1016/j.compag.2009.09.017 Sosulski, F.W., Imafidon, G.I. (1990). Amino acid composition and nitrogen-to-protein conversion factors for animal and plant foods. Journal of Agricultural and Food Chemistry, 38(6), 1351–1356. https://doi.org/10.1021/jf00096a011
  • Sree, K.S., Sudakaran, S., Appenroth, K.J. (2015). How fast can angiosperms grow? Species and clonal diversity of growth rates in the genus Wolffia (Lemnaceae). Acta Physiologiae Plantarum, 37(10). https://doi.org/10.1007/s11738-015-1951-3
  • Stewart, J.J., Adams III, W.W., Escobar, C.M., López-Pozo, M., Demmig-Adams, B. (2020). Growth and essential carotenoid micronutrients in Lemna gibba as a function of growth light intensity. Frontiers in Plant Science, 11, 480. https://doi.org/10.3389/fpls.2020.00480
  • Taş, B., Şengüllendi, F.T. (2022a). Algal biyoteknoloji: Besleyici ve fonksiyonel gıdalar. Ziraat, Orman ve Su Ürünleri Alanında Yeni Trendler, Duvar Yayınları; ISBN: 978-625-8261-57-8, 125–149.
  • Taş, B., Şengüllendi, F.T. (2022b). Effect of different led lights on the element content of rootless duckweed. 7th Asia Pacific International Modern Sciences Congress, November 4-5, 2022/Jakarta, Indonesia, VII - Proceedings Book, 163–173.
  • Taş, B., Topaldemir, H. (2021). Assessment of aquatic plants in the Miliç coastal wetland (Terme, Samsun, Turkey). Review of Hydrobiology, 14(1-2), 1–23.
  • Thompson, M., Owen, L., Wilkinson, K., Wood, R., Damant, A. (2002). A comparison of the Kjeldahl and Dumas methods for the determination of protein in foods, using data from a proficiency testing scheme. Analyst, 127(12), 1666–1668. https://doi.org/10.1039/b208973b
  • Tippery, N.P., Les, D.H. (2020). Tiny plants with enormous potential: Phylogeny and evolution of duckweeds. In The Duckweed Genomes (pp. 19–38): Springer. https://doi.org/10.1007/978-3-030-11045-1_2
  • Tsaban, G., Meir, A.Y., Rinott, E., Zelicha, H., Kaplan, A., Shalev, A., ... Shai, I. (2021). The effect of green Mediterranean diet on cardiometabolic risk; a randomised controlled trial. Heart, 107(13), 1054–1061. https://doi:10.1136/heartjnl-2020-317802
  • van Dijk, M., Morley, T., Rau, M.L., Saghai, Y. (2021). A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nature Food, 2(7), 494–501. https://doi.org/10.1038/s43016-021-00322-9
  • Wedge, R.M., Burris, J.E. (1982). Effects of light and temperature on duckweed photosynthesis. Aquatic Botany, 13, 133-140. https://doi.org/10.1016/0304-3770(82)90047-X
  • Wiles, P.G., Gray, I.K., Kissling, R.C. (1998). Routine analysis of proteins by Kjeldahl and Dumas methods: review and interlaboratory study using dairy products. Journal of AOAC International, 81(3), 620–632. https://doi.org/10.1093/jaoac/81.3.620
  • WHO (World Health Organization) (1970). Requirements of ascorbic acid, vitamin D, vitamin B-12, folate, and iron. World Health Organization Techical Report, 1–452.
  • Xu, J., Cui, W., Cheng, J.J., Stomp, A.M. (2011). Production of high-starch duckweed and its conversion to bioethanol. Biosystems Engineering, 110(2), 67–72. https://doi.org/10.1016/j.biosystemseng.2011.06.007 Xu, J., Shen, G. (2011). Growing duckweed in swine wastewater for nutrient recovery and biomass production. Bioresource Technology, 102(2), 848–853. https://doi.org/10.1016/j.biortech.2010.09.003
  • Xu, J., Shen, Y., Zheng, Y., Smith, G., Sun, X.S., Wang, D., ... Li, Y. (2022). Duckweed (Lemnaceae) for potentially nutritious human food: A review. Food Reviews International, 1–15. https://doi.org/10.1080/87559129.2021.2012800
  • Yaskolka Meir, A., Tsaban, G., Zelicha, H., Rinott, E., Kaplan, A., Youngster, I., ... Shai, I. (2019). A green-Mediterranean diet, supplemented with Mankai duckweed, preserves iron-homeostasis in humans and is efficient in reversal of anemia in rats. The Journal of Nutrition, 149(6), 1004–1011. https://doi.org/10.1093/jn/nxy321
  • Yin, Y., Yu, C., Yu, L., Zhao, J., Sun, C., Ma, Y., & Zhou, G. (2015). The influence of light intensity and photoperiod on duckweed biomass and starch accumulation for bioethanol production. Bioresource Technology, 187, 84–90. https://doi.org/10.1016/j.biortech.2015.03.097
  • Zelicha, H., Kaplan, A., Yaskolka Meir, A., Tsaban, G., Rinott, E., Shelef, I., ... Shai, I. (2019). The effect of Wolffia globosa Mankai, a green aquatic plant, on postprandial glycemic response: a randomized crossover controlled trial. Diabetes Care, 42(7), 1162–1169. https://doi.org/10.2337/dc18-2319
  • Ziegler, P., Adelmann, K., Zimmer, S., Schmidt, C., Appenroth, K.J. (2015). Relative in vitro growth rates of duckweeds (Lemnaceae)-the most rapidly growing higher plants. Plant Biology, 17, 33–41. https://doi.org/10.1111/plb.12184

Determination of crude protein content using the Dumas method of rootless duckweed (Wolffia arrhiza) grown under different LED lights

Yıl 2023, , 189 - 200, 17.07.2023
https://doi.org/10.3153/AR23019

Öz

Rootless duckweed (Wolffia spp.) has the potential high-protein food source for humans. Wolffia is a member of the Lemnaceae family and is the world's smallest spermatophyte, with reduced roots, stems, and leaves. Scientific research on Wolffia species is relatively new, and this species is believed to be rare in Turkey. The phytochemicals and nutritional composition of plants are significantly affected by environmental factors in the natural or cultivated medium. In this study, Wolffia arrhiza was collected and cultured from a local area in Yeşilırmak Delta (Samsun) grown under controlled conditions using different LED lights. The Dumas method was used to determine the amount of crude protein. The protein content, calculated by multiplying the nitrogen (%) content by the standard conversion factor 6.25, was also evaluated by using different conversion factors in the literature. The results showed that rootless duckweed can be successfully grown under artificial lighting conditions with different light spectrums. The protein content of rootless duckweed, which was around 10% in the natural environment, increased considerably under red LED light (41.6% protein). The effect of different lights on protein content of W. arrhiza was observed as red LED > blue LED > purple LED > fluorescent. With its high protein content, environmentally friendly and sustainable production, Wolffia has the potential to quickly take place in the plant-based protein and functional food market as an alternative to traditional crops in the near future.

Proje Numarası

Proje No: B-2310

Kaynakça

  • Angell, A.R., Mata, L., de Nys, R., Paul, N.A. (2016). The protein content of seaweeds: A universal nitrogen-to-protein conversion factor of five. Journal of Applied Phycology, 28, 511–524. https://doi.org/10.1007/s10811-015-0650-1
  • Appenroth, K.J., Sree, K. S., Bog, M., Ecker, J., Seeliger, C., Böhm, V., . . . Tolzin-Banasch, K. (2018). Nutritional value of the duckweed species of the genus Wolffia (Lemnaceae) as human food. Frontiers in Chemistry, 6, 483. https://doi.org/10.3389/fchem.2018.00483
  • Arslan Günal, S., Taş, B. (2022). Uzay çalışmalarında biyorejeneratif yaşam destek sistemleri için potansiyel bir tür: Dünyanın en küçük spermatofiti, köksüz su mercimeği (Wolffia arrhiza). International Scientific Research Congress Dedicated to the 30th Anniversary of Baku Eurasia University, Proceedings Book, 305–316.
  • Bog, M., Appenroth, K.J., Sree, K.S. (2019). Duckweed (Lemnaceae): Its molecular taxonomy. Frontiers in Sustainable Food Systems, 3, 117. https://doi.org/10.3389/fsufs.2019.00117
  • Bog, M., Sree, K.S., Fuchs, J., Hoang, P.T., Schubert, I., Kuever, J., . . . Appenroth, K.J. (2020). A taxonomic revision of Lemna sect. Uninerves (Lemnaceae). Taxon, 69(1), 56–66. https://doi.org/10.1002/tax.12188
  • Casal, J., Vermaat, J., Wiegman, F. (2000). A test of two methods for plant protein determination using duckweed. Aquatic Botany, 67(1), 61–67. https://doi.org/10.1016/S0304-3770(99)00093-5
  • Cui, W., Cheng, J. (2015). Growing duckweed for biofuel production: A review. Plant Biology, 17, 16–23. https://doi:10.1111/plb.12216
  • Daun, J.K., DeClercq, D.R. (1994). Comparison of combustion and Kjeldahl methods for determination of nitrogen in oilseeds. Journal of the American Oil Chemists’ Society, 71, 1069–1072. https://doi.org/10.1007/BF02675898
  • Devlamynck, R., de Souza, M.F., Bog, M., Leenknegt, J., Eeckhout, M., Meers, E. (2020). Effect of the growth medium composition on nitrate accumulation in the novel protein crop Lemna minor. Ecotoxicology and Environmental Safety, 206, 111380. https://doi.org/10.1016/j.ecoenv.2020.111380
  • Diwan, F. (2023). Duckweed and its broad-spectrum applications. Climate Survival Solutions, Inc., and Climate Survival Solutions Pvt. Ltd., 1–18.
  • Etheridge, R., Pesti, G., Foster, E. (1998). A comparison of nitrogen values obtained utilizing the Kjeldahl nitrogen and Dumas combustion methodologies (Leco CNS 2000) on samples typical of an animal nutrition analytical laboratory. Animal Feed Science and Technology, 73(1-2), 21–28. https://doi.org/10.1016/S0377-8401(98)00136-9 Hoffland, E., Dicke, M., Van Tintelen, W., Dijkman, H., Van Beusichem, M.L. (2000). Nitrogen availability and defense of tomato against two-spotted spider mite. Journal of Chemical Ecology, 26, 2697–2711. https://doi.org/10.1023/A:1026477423988
  • Jones, D.B. (1931). Factors for converting percentages of nitrogen in foods and feeds into percentages of proteins. Circular No. 18, US Department of Agriculture, Washington, D.C.
  • Kaplan, A., Zelicha, H., Tsaban, G., Meir, A.Y., Rinott, E., Kovsan, J., ... Shai, I. (2019). Protein bioavailability of Wolffia globosa duckweed, a novel aquatic plant–a randomized controlled trial. Clinical Nutrition, 38(6), 2576–2582. https://doi.org/10.1016/j.clnu.2018.12.009
  • Kjeldahl, J. (1883). Neue methode zur bestimmung des stickstoffs in organischen körpern. Zeitschrift für analytische Chemie, 22(1), 366–382. https://doi.org/10.1007/BF01338151 Landolt, E., Kandeler, R. (1987). The family of Lemnaceae—a monographic study, 2. Biosystematic Investigations in the Family of Duckweeds (Lemnaceae). Veröffentlichungen des Geobotanischen Instutes der ETH. Stiftung Rübel, Zurich.
  • Lourenço, S.O., Barbarino, E., De‐Paula, J.C., Pereira, L.O., Marquez, U.M.L. (2002). Amino acid composition, protein content and calculation of nitrogen‐to‐protein conversion factors for 19 tropical seaweeds. Phycological Research, 50(3), 233–241. https://doi.org/10.1046/j.1440-1835.2002.00278.x
  • Mæhre, H.K., Dalheim, L., Edvinsen, G.K., Elvevoll, E.O., Jensen, I.J. (2018). Protein determination—method matters. Foods, 7(1), 5. https://doi.org/10.3390/foods7010005
  • Mariotti, F., Tomé, D., Mirand, P.P. (2008). Converting nitrogen into protein—beyond 6.25 and Jones' factors. Critical Reviews in Food Science and Nutrition, 48(2), 177–184. https://doi.org/10.1080/10408390701279749
  • Muñoz-Huerta, R.F., Guevara-Gonzalez, R.G., Contreras-Medina, L.M., Torres-Pacheco, I., Prado-Olivarez, J., Ocampo-Velazquez, R.V. (2013). A review of methods for sensing the nitrogen status in plants: Advantages, disadvantages and recent advances. Sensors, 13(8), 10823–10843. https://doi.org/10.3390/s130810823
  • Nieuwland, M., Geerdink, P., Engelen-Smit, N.P., Van Der Meer, I.M., America, A.H., Mes, J.J., . . . Mulder, W.J. (2021). Isolation and gelling properties of duckweed protein concentrate. ACS Food Science & Technology, 1(5), 908-916. https://doi.org/10.1021/acsfoodscitech.1c00009
  • Paolacci, S., Harrison, S., Jansen, M.A. (2018). The invasive duckweed Lemna minuta Kunth displays a different light utilisation strategy than native Lemna minor Linnaeus. Aquatic Botany, 146, 8–14. https://doi.org/10.1016/j.aquabot.2018.01.002
  • Petersen, F., Demann, J., Restemeyer, D., Olfs, H.W., Westendarp, H., Appenroth, K.J., Ulbrich, A. (2022). Influence of light intensity and spectrum on duckweed growth and proteins in a small-scale, re-circulating indoor vertical farm. Plants, 11(8), 1010. https://doi.org/10.3390/plants11081010
  • Sinfield, J.V., Fagerman, D., Colic, O. (2010). Evaluation of sensing technologies for on-the-go detection of macro-nutrients in cultivated soils. Computers and Electronics in Agriculture, 70(1), 1–18. https://doi.org/10.1016/j.compag.2009.09.017 Sosulski, F.W., Imafidon, G.I. (1990). Amino acid composition and nitrogen-to-protein conversion factors for animal and plant foods. Journal of Agricultural and Food Chemistry, 38(6), 1351–1356. https://doi.org/10.1021/jf00096a011
  • Sree, K.S., Sudakaran, S., Appenroth, K.J. (2015). How fast can angiosperms grow? Species and clonal diversity of growth rates in the genus Wolffia (Lemnaceae). Acta Physiologiae Plantarum, 37(10). https://doi.org/10.1007/s11738-015-1951-3
  • Stewart, J.J., Adams III, W.W., Escobar, C.M., López-Pozo, M., Demmig-Adams, B. (2020). Growth and essential carotenoid micronutrients in Lemna gibba as a function of growth light intensity. Frontiers in Plant Science, 11, 480. https://doi.org/10.3389/fpls.2020.00480
  • Taş, B., Şengüllendi, F.T. (2022a). Algal biyoteknoloji: Besleyici ve fonksiyonel gıdalar. Ziraat, Orman ve Su Ürünleri Alanında Yeni Trendler, Duvar Yayınları; ISBN: 978-625-8261-57-8, 125–149.
  • Taş, B., Şengüllendi, F.T. (2022b). Effect of different led lights on the element content of rootless duckweed. 7th Asia Pacific International Modern Sciences Congress, November 4-5, 2022/Jakarta, Indonesia, VII - Proceedings Book, 163–173.
  • Taş, B., Topaldemir, H. (2021). Assessment of aquatic plants in the Miliç coastal wetland (Terme, Samsun, Turkey). Review of Hydrobiology, 14(1-2), 1–23.
  • Thompson, M., Owen, L., Wilkinson, K., Wood, R., Damant, A. (2002). A comparison of the Kjeldahl and Dumas methods for the determination of protein in foods, using data from a proficiency testing scheme. Analyst, 127(12), 1666–1668. https://doi.org/10.1039/b208973b
  • Tippery, N.P., Les, D.H. (2020). Tiny plants with enormous potential: Phylogeny and evolution of duckweeds. In The Duckweed Genomes (pp. 19–38): Springer. https://doi.org/10.1007/978-3-030-11045-1_2
  • Tsaban, G., Meir, A.Y., Rinott, E., Zelicha, H., Kaplan, A., Shalev, A., ... Shai, I. (2021). The effect of green Mediterranean diet on cardiometabolic risk; a randomised controlled trial. Heart, 107(13), 1054–1061. https://doi:10.1136/heartjnl-2020-317802
  • van Dijk, M., Morley, T., Rau, M.L., Saghai, Y. (2021). A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nature Food, 2(7), 494–501. https://doi.org/10.1038/s43016-021-00322-9
  • Wedge, R.M., Burris, J.E. (1982). Effects of light and temperature on duckweed photosynthesis. Aquatic Botany, 13, 133-140. https://doi.org/10.1016/0304-3770(82)90047-X
  • Wiles, P.G., Gray, I.K., Kissling, R.C. (1998). Routine analysis of proteins by Kjeldahl and Dumas methods: review and interlaboratory study using dairy products. Journal of AOAC International, 81(3), 620–632. https://doi.org/10.1093/jaoac/81.3.620
  • WHO (World Health Organization) (1970). Requirements of ascorbic acid, vitamin D, vitamin B-12, folate, and iron. World Health Organization Techical Report, 1–452.
  • Xu, J., Cui, W., Cheng, J.J., Stomp, A.M. (2011). Production of high-starch duckweed and its conversion to bioethanol. Biosystems Engineering, 110(2), 67–72. https://doi.org/10.1016/j.biosystemseng.2011.06.007 Xu, J., Shen, G. (2011). Growing duckweed in swine wastewater for nutrient recovery and biomass production. Bioresource Technology, 102(2), 848–853. https://doi.org/10.1016/j.biortech.2010.09.003
  • Xu, J., Shen, Y., Zheng, Y., Smith, G., Sun, X.S., Wang, D., ... Li, Y. (2022). Duckweed (Lemnaceae) for potentially nutritious human food: A review. Food Reviews International, 1–15. https://doi.org/10.1080/87559129.2021.2012800
  • Yaskolka Meir, A., Tsaban, G., Zelicha, H., Rinott, E., Kaplan, A., Youngster, I., ... Shai, I. (2019). A green-Mediterranean diet, supplemented with Mankai duckweed, preserves iron-homeostasis in humans and is efficient in reversal of anemia in rats. The Journal of Nutrition, 149(6), 1004–1011. https://doi.org/10.1093/jn/nxy321
  • Yin, Y., Yu, C., Yu, L., Zhao, J., Sun, C., Ma, Y., & Zhou, G. (2015). The influence of light intensity and photoperiod on duckweed biomass and starch accumulation for bioethanol production. Bioresource Technology, 187, 84–90. https://doi.org/10.1016/j.biortech.2015.03.097
  • Zelicha, H., Kaplan, A., Yaskolka Meir, A., Tsaban, G., Rinott, E., Shelef, I., ... Shai, I. (2019). The effect of Wolffia globosa Mankai, a green aquatic plant, on postprandial glycemic response: a randomized crossover controlled trial. Diabetes Care, 42(7), 1162–1169. https://doi.org/10.2337/dc18-2319
  • Ziegler, P., Adelmann, K., Zimmer, S., Schmidt, C., Appenroth, K.J. (2015). Relative in vitro growth rates of duckweeds (Lemnaceae)-the most rapidly growing higher plants. Plant Biology, 17, 33–41. https://doi.org/10.1111/plb.12184
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Hidrobiyoloji
Bölüm Research Articles
Yazarlar

Beyhan Taş 0000-0001-6421-2561

Faruk Tolga Şengüllendi 0000-0002-2114-3778

Proje Numarası Proje No: B-2310
Erken Görünüm Tarihi 27 Haziran 2023
Yayımlanma Tarihi 17 Temmuz 2023
Gönderilme Tarihi 11 Nisan 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Taş, B., & Şengüllendi, F. T. (2023). Farklı LED ışıklar altında yetiştirilen köksüz su mercimeğinin (Wolffia arrhiza) Dumas yöntemi kullanılarak ham protein içeriğinin belirlenmesi. Aquatic Research, 6(3), 189-200. https://doi.org/10.3153/AR23019

16291

is licensed under a CreativeCommons Attribtion-ShareAlike 4.0 International Licence 14628   1325927040

Diamond Open Access refers to a scholarly publication model in which journals and platforms do not charge fees to either authors or readers.

Open Access Statement:

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.

Archiving Policy:

Archiving is done according to TÜBİTAK ULAKBİM "DergiPark" publication policy (LOCKSS).