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ABSTRACT 

Microalgae exhibit large potential as an alternative to advanced biological nutrient removal in 
wastewater or simulated wastewater at laboratory conditions. Therefore, it is necessary to deter-
mine the optimum conditions for nutrient removal. This study investigated the total carbohydrate, 
chlorophyll-a, -b, carotenoid and lipid production and nutrient removal of mixotrophic microalgae 
(C. vulgaris) cultured in different nitrate/phosphate rich modified BG-11 medium (0-200 mg L-1) 
at longer growth periods (10 days). The mean removal efficiency of NO3-N (in nitrate source), and 
PO4-P (in phosphate source) (88.29 ±0.12 and 31.06 ±0.22%, respectively) was reached in the 
mixotrophic culture. Under the optimum conditions (200 µmol photon m⁻2s⁻1 16 h photoperiod 
and 28% inoculum size), 63.61-99.05% of NO3

- and 13.97-63.77% of PO₄3⁻were successfully re-
moved. The lipid and carbohydrate productivities were 27.95 and 29.53 g L−1d−1, 0.2869 and 
0.2435 g L-1 d-1 respectively, which were approximately 9-12 times higher than those in photoau-
totrophic condition. The BG-11 growth media containing 10 g L−1 glucose and excessive amount 
of nutrient effect results indicate that the Chl-a, -b and carotenoid contents of C. vulgaris is higher 
at 100 mg L-1 N and 50 mg L-1 P growth media composition compared to 100% growth media 
composition. Thereby, the findings of this study provided an insight into the role of algal uptake 
of nutrients under the nutrient rich mixotrophic medium for the future algae-based treatment ap-
plication. 
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Introduction 
The application of microalgae for wastewater treatment has 
gained much attention due to the potential of microalgae to 
simultaneously remove nutrients and produce valuable bio-
mass. Their great potential in producing biodiesel, which is 
a renewable energy source, can reduce the greenhouse gas 
emissions (Abe et al., 2008; Khan and Yoshida, 2008; 
Bruce, 2008; Groom et al., 2008; Azianabiha et al., 2019).  

The production of biofuels from microalgae is associated 
with high demands of nutrients required for growth (Barbera 
et al., 2016). Their lipid productivity/biomass (dry weight) 
is about 15–300 times that of conventional crops (Chisti, 
2008). Therefore, microalgae are considered as a promising 
substitute for fossil fuels in the future (Li et al., 2010).  

Phosphorus is one of the most important nutrient in domes-
tic waste-water. It is difficult to remove and hence along 
with nitrogen is responsible for eutrophication of water bod-
ies, especially where untreated sewage is discharged. Nutri-
ent removal is becoming a regular approach for wastewater 
treatment plant, since excess nitrogen and phosphorus in 
discharged wastewater can lead to downstream eutrophica-
tion and ecosystem damage (Swati et al., 2017).  

Based on these considerations, it is clear that the only way 
to obtain an economically and environmentally sustainable 
microalgal biofuels production is to recycle the nutrients, 
the majority of which is not included in the lipid fraction 
destined to biofuels,and remains in the residuals. This pos-
sibility is clearly highly connected with the method em-
ployed for biomass treatment after harvesting (Sialve et al., 
2009; Heilmann et al., 2011; Biller et al., 2012; Rösch et al., 
2012; Garcia Alba et al., 2013; Levine et al., 2013; López 
Barreiro et al., 2013; Zhang et al., 2014; Ward et al., 2014; 
Barbera, 2016).  

Microalgae growth is possible under heterotrophic or mixo-
trophic conditions as well as autotrophic conditions depend-
ing on specific characteristics of the species (Andrade and 
Costa, 2007) and some microalgae species like Chlorella 
vulgaris (Mitra et al., 2012), Haematococcus pluvialis (Ko-
bayashi et al., 1992), Spirulina platensis (Marquez et al., 
1993), C. sorokiniana (Wang et al., 2012), Botryococcus 
braunii (Zhang et al., 2011), and C. zofingiensis (Liu et al., 
2011) have been observed under autotrophy, heterotrophy, 
and mixotrophy conditions. Mixotrophic cultivation of mi-
croalgae provides higher biomass and lipid productivities 
than cultivation under photoautotrophic conditions, the cost 

of the organic carbon substrate is estimated to be about 80% 
of the total cost of the cultivation medium (Bhatnagar et al., 
2011).  

The objective of this study was to quantify some biochemi-
cal changes (lipids, chlorophyll-a and -b, carotenoids and to-
tal carbohydrate and removal of nutrients) in mixotrophic 
condition (glucose substrate) of Chlorella vulgaris grown in 
nitrate-phosphate rich conditions. Nitrate and phosphate 
concentrations were measured on the initial and final days 
of cultivation to evaluate nutrient removal rates. Therefore, 
the aim of the present study was to determine nutrient uptake 
performance and efficiency of Chlorella cells under the nu-
trient rich mixotrophic medium for the future algae-based 
wastewater treatment application. 

Material and Methods 
Algal Growth Medium and Experimental Design 

C. vulgaris was obtained from the Culture Collection of Mi-
croalgae at the University of Ege, Izmir, Turkey. The modi-
fied and non-modified BG-11 medium were used as the 
growth medium in the experiments. The growth and nutrient 
uptake experiments were conducted at four different nutri-
ent levels as presented in Table 1.  NO3-N (NaNO3) and 
PO4-P (K2HPO4) were used as the nitrogen and phosphorus 
sources, respectively. A standard initial inoculum of the al-
gae was inoculated to culture flasks (200 mL each) that con-
tained BG-11 medium and incubated at 28 ± 1ºC under 14 h 
light (20 E m−2 s−1 ±20 %), with magnetic stirring (100 rpm). 
For mixotrophic cultures, glucose was added to the culture 
broth in concentration of 10 g L-1 maintaining the same L/D 
photoperiod of 14:10 h. BG11 medium and BG11 medium 
containing glucose were used for autotrophic culture and 
mixotrophic culture of Chlorella cells, respectively. 10 g L−1 
glucose has been proved to be an ideal organic matter source 
for the mixotrophic cultivation of microalgae in some previ-
ous studies (Liang et al., 2009; Cheirsilp & Torpee, 2012). 
To examine the removal effect of nitrogen and phosphorus 
from modified medium by using C. vulgaris cells, the se-
lected microalgae were triplicate cultured in medium with 0, 
50, 100, 200 mg L-1 concentration of nitrate and phosphate 
for 10 days. The initial pH was adjusted to 7 using 10% HCl 
and the contents of chlorophyll-a, chlorophyll-b, lipid and 
carotenoids in the supernatant were determined by UV-VIS 
spectroscopy.  
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Table 1. Initial nutrient levels for batch experiments with C. vulgaris.  

Experiment  NO3-N (mg/L) PO4-P (mg/L) Glucose (g/L) 
Control* (n-mm Bg-11 ) 0.06 ±0.003 0.001 ±0.001 No glucose 

mm BG-11 

0 0 10 ±0.01 
50 ±0.24 50 ±0.77 10 ±0.04 

100 ±0.58 100 ±0.96 10 ±0.05 
200 ±1.33 200 ±1.46 10 ±0.01 

*Key to subscripts: n-mm: non modified medium, mm: modified medium. 

 

Determination of Chlorophyll and Total Carotenoids 
Concentration 

Chlorophylls and carotenoids in C. vulgaris were extracted 
with methanol and spectrophotometrically determined as 
described by Dere et al. (1998). Total pigment content was 
obtained by summing chlorophylls and carotenoids contents 

Lipid Analysis 

Lipid contents of the microalgae were directly measured by 
sulpho-phospho-vanillin (SPV) colorimetric method 
(Mishra et al., 2014). At the end of the cultivation, algal bi-
omass was harvested to measure lipid content. The relation-
ship between the lipid content of the 100 μL microalgae sus-
pensions and the absorbency at 530 nm was acquired from 
a previous study (Tao et al., 2017; Eq. 1): 

Lipid (mg) = 0.123 X OD530 + 0.003 (R2= 0.999)     (1) 

Dry Weight and Nutrient Removal Analysis 

The dry weight of algal biomass was determined using the 
method of suspended solid (SS) measurement. For the meas-
urement of water quality, the algal culture was centrifuged 
(10.000 rpm X 10 min at 4°C) and filtered through a 0.45 
µm filter. After that, the weight of C. vulgaris was calcu-
lated from the calibration curve that obtained from the dry 
cell weight method (Eaton, 2005). The filtered supernatant 
was then used for the determination of nitrate and phosphate 
concentrations. To determine nutrient removal rates, NH3

+-
N and PO4

3- -P were measured on initial and final days of the 
experimental period. The samples were filtered with a 0.2-
μm pore-size membrane filter prior to the measurement to 
exclude suspended materials. Nutrient removal rate (R, %; 
Eq. 2) and removal capacities (q, mg/L day, Eq. 3) were cal-
culated as (Babaei et al., 2013): 

R=100 × (Ci−Cf) /Ci,     (2) 

q (mg/L day) = (Ci- Cf) x V/m      (3) 

V: Solution volume (mL) 

m: Dry weight of the adsorbent (g) 

Ci and Cf: initial and final nutrient concentrations of NH3
+-

N or PO4
3--P on initial and final days of the experimental 

period, respectively. 

All experiments were performed in 3 replicates. The data are 
presented as the mean±standard deviation of the mean 
(SDM).  

Results and Discussion 
Chlorophyll-a and b and Carotenoid Contents 

In this work, the effects of mixotrophic medium, which is 
contain high concentration of nitrate and phosphate, were 
systematically investigated on C. vulgaris, regarding the nu-
trient uptake, the lipid productivity, the chlorophyll, carote-
noid and carbohydrate content.  

Chl-a and b and carotenoid levels for the control group were 
measured 0.6565, 0.9883 and 0.0985 µg/L, respectively un-
der mixotrophic cultivation. At the end of the experiment, 
the highest chlorophyll-a and -b and carotenoid contents 
were observed in the 50 mg L-1 (1.33 µg L-1) and 50 mg L-1 
(2.24 µg L-1) and 100 mg L-1 (3.57 µg L-1), respectively. 
Measurements for the Chl-a and b and carotenoid content, 
for the 100 mg L-1 and 50 mg L-1 concentration of nitrate and 
phosphate solution, showed that the high concentration of 
NO3

- and PO4
3- treatment causing an increase in Chl-a and b 

and carotenoid, respectively (Figure 1). Chlorophyll content 
results showed that 100 mg L-1 nitrate treatment caused an 
increase in Chl-a and b and carotenoid levels, while 50 mg 
L-1 phosphate treatment decreased.  

Chlorophyll is one of the cellular compounds on the basis of 
which microalgal biomass in the culture is estimated and it 
can be used to measure cell growth (Kong et al., 2013). Ac-
cording to a previous report, the utilization of an external or-
ganic carbon source may affect the photoautotrophic growth 
processes, such as photosynthesis and respiration (Kong et 
al., 2013).  As shown in Figure 1, the effect of glucose and  
100 mg L-1 and 50 mg L-1 concentration of nitrate and phos-
phate solution on the photosynthetic pigment content and 
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productivity of mixotrophic C. vulgaris was significant. Our 
results showed that the mixotrophic cultures experience an 

increase in photosynthetic pigment productivity that was de-
pendent on the increase of high concentration of nutrient in 
the medium content (Kong et al., 2013). 

 

Figure 1. Chl-a and b and carotenoid changes in µg/L  

 
Figure 2. Carbohydrate content changes in g/L after the nutrient treatment 
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Total Carbohydrate Contents 

The effects of high concentrations of nutrient on the carbo-
hydrate content and productivity of C. vulgaris under mixo-
trophic cultivation can be seen in Figure 2. Carbohydrate 
content for the control group were measured 0.0278 g L-1 
under mixotrophic culture conditions. Measurements for the 
carbohydrate content, for the 200 mg L-1 concentration of 
nitrate and phosphate solution, showed that the high concen-
tration of NO3

- and PO4
3- in the culture media causing an 

increase in carbohydrate, respectively. The average carbo-
hydrate content for nitrate and phosphate treatment meas-
ured as 0.2869 and 0.2435 g L-1, showing that these nutrients 
cause an increase on the increasing concentrations. 

Carbohydrates are found as the intermediary reserves in some 
algae, due to the fact that they are required when the nitrogen 
becomes limited in the lipid synthesis (Kong et al., 2013). In 
the present study, when chlorophyll content in C. vulgaris in-
creased, both lipid and carbohydrate content increased by ni-
trogen depletion. A common trend can be since, in which the 
carbohydrate content increased rapidly after the nitrogen 
source concentration decreased to the lowest level, which is 
consistent with previous findings showing that carbohydrate 
accumulation in microalgae is often triggered by nitrogen de-
pletion (Orus et al., 1991; Kong et al., 2013). These results 
suggested that changes in the cellular biochemical composi-
tion were influenced by the trophic conditions and nutrient 
concentration in the medium.  

Result of Lipid Analysis 

The measurements for the lipid content for the different nu-
trient concentration treatment showed that NO3

- and PO4
3- 

treatment causing an increase in lipid levels. The max. lipid 
content was 27.95 and 29.53 mg L-1 under nitrate and phos-
phate treatment medium, respectively (Figure 3). Woertz et 
al. (2009) studied the lipid productivity and nutrient removal 
by green algae including Scenedesmus, Chlorella and 
Glolenkinia species grown during the wastewater treatment 
in batch cultures and reported that the maximum lipid con-
tent range was 14-29% and volumetric productivity of lipid 
was 17 mg/L/d. The highest lipid content (30.74 and 39.88 
mg L-1) occurred in mixotrophic cultivation when the cul-
ture was loaded with a high concentration of nitrate and 
phosphate (100-200 mg L-1), higher than under autotrophic 
cultivation.  

The lipid productivity obtained in the present work was not 
necessarily superior or inferior to those reported elsewhere 
using different strains of microalgae. For instance, Converti 
et al. (2009) and Woertz et al. (2009) reported that C. vul-
garis growing in Bold’s basal medium had somewhat higher 
production rates ranging from 8 to 20 mg/d/L and 17 to 24 
mg/d/L, respectively. This suggests that in laboratory cul-
ture mode the lipid productivity in wastewater or simulated 
wastewater might be improved by continuous supplementa-
tion of nutrients such as nitrate or phosphate (Wang, 2012). 

 
Figure 3. Lipid content changes in mg/L after the nutrient treatment  
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Nutrient Removal Efficiencies  

The removal amounts and removal efficiency of total nitro-
gen and phosphorus depending on the four different concen-
tration of culture medium are presented in Figures 4 and 5. 
The min. and max. nitrate removal amounts and efficiency 
were 0.2302- 0.3584 mg L-1 and 63.61- 99.05% under mixo-
trophic conditions, respectively. The results showed that the 
mixotrophic cultures experience an increase in nitrate uptake 
that was dependent on the increase of high concentration of 
nutrient in the medium content. The NO3

- uptake capacities 
was average 88.29%. It means that mixotrophic microalgae 
approximately consumed about 89% of the initial nitrate after 
10 days to produce biomass. 

Max. phosphate removal amount and efficiency were also 
high, as great as 0.2226 mg L-1 and 63.77% in mixotrophic 
conditions compared to the other concentration of culture 
medium at 50 mg L-1 nitrate concentration of nutrient in the 
medium content. Lowest phosphate removal capacity was 
observed in 100 and 200 mg L-1 concentration of treatment. 

This might be to the fact that the organic carbon concentra-
tions in this experiment were low compared to those in the 
reviewed literature de-Bashan et al. 2011. 

Under the mixotrophic and optimum conditions (200 µmol 
photon m⁻2s⁻1 16 h photoperiod and 28% inoculum size), 
63.61-99.05% of NO3

- and 13.97-63.77% of PO₄3⁻were suc-
cessfully removed (Tab 2).  

Mixotrophic cell cultivation utilizing both light and organic 
carbon source has been considered the most efficient pro-
cess for the production of microalgal biomass (Lee et al., 
1996). When the light energy used for CO2 fixation is de-
creased in mixotrophic cultures, most of the energy is used 
for carbon assimilation. Therefore, since the amount of en-
ergy dissipated is minimal, mixotrophy provides higher en-
ergetic efficiency than other cultivation modes (Lalucat et 
al., 1984). On the other hand, Shi et al. (2000) reported that 
glucose can be considered the best organic C-substrate for 
the growth of Chlorella.  

Figure 4. Nutrient removal levels measured for 0; 50; 100; 200 mg L-1 and control values. 
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Figure 5. Nutrient removal efficiency of C. vulgaris under the mixotrophic conditions  
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Table 2.  Standardized conditions (control) and under high concentration of nitrate and phosphate treatment from the 10th day 
of mixotrophic culture condition. Values are expressed as amount of substances in relation to the dry matter. Each 
value represents the mean of three replicates ± standard deviation.  

 Chl-a (µg/L) Chl-b (µg/L) Carotenoid 
(µg/L) 

Carbohydrate 
(g/L) 

Lipid 
(mg/L) 

Adsorption    
capacities 

(mg/L) 

Uptake        
efficiency   

(%) 
Control 0.6565±0.006 0.9883±0.005 0.0945±0.004 0.027±0.004 20.15±0.3 0.1788±0.001 71.04±0.1 
N 0 mg/L 0.82181±0.005 1.1019±0.007 0.0444±0.004 0.3000±0.004 26.73±0.9 0.2302±0.002 63.61±0.4 
N 50 mg/L 0.6408±0.002 2.1255±0.006 0.0689±0.006 0.2795±0.005 25.36±0.2 0.3379±0.005 93.35±0.1 
N 100 mg/L 1.3348±0.005 2.2404±0.004 0.8437±0.006 0.2827±0.006 28.96±0.9 0.3515±0.005 97.13±0.3 
N 200 mg/L 1.1393±0.004 1.4674±0.005 0.1974±0.004 0.2854±0.002 30.74±0.7 0.3585±0.002 99.05±0.3 
P 0 mg/L 0.9163±0.006 1.9277±0.006 0.3396±0.001 0.001±0.001 26.75±0.9 0.0488±0.003 13.97±0.5 
P 50 mg/L 0.9317±0.004 1.5525±0.002 0.5120±0.001 0.1288±0.002 21.15±0.9 0.2227±0.004 63.76±0.3 
P 100 mg/L 0.5087±0.004 0.4285±0.003 0.2891±0.006 0.2860±0.001 30.34±0.8 0.0938±0.004 26.85±0.6 
P 200 mg/L 0.1890±0.005 0.2589±0.003 0.2096±0.005 0.3032±0.004 39.88±0.4 0.0686±0.003 19.65±0.1 
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