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ABSTRACT 

The aim of this study was to quantify the growth and assess the variability of V. parahaemolyticus 
strains isolated from seafood. A total of 35 V. parahaemolyticus strains were assessed, and their 
maximum specific growth rate (µmax) was estimated by the Time-to-Detection Method by regres-
sion analysis using the Generalized Reduced Gradient algorithm.  The highest µmax (h-1) value was 
2.33 for V. parahaemolyticus isolated from Atlantic salmon, followed by 2.30 for Mediterranean 
horse mackerel and European seabass, 2.26 for Mediterranean mussels, 2.20 for veined rapa whelk, 
1.88 for the pandemic strain O3:K6, 1.57 for oysters, 1.43 for bluefish, and 1.29 for Gilthead 
bream. This study provides useful information for the quantitative characterisation of V. parahae-
molyticus growth, which can be a main input for microbial exposure assessments. 
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Introduction 
Vibrio parahaemolyticus is a Gram-negative and halophilic 
bacterium which causes seafood-borne gastroenteritis world-
wide (Narayanan et al., 2020). It is a normal habitant in ma-
rine and estuary environments. Hence, V. parahaemolyticus 
dwells freely in the water body, attached to the surface or par-
asite in the gastrointestinal tract of hydrobionts (Tan et al., 
2020). The prevalence of V. parahaemolyticus varies signifi-
cantly between geographical regions or different climatic 
conditions (Ma et al., 2023). However, this pathogen is usu-
ally higher in warmer months (Ndraha & Hsiao, 2021). V. 
parahaemolyticus can be more prevalent in fish, shrimps, 
oysters, mussels, clams, scallops, and squid (Vu et al., 2022; 
Wang et al., 2022). Seafood is contaminated with V. parahae-
molyticus because of improper handling, lack of hygiene and 
refrigeration, and cross-contamination (Stratev et al., 2023). 
The pathogen can accumulate in hydrobionts, but it could be 
at higher levels in shellfish because of their filter-feeding be-
havior. The main pathogenic factors of V. parahaemolyticus 
are thermostable direct hemolysin (tdh) and thermostable di-
rect-related hemolysin genes (trh) (Flynn et al., 2019). V. 
parahaemolyticus-associated gastroenteritis is due to ingest-
ing raw or undercooked seafood. They are seasonally depend-
ent because 67% of the gastroenteritis appear in August and 
September (Mok et al., 2021). The main clinical symptoms 
are diarrhoea, abdominal cramps, nausea, vomiting, and fever 
(Mai et al., 2022). The first outbreak of V. parahaemolyticus 
gastroenteritis was reported in Japan in 1950 after consuming 
contaminated fish. More outbreaks of contaminated seafood 
consumption have been reported in the United States, China, 
Taiwan, Spain, Italy, Chile, and Peru (Odeyemi, 2016).  

Maximum specific growth rate (µmax) is considered a univer-
sal indicator, relating kinetic information to food-borne path-
ogens’ proliferation. Mathematical models based on µmax al-
low predicting the behaviour of bacteria in different condi-
tions while having a quantitative assessment at a population 
level. The maximum specific growth rate is a crucial param-
eter for developing predictive models which show the practi-
cal meaning of strain variability and provide key information 
for quantitative risk assessment (McMeekin, 1997).  

Considering the scarce information and importance of µmax 
for microbial exposure assessments of V. parahaemolyticus, 
we designed this study to fill these gaps and provide deeper 
knowledge. 

Materials and Methods 
Strains Used 

In total, 35 V. parahaemolyticus strains previously isolated 
from Mediterranean mussel (Mytilus galloprovincialis) (M) 
(n=12), veined rapa whelk (Rapana venosа) (R) (n=7), Med-
iterranean horse mackerel (Trachurus mediterraneus) (SF) 
(n=5), oysters (Ostreidae) (OST) (n=3), Gilthead bream 
(Sparus aurata) (CP) (n=3), Atlantic salmon (Salmo salar) 
(SAL) (n=2), bluefish (Pomatomus saltatrix) (CH) (n=1), and 
European seabass (Dicentrarchus labrax) (LAV) (n=1) were 
used in this study (Stratev et al., 2023). The pandemic strain 
V. parahaemolyticus O3:K6 provided by the National Bank 
for Industrial Microorganisms and Cell Cultures (Sofia, Bul-
garia) was also used as a reference strain.

Preparation of Inoculum 

All strains were kept in CASO broth (HiMedia, India) sup-
plemented with glycerin in a fridge at –20°C. After defrost-
ing, each strain was streaked onto Zobell Marine Agar 
(HiMedia, India) and incubated overnight at 37°C. After that, 
a single colony was inoculated in alkaline saline peptone wa-
ter (HiMedia, India) with 2% NaCl and pH 8.6 and incubated 
at 37°C for 24h to achieve an enriched broth culture of at least 
log 7 CFU/mL. The enriched broth was centrifuged at 6450 
rcf for 5 min. Moreover, decanted, the cell pellet was washed 
twice, and the bacterial suspension was recovered in alkaline 
saline peptone water (HiMedia, India). 

Determination of Maximum Specific Growth Rate (µmax) 

A standard 96-well flat-bottom microplates were inoculated 
with 2-fold serial diluted bacterial cultures, and the optical 
density was measured every 30 min for 10 hours at 630 nm 
(Microplate Reader Rayto RT-2100C, China). The method of 
Cuppers & Smelt (1993) and Membre et al. (2002) was ap-
plied for computing the µmax by regression analysis using the 
Generalized Reduced Gradient algorithm (Excel solver). 
Each isolate was assessed in triplicate, and the mean values 
of µmax were calculated using the following basic formula:  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑣𝑣𝑀𝑀𝑣𝑣𝑣𝑣𝑀𝑀 =
𝑀𝑀 + 𝑏𝑏 + 𝑐𝑐

3
where a is the value of µmax from the first assessment, b is the 
value of µmax from the second assessment, and c is the value 
of µmax from the third assessment. 
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Statistical Analysis 

GraphPad Prism (ver. 8.0.1) was used for statistical data pro-
cessing. Two-way ANOVA with Tukey’s multiple compari-
sons test was performed to show significant differences in the 
specific growth rate between the investigated strains. The re-
sults are presented as mean values. The statistical signifi-
cance was determined at p<0.05. 

Results and Discussion 

The mean µmax (h-1) of V. parahaemolyticus ranged from 0.73 
to 2.26 for Mediterranean mussels, 1.63 to 2.20 for veined 
rapa whelk, 1.67 to 2.30 for Mediterranean horse mackerel, 
1.19 to 1.57 for oysters, 0.99 to 1.29 for Gilthead bream, 2.01 
to 2.33 for Atlantic salmon, while it was 1.43 for bluefish, 
2.30 for European seabass, and 1.88 for the pandemic strain 
O3:K6. The strain with the highest growth was isolated from 
Atlantic salmon, i.e. SAL9 – 2.33, and the slowest grower 
was isolated from Mediterranean mussels, i.e. M5 – 0.73. 
There was a significant difference (p<0.05) in the growth 
characteristics between the investigated strains from Mediter-
ranean mussels (Figure 1), Mediterranean horse mackerel 
(Figure 2), Gilthead bream (Figure 3), and between the strains 
isolated from oysters (Figure 4). No significant difference 
(p>0.05) in the growth characteristics between the strains 
from veined rapa whelk was found. 

V. parahaemolyticus has been reported to be a major seafood-
borne pathogen in Asia and the USA responsible for severe 
infections (Wang et al., 2020a). In China, 322 V. parahaemo-
lyticus-associated gastroenteritis outbreaks were recorded, 
resulting in 9041 illnesses and 3948 hospitalisations between 
2003 and 2008 (Wu et al., 2014), while vibrions cause 80000 
illnesses and 100 deaths in the United States each year 
(Hanna et al., 2022). From the above, it is evident that V. 
parahaemolyticus is the most common pathogen in seafood, 
and the development of a predictive model has market im-
portance for providing safe aquatic products (Wang et al., 
2020b). Quantitative risk assessment can be applied to de-
velop effective and efficient risk-based food safety programs. 
It comprises hazard identification, dose-response assessment, 
exposure assessment, and risk characterisation (Potter & 
Brudney, 1994). The exposure assessment step includes de-
termining a few indicators, including the maximum specific 
growth rate or briefly µmax (Hu et al., 2017). In this study, we 
determined the µmax of 35 V. parahaemolyticus strains using 
a turbidimetric assay. This method is reliable for estimating 
bacterial growth under various conditions (Cuppers & Smelt, 
1993). It is also rapid, non-destructive, inexpensive, and eas-
ily automated (Dalgaard & Koutsoumanis, 2001). Lianou & 
Koutsoumanis (2011) found higher intra-specific variability 

of µmax among S. enterica strains compared to that observed 
among the different replicates of one strain. Our results align 
with this finding as we computed a high range of µmax values, 
between 0.73 and 2.33, in the investigated strains. Whiting 
and Golden (2002) stated that this point is important for 
properly interpreting experimental results because some food 
microbiologists incorrectly assume that strain-to-strain varia-
tion is equal. It is not necessary to be estimated. Moreover, 
research data generated in this study should be useful in strain 
selection for food safety challenge tests, assessing the effect 
of hurdles, and the development of quantitative risk assess-
ment models (Lianou & Koutsoumanis, 2013). Shi et al. 
(2021) calculated µmax of 18 V. parahaemolyticus strains iso-
lated from shrimps by the modified Gompertz model and 
found values ranging from 0.16 to 0.64 in 2-fold dilution 
broth culture. Similarly, Wang et al. (2020b) also applied the 
modified Gompertz model for the µmax calculation of 27 V. 
parahaemolyticus strains isolated from shrimps, and the val-
ues ranged from 0.45 to 1.00. At 37°C, Liu et al. (2016) found 
that µmax ranged from 0.03 to 0.24 at 0.5% NaCl, from 0.02 to 
0.44 at 3% NaCl, from 0.01 to 0.26 at 5% NaCl, from 0 to 
0.15 at 7% NaCl, and from 0 to 0.12 at 9% NaCl among 50 
V. parahaemolyticus strains isolated from shrimps. When 
these results were compared with those of our strains, the 
higher µmax estimates were evident. 
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Figure 1. Significant differences between V. parahae-
molyticus strains from Mediterranean mussels 
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Figure 2. Significant differences between V. parahae-
molyticus strains from Mediterranean horse mackerel 
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Figure 3. Significant differences between V. parahae-

molyticus strains from Gilthead bream 
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Figure 4. Significant differences between V. parahae-

molyticus strains from oysters 
 
Conclusion 
The results showed that the highest µmax value was for V. 
parahaemolyticus isolated from Atlantic salmon, followed by 
the values for Mediterranean horse mackerel, European sea-
bass, Mediterranean mussels, veined rapa whelk, oysters, 
bluefish, and Gilthead bream. This study provides useful in-
formation for the quantitative characterisation of V. parahae-
molyticus growth, which can be a main input for microbial 
exposure assessments as part of risk analysis of food-borne 
pathogens.  
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