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Abstract 
In this paper, firstly, a summary of certain results related to the differential geometry of ruled surfaces is 
provided. Subsequently, the signature curve for ruled surfaces in Euclidean 3-space is introduced. Additionally, 
a simple algorithm for the reconstruction of a ruled surface, which is both efficient and entirely local, requiring 
only the initial motion direction and starting point, is presented. Finally, the efficiency and accuracy of the 
algorithm are demonstrated through several examples. 
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3-boyutlu Öklid Uzayında bir Regle Yüzeyin Yeniden Yapılandırılması 

Öz 

Bu makalede, öncelikle regle yüzeylerin diferesiyel geometrisi ile ilgili bazı sonuçların bir özeti sunulmuştur. 
Daha sonra, Öklid 3-uzayında regle yüzeyler için işaret eğrisi tanıtılmıştır. Ek olarak, bir regle yüzeyin yeniden 
yapılandırılması için hem verimli hem de tamamen yerel olan, yalnızca ilk hareket yönü ve başlangıç noktası 
gerektiren basit bir algoritma sunulmuştur. Son olarak, algoritmanın verimliliği ve doğruluğu birkaç örnekle 
gösterilmiştir. 
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1. Introduction 

In the Euclidean plane, the parametric representation of a curve 𝛼(𝑡)	 yields its signature curve 
𝑆(𝑡) = (𝜅(𝑡), κ!(𝑡),,		where κ(𝑡)	 signifies the curvature and κ!(𝑡) is the rate of change with 
respect to the arc length 	𝑡. Calabi et al. used the signature curves to recognize invariant 
properties of visual objects in the Euclidean plane [1,2]. They also introduced a new method 
for invariant recognition of visual objects that involves numerical approximation of κ(𝑡) and 
κ!(𝑡) to a differential invariant signature curve. Surazhsky and Elber explored the process of 
uniquely deriving a planar curve's curvature signature and, more importantly, the methodology 
for reconstructing the curve from its curvature signature [3]. Numerous geometers have 
examined these inquiries and extended the scope. In 2012, Hickman demonstrated a method for 
generating all planar curves that exhibit a specific signature curve [4]. In 2000, Boutin 
introduced a 3-dimensional adaptation of the Euclidean signature curve, encompassing 
curvature, torsion, and their respective derivatives concerning arc length [5]. In more recent 
times, Wu and Li introduced an algorithm for replicating a motion trajectory through the 
utilization of the signature curve within the Euclidean space [6,7,8]. The exploration of ruled 
surfaces represents an intriguing research domain within surface theory, with applications 
spanning various areas in CAD and CAGD [9]. Peternell delved into the reconstruction of 
developable surfaces from scattered data points, while Ryuh et al. harnessed ruled surfaces for 
robot motion planning [10, 11]. Pottmann et al. explored offsets of rational ruled surfaces [12]. 
Furthermore, the geometry of ruled surfaces plays a crucial role in the study of kinematic and 
positional mechanisms, as demonstrated by Kühnel, Abdel Baky, Ekici and Çöken, Zhang, 
Ünlütürk et al. and Ekici et al. [13,14,15,16,17,18]. Similar to the fundamental theorem of 
curves, which facilitates the determination of a curve based on curvature and torsion, a similar 
structure can be recognized in the field of reconstruction of a ruled surface. In this context, the 
signature curve plays a crucial role. The basic rationale behind the inclusion of a signature curve 
in a ruled surface reconstruction algorithm stems from the inherent independence of signature 
curves with respect to the choice of coordinate systems. As a result, the freedom to add 
segments of constant curvature at critical points of the curve is allowed. However, this freedom, 
together with an Euclidean transformation, constitutes the only freedom available to preserve 
the integrity of the signature curve. Moreover, these curves provide an accurate representation 
of the shape of the ruled surface and rigorously capture all its critical geometric features. The 
organization of this paper proceeds as follows: Section 2 describes the basic properties inherent 
to ruled surfaces. The following section briefly summarises the algorithmic concept governing 
the reconstruction of ruled surfaces. Finally, Section 4 analyses the pragmatic applications of 
the proposed algorithm, providing several illustrative examples for extensive discussion. 

2. Ruled Surfaces 

This section is devoted to the so-called ruled surfaces. A ruled surface in Euclidean 3-space 
ℝ"  is a (smooth or discrete) one-parameter family of straight lines [9].  We briefly recall some 
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basic facts on ruled surfaces. Recall that, using standard parameters 𝑢 and	𝑣, a ruled surface 
can be parameterized by 

𝜑(𝑢, 𝑣) = 	𝛼(𝑢) + 𝑣𝑋(𝑢) (1) 
where ‖𝑋(𝑢)‖ = ‖𝑋′(𝑢)‖ = 1 and 〈𝛼#(𝑢), 𝑋′(𝑢)〉 = 0. 
Here 𝛼(𝑢) is the striction line, the parameter 𝑢 is the arc length of the spherical curve 
𝑋(𝑢). 
A ruled surface is, up to Euclidean motions, uniquely determined by the following 
quantities: 

𝐹 = 〈𝛼#, 𝑋〉
𝑄 = det	(𝛼#, 𝑋, 𝑋′)
𝐽 = det	(𝑋, 𝑋#, 𝑋′′)

 (2) 

each of which is a function of  𝑢. Conversely, every choice of these q uantities uniquely 
determines a ruled surface. 
Furthermore, the derivative of the striction line is completely determined by 𝐹	and 𝑄 using the 
equation 

𝛼# = 	𝐹𝑋 + 𝑄𝑋 ∧ 𝑋′ (3) 
where 𝑄 is the parameter of the distribution. 
In the moving frame, {𝑋, 𝑋#, 𝑋 ∧ 𝑋#} we have the Frenet type matrix 

𝑑
𝑑𝑢 D

𝑋
𝑋′

𝑋 ∧ 𝑋#
E = D

0 1 0
−1 0 𝐽
0 −𝐽 0

E D
𝑋
𝑋′

𝑋 ∧ 𝑋#
E. (4) 

  
3. Reconstruction of a Ruled Surface from its Signature 

As in the basic known theorem for curves; given curvature and torsion, the curve can be found 
by the difference in position. Similar to this structure, the reconstructed regular surface can be 
found using the signature curve. Recalling the fact that the ruled surfaces can be completely 
determined by 𝐹, 𝑄	and  𝐽 we have the following definition. 
Definition 2.1 Let 𝜑 be ruled surface in Euclidean space ℝ". The signature curve of the ruled 
surface is defined by 

𝑆(𝑢) = {𝐹(𝑢), 𝑄(𝑢), 𝐽(𝑢)}. (5) 
We can easily see that the signature curve of ruled surface is invariant under translations and 
rotation. 
This paper aims to formulate an algorithm for the reproduction of the ruled surface based on its 
signature, denoted as S. Initially, the reproduction process involves the generation of the ruling 
and the striction line. Then, the reproduced ruling and the striction line are combined to 
reconstruct the ruled surface. 

Firstly, to reproduce the moving frame of ruled surface we use the so called finite difference.  
Let 𝑢$ and 𝑢$ + Δ𝑢$ be  two consecutive  points. The  derivatives of moving  frame vectors 
𝑀 = {𝑋, 𝑋#, 𝑋 ∧ 𝑋#} can be obtained by  
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𝑑
𝑑𝑢 𝑋(𝑢$) =

𝑋(𝑢$ + Δ𝑢$) − 𝑋(𝑢$)
Δ𝑢$

𝑑
𝑑𝑢 𝑋′(𝑢$) =

𝑋′(𝑢$ + Δ𝑢$) − 𝑋′(𝑢$)
Δ𝑢$

𝑑
𝑑𝑢 (𝑋 ∧ 𝑋

#)(𝑢$) =
(𝑋 ∧ 𝑋#)(𝑢$ + Δ𝑢$) − (𝑋 ∧ 𝑋#)(𝑢$)

Δ𝑢$
.

 (6) 

From Eq. (4) and (6) we can derive the following iteration equation expressed in matrix form 
as 

I
𝑋(𝑢$ + Δ𝑢$)
𝑋′(𝑢$ + Δ𝑢$)

(𝑋 ∧ 𝑋#)(𝑢$ + Δ𝑢$)
J = D

1 Δ𝑢$ 0
−Δ𝑢$ 1 𝐽Δ𝑢$
0 −𝐽Δ𝑢$ 1

E I
𝑋(𝑢$)
𝑋′(𝑢$)

(𝑋 ∧ 𝑋#)(𝑢$)
J. (7) 

We use this matrix to compute new vectors from old ones. 
Since the moving frame vectors are unit vectors, we need to normalize the vectors, then we 
have the reproduced moving frame vectors obtained by 

𝑋K(𝑢$ + Δ𝑢$) =
𝑋(𝑢$ + Δ𝑢$)
‖𝑋(𝑢$ + Δ𝑢$)‖

𝑋′L (𝑢$ + Δ𝑢$) =
𝑋′(𝑢$ + Δ𝑢$)
‖𝑋′(𝑢$ + Δ𝑢$)‖

(𝑋 ∧ 𝑋#M )(𝑢$ + Δ𝑢$) =
(𝑋 ∧ 𝑋#)(𝑢$ + Δ𝑢$)
‖(𝑋 ∧ 𝑋#)(𝑢$ + Δ𝑢$)‖

   (8) 

where ‖. ‖ indicates the Euclidean norm of a vector. 
The reproduced moving frame 𝑀(𝑢$ + Δ𝑢$) at the point 𝑢$ + Δ𝑢$ from 𝑀(𝑢$) denoted by 

𝑀(𝑢$ + Δ𝑢$) = N𝑋K(𝑢$ + Δ𝑢$), 𝑋#O(𝑢$ + Δ𝑢$), (𝑋 ∧ 𝑋#)M (𝑢$ + Δ𝑢$)P. (9) 
To the reproduce the moving frame vectors we need the initial motion  direction given by 

Θ(𝑢%) = {𝑋K(𝑢%), 𝑋#O(𝑢%), (𝑋 ∧ 𝑋#M )(𝑢%)} 
where we set the initial point as 𝑢%. Starting from the initial motion direction Θ(𝑢%) and the 
provided signature 𝑆 of the ruled surface, by iteratively applying equations (7) and (8), we can 
compute the moving frame 𝑀(𝑢$ + Δ𝑢$) for all points on the reconstructed ruled surface. 
It is no surprise that the reproduced vector 𝑋(𝑢$ + Δ𝑢$) can be considered to be the 
ruling of the reproduced ruled surface. 
Next, we turn our attention to the reproduction of the striction line. To reproduce the 
striction line we use again finite difference method. Then, the derivative of the striction 
line of the ruled surface is obtained by 

𝑑
𝑑𝑢 𝛼

(𝑢$) =
𝛼(𝑢$ + Δ𝑢$) − 𝛼(𝑢$)

Δ𝑢$
. (10) 

Substituting (3) into (10) gives 
𝛼(𝑢$ + Δ𝑢$) = 𝛼(𝑢$) + Δ𝑢$[𝐹(𝑢$)𝑋(𝑢$) + 𝑄(𝑢$)(𝑋 ∧ 𝑋#)(𝑢$)]. (11) 

Using the initial starting point 𝛼(𝑢%) and (11) we can easily reproduce all  the points 
of the striction line. 
As the final step, combining iteration equations (8) and (11), the reproduced ruled surface 
𝜑(𝑢$ + Δ𝑢$ , 𝑣) can be easily constructed in the following form: 

𝜑(𝑢$ + Δ𝑢$ , 𝑣) = 𝛼(𝑢$ + Δ𝑢$) + 𝑣𝑋K(𝑢$ + Δ𝑢$)	. (12) 
To summarize, once the signature data is available, the above equation can be used to 
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reproduce all the points of the ruled surface. Therefore, given the initial starting point 
α(𝑢%) of the striction line, the initial motion direction Θ(𝑢%)	of  the moving frame, and 
iterate equation (12), we can reproduce all the points of the ruled surface. 
 
4. Examples 

In this section, we tested the performance of our algorithm. We give some examples as 
follows: 
Example 3.1 Let us consider the well-known ruled surface helicoid parametrized by 

𝜑(𝑢, 𝑣) = (𝑣𝑐𝑜𝑠𝑢, 𝑣𝑠𝑖𝑛𝑢, 𝑢). (13) 
We have the moving frame as 

𝑋(𝑢) = (𝑐𝑜𝑠𝑢, 𝑠𝑖𝑛𝑢, 0)
𝑋′(𝑢) = (−𝑠𝑖𝑛𝑢, 𝑐𝑜𝑠𝑢, 0)

(𝑋 ∧ 𝑋#)(𝑢) = (0,0,1).
 (14) 

𝐹, 𝐽 and 𝑄 are obtained by 
𝐹 = 𝐽 = 0,				𝑄 = 1. (15) 

In this example, we can simply set the initial motion direction Θ(1)		in the following 
form: 

𝑋(1) = (1,0,0)
𝑋′(1) = (0,1,0)

(𝑋 ∧ 𝑋#)(1) = (0,0,1).
 (16) 

The initial point of origin is selected as 

𝛼(1) = (10,5,0).	 (17) 

  

Figure 1. (a) The original ruled surfaces Figure 1. (b) The reproduced ruled surfaces 

Now, consider the reconstruction of the ruled surface. At the initial starting point 𝛼(1) of 
the striction line, the initial motion direction Θ(1)		of the moving frame of the ruled 
surface and signature curve 𝑆(𝑢)		respectively, are firstly given as input data. Then, we  
reproduced the ruled surface with points 𝑣 ∈ (−3,3)  and  𝑢$ ∈ (1,10)  with  Δ𝑢 = 𝑢$&' − Δ𝑢$ 
for	Δ𝑢 = 0.01. The ruled surface, which was produced by the signature of the original 
ruled surface, is shown in Figure 1(b). The original ruled surface is illustrated in Figure 
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1(a). Figure 1(a) and Figure 1(b) show that the original and reproduced ruled surfaces 
are similar. They have the same shape (signature curve) but they are not identical in space 
position. 
 
Example 3.2 The Wallis' conical edge represents a ruled surface defined by the parametric 
equation: 

𝜑(𝑢, 𝑣) = ]𝑣𝑐𝑜𝑠𝑢, 𝑣𝑠𝑖𝑛𝑢, ^4 − 3𝑐𝑜𝑠(𝑢`.  

The derived calculations yield the expression 𝑆(𝑢)		as follows: 

𝑆(𝑢) = a0,
3𝑐𝑜𝑠𝑢𝑠𝑖𝑛𝑢
√4 − 3𝑐𝑜𝑠(𝑢

, 0c.  

Assuming that the initial direction of motion Θ(−3)		and the initial starting point α(−3)		 
are given by: 

𝑋K(−3) = (−0.989,−0.141,0)
𝑋′L (−3) = (−0.141,−0.989,0)

(𝑋 ∧ 𝑋#)M (−3) = (0,0,1)
 

and  
𝛼(−3) = (0,0,1.02) (18) 

respectively. 

  

Figure 2. (a) The original ruled surfaces Figure 2. (b) The reproduced ruled surfaces 

The  ruled  surface  is  then  reproduced with points  𝑣 ∈ (−3,3) and 𝑢$ ∈ (1,10) such that 
Δ𝑢 = 𝑢$&' − Δ𝑢$ for	Δ𝑢 = 0.01. Figure 2(a) and Figure 2(b) show that if we choose the 
initial motion direction and the initial starting point identical to the original ruled surface 
then the original and reproduced ruled surfaces are completely identical.  
 
Example 3.3 Assume that the signature curve is given as input data in the following form: 

𝑆(𝑢) = ]−2𝑢, 0,
𝑢
2`.  

We start at an arbitrary initial motion direction Θ(−4)		 given by 
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𝑋K(−4) = (1,0,0)
𝑋′L (−4) = (0,1,0)

(𝑋 ∧ 𝑋#)M (−4) = (0,0,1).
 (19) 

 
In addition, assume we are given the initial starting point of the striction line of the ruled 
surface in the following form: 

𝛼(−4) = (5,4,3). (20) 
 
Now using 𝛼(−4),	Θ(−4), and 𝑆(𝑢), we can produce a ruled surface, illustrated in Figure 
3. In Figure 3(a) and Figure 3(b), the appearance of the reconstructed ruled surface is plotted 
by rotating it in two different directions. We, here, computed the  ruled  surface with  points  
𝑣 ∈ (−3,3),    𝑢$ ∈ (−4,4), and Δ𝑢 = 𝑢$&' − Δ𝑢$ for Δ𝑢 = 0.01.  

 
 

Figure 3. (a) The produced ruled surface Figure 3. (b) The reproduced ruled surfaces 

Conclusion 

This article is devoted to the reproduction of ruled surfaces in Euclidean space. Examples 
are reported to show the reproduction algorithm for ruled surfaces is flexible and easy. 
The validity and effectiveness of the formulation are checked through several examples. 
According to our experiments, the accuracy of the ruled surface reproduction will be 
sufficient in most applications. If necessary, it can be improved by reducing the mesh size Δ𝑢. 
For future research our algorithm can be applied to Lorentz space as well. Furthermore, we will 
apply this method for surface reconstruction. 
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