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ABSTRACT

This study uses CFD methods to solve the complex flow around a CPP propeller with ducts 
and aims to investigate the performance differences between ducted and non-ducted propel-
ler designs. In particular, the values for pitch changes and blade spindle torques have been 
determined at different advance ratios. The study uses STAR-CCM+, a commercial compu-
tational fluid dynamics (CFD) code, and has preferred the k-ε model to predict turbulence 
in the flow. In addition to the thrust coefficient, torque coefficient, and propeller efficiency, 
the study also examines blade spindle torque, whichprovides movement to the propeller 
blades. The use of ducts at low advance ratios is found to be beneficial in terms of both im-
proving performance and reducing torque.

Cite this article as: Yurtseven A. Numerical investigation into the effect of duct use on the 
performance of controllable pitch propellers. Seatific 2023;3:2:43–50.

1. INTRODUCTION

Propeller efficiency is the most important parameter 
affecting propulsion system efficiency in marine vessels. 
One of the methods applied to increase propeller efficiency 
is to change the pitch angles of the propeller blades based 
on vehicle speed while keeping propeller speed constant. 
Propellers that can perform this maneuver are called 
controllable pitch propellers (CPP). Another application is 
to make the propellers work within a non-movable nozzle 
(duct). These types of propellers are called ducted propellers.

Two types of ducted propeller structures are often used 
on ships (Celik et al., 2011). The first is the accelerating 
ducted propeller system that accelerates the flow on heavily 
loaded and diameter-restricted propellers, and the second 
is the decelerating ducted propeller system, which increases 
static pressure by slowing down the flow over the propeller 
to delay propeller cavitation. System efficiency has been 

observed to increase with the additional loading of the 
duct in ducted propellers. However, the additional loading 
of the duct is limited to the current separation at the duct. 
Propellers with current accelerating ducts are generally 
used in tug-like vessels that perform pushing and pulling 
operations. They are also preferred on research vessels, 
drilling platforms, and marine vessels that require the 
ability to hold position (Oosterveld, 1972).

Trawlers also use ducted propellers due to the need for a 
high thrust ratio at a low advance ratio. Methods based 
on computational fluid dynamics (CFD) can be used for 
the design and operating parameters of ducted propellers 
used in these types of boats (Caldas et al., 2019). Some 
studies are found in the literature on ducted propellers 
(Bhattacharyya et al., 2015, 2016b; Baltazar et al., 2019; 
Zhang et al., 2019, 2020; Gong et al., 2021; Zhang et al., 
2021; Kim et al., 2022). Celik et al. (2010) developed an 
iterative design methodology for ducted propellers due 
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to the insufficient accuracy of classical propeller design 
methods under heavy loading conditions. Haimov et al. 
(2011) used several different types of ducts to obtain the 
combined effect of the Reynolds number and loading 
on thrust and torque by comparing model and full-
scale calculations in turbulent flow, confirming the 
characteristics and efficiency gains of ducted propellers.
Ducts can be used with fixed pitch propellers as well 
as with controllable pitch propellers. In particular, the 
ability to change pitch in case of current separation, 
which can cause a decrease in thrust, has shown better 
characteristic values in controllable pitch propellers than 
in fixed pitch propellers (Elbatran et al., 2014). Very few 
ducted CPP propeller studies are found in the literature 
(Arief et al., 2021; Huisman et al., 2022). Panel methods 
working with potential theory have been used to analyze 
the performance of CPP propellers with nozzles. However, 
Liu et al. (2006) realized that viscous solutions should be 
used for torque values in particular.
Scaling effects are also found among studies. The scaling 
effects of both propellers and ducts have been investigated 
with regard to performance. Scaling effects were found 
to have a greater effect on the thrust from ducts than on 
propeller characteristics. The effect of the design and scale of 
the ducts on thrust with current separation has been shown 
to besignificant at high advance ratios. Much better results 
were obtained in the full-scale analysis of ducted propellers 
compared to scale models (Bhattacharyya et al., 2016a).
The operating procedures for CPP propellers require the 
blades to be rotated around their axis to change the pitch 
angle. This introduces the concept of spindle torque, which 
is not present in fixed-pitch propellers. A few studies are also 
found in the literature on the propeller blade spindle torque 
of CPP propellers (Godjevac et al., 2009; Jessup et al., 2009; 
Martelli et al., 2013; Tarbiat et al., 2014; Pourmostafaet al., 
2021; Yurtseven et al., 2023). Determining blade spindle 
torques is also very important for aiding the design of 
CPP propellers and for avoiding excessive blade actuation 
pressures at the blade hub (Liu et al., 2015). The torque on 
the blade can be investigated numerically using potential 
theory verified by a simulation. Studies should also clearly 
analyze well the complex flow conditions around CPP 
propeller blades (Funeno et al., 2013).
This study uses CFD methods to analyze the complex flow 
around a ducted CPP propeller and aims to investigate the 
performance differences between ducted and non-ducted 
propeller designs. In particular, the values for pitch change 
and blade spindle torque have been determined at different 
advance ratios.

2. NUMERICAL MODELING

2.1. Governing equations
The analyses using computational fluid dynamics 
methods model the flow as three-dimensional, steady 
state, viscous, turbulent, and incompressible. This study 
has preferred the realizable k-epsilon turbulence model, 

with the continuity and steady state Reynolds averaged 
Navier-Stokes equations being as follows:
дUi =0
дxi  (1)

дUi дP д puiʹujʹ( (

дτ
pUj

=– –+
дxi дxi дxiдxJ  (2)

where Ui is the average velocity vector, uʹ is the turbulence 
velocity vector, puiʹujʹ is the turbulence stress tensor, P is 
average pressure, p is density, and μ is dynamic viscosity. 
The study uses Simcenter Star CCM+ version 2020.3, a 
commercial CFD code. The solver applies the finite volume 
method to discretize the governing equations.
Both spatial and temporal discretization has been done 
with accurate second-order schemes to improve accuracy. 
The well-known SIMPLE algorithm is used for pressure-
velocity matching. More information about the numerical 
solution can be found in the solver manual (Siemens, 2021).
Figure 1 shows a flow stream volume to represent the flow 
around the propeller. The dimensions in the figure are defined 
based on propeller diameter. The following conditions have 
been defined: uniform velocity inlet for the inlet surface, 
pressure outlet for the outlet surface, symmetry at the side 
surface, and no-slip for all other surfaces. This study was 
carried out by conducting analyses under open water propeller 
test conditions. As shown in Figure 2, propeller pitch changes 

Figure 1. Solution volume and boundary types.

Figure 2. Propeller blade movement for changing pitch.
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were achieved through maneuvers that were obtained by 
rotating the propeller blades around the shaft axis.
CPP propellers’ability to change pitch angle (unlike FPP 
propellers) as well as to rotate around the main drive 
shaft also requires the blades to rotate around their own 
spindle axis. This leads to the need for an additional 
motion model in simulations. This study uses the motion 
reference frame for the propeller’s main rotational 
motion. Although the overset motion model needed to 
be used for pitch changes, each pitch angle was generated 
and analyzed sequentially due to the simulations being 
run independently of time.

2.2. Grid structure
In order to analyze the solution volume using the finite 
volume method, a solution mesh consisting of unstructured 
hexahedral mesh elements was generated as shown in 
Figure 3.
Solution element refinement zones were designed for the 
propeller blades, shaft, hub, and duct based on the solution 
mesh. Prism layer elements are used close to the surfaces 
for accurate estimation of high-speed gradients.

2.3. Verification study
Roache’s (1994) solution grid convergence index 
(GCI) method was used to determine the numerical 
uncertainty in the simulation studies. GCI is based on 
the Richardson extrapolation method, which estimates 
the exact numerical solution to be obtained using a zero-
dimensional solution element through systematically 
obtained solution mesh results. GCI is also recommended 
by the American Society of Mechanical Engineers (ASME; 
Celik et al., 2008), International Towing Tank Conference 
(ITTC, 1999), and American Institute of Aeronautics and 
Astronautics (AIAA; Cosner et al., 2006) for numerical 
uncertainty assessments (Kim et al., 2021).
This study performed GCI by generating the solution mesh 
at three different resolutions. The basic size of the solution 
mesh elements were determined as shown by Equation 3.

1 (ΔVi)
1/3

Σ
N

i=1
[ [

h=
N  

(3)

where N is the number of solution elements, ΔVi is the 
volume of each solution element, and h is the basic 
dimension. For the three different solution mesh 
resolutions (i.e., fine, medium, and coarse), the basic 
dimensions are h1, h2 and h3 respectively. Refinement 
factors are taken as r21=h2/h1, r32=h3/h2. The equations used 
for calculating the GCI are as follow:

ε32=φ3−φ2, ε21=φ2−φ1 (4)

where the φ values indicate the result of the analysis at each 
mesh resolution.

1p= |In|ε32/ε21|+q(p)|
1n (r21)  (5)
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S=1.sgn (ε32/ε21) (7)

The p value indicates the order value of the GCI method 
that is used.

φ21
ext =(r p

21φ1−φ2)/(r p
21−1) (8)

Figure 3. Detailed view of the solution grid.

Table 1. Results from the GCI study (J=0.16)

 Value
N1 8713836
N2 4477850
N3 2322435
φ1 0.870
φ2 0.864
φ3 0.849
p 15.150
φ21

ext 0.870
e21

a 0.0069
e21

ext 0.00018
GCI21

fine (%) 0.023
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The sub-index ext here indicates the exact value. Table 1 shows 
the results from the GCI study, with N indicating the number 
of cells, φ indicating the coefficient of thrust, and e indicating 
the error quantities. Thus, the solution grid was determined 
to be needed at a medium resolutionfor the analysis.

2.4. Problem description
2.4.1. Geometry
The study uses the 5-blade CPP test propeller VP1304 as 
shown in Figure 4 together with Duct 19A, a standard duct 
frequently encountered in the literature.

The geometric dimensions and details are given in Table 2.

2.5. Validation study
Figure 5 shows the comparison of the experimental data 
obtained under open water propeller test conditions with 
the results from the numerical study.

According to the data obtained at six different advance 
ratios, the results from the numerical study are understood 
to show good agreement with the experimental results.

3. RESULTS

This section presents the numerical simulation results for 
the VP1304 test propeller and Duct 19A duct. The thrust 
coefficient, torque coefficient, and propeller efficiency have 
been analyzed based on the advance ratio, as frequently 
used in the literature, in order to determine the propeller 
operating performance. The results are also discussed 
in terms of the spindle torque coefficient as proposed by 
Yurtseven and Aktay (2023).

Figure 6 shows the propeller performance coefficients 
for the VP1304 propeller designs with and without Duct 

Figure 4. The VP1304 propeller and Duct 19A duct geometry.
Figure 5. Experimental and numerical study results for the 
VP1304 propeller (Heinke, 2011).

Figure 6. Performance coefficients for the ducted and 
non-ducted VP1304 CPP.

CPP: Controllable pitch propellers.

Table 2. Geometric details of the VP1304 propeller
D 0.250 m
Blade number 5
Rotation direction Right
P0.7/D 1.635
Propeller Shaft Downstream
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Figure 7. Spindle torque coefficient for (a) non-ducted propeller and (b) ducted propeller.

Figure 8. Upstream(front) and downstream(back) pressure distributions for non-ducted and duct-
ed propellers (J=0.16).
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19A. In terms of thrust, two cases occur for the ducted 
propeller design. The ducted case shows the performance 
changes should be examined separately as those realized 
on the propeller itself and then the performance change 
on the propeller group, which can be called the ducted 
propeller group. An increase in the is known to decrease 
the propeller loading. For the ducted propeller, the thrust 
coefficient of the propeller alone gives lower values than the 
non-ducted propeller for all advance ratios. Although these 
values converge as the advance ratio increases, no specific 
high value was found. However, the thrust coefficient of 
the ducted propeller group gives very similar results to that 
for the non-ducted propeller at low advance ratios (i.e., 
under heavy load conditions). However, this similarity 
deteriorates negatively as the advance ratio increases.
In terms of propeller torque coefficient, the ducted propeller 
is seen to give significantly lower values, especially at low 
advance ratios. Therefore, it has a higher propeller efficiency 
than for the non-ducted propeller. However, this situation 
again converges to the torque coefficient of the non-
ducted propeller, with the propeller efficiency decreasing 
significantly as the advance ratio increases.
Figure 7 gives thespindle torque coefficients for the VP1304 
CPP propeller, ductedin Figure 7a and non-ducted in Figure 
7b. The curves are plotted as a function of the change in blade 
pitch angle, with 0° indicating the design pitch of the propeller 
at full track and 55° indicating the feathering position. 

Figure 7a shows the highest value of the blade spindle 
torque coefficient to be obtained at a low advance ratio. The 
spindle torque coefficient is seen to decrease as the advance 
ratio increases. Figure 7b shows the highest spindle torque 
coefficient in the ducted design to decrease significantly 
compared to the non-ducted design and to occur at a lower 
pitch angle. This decrease is practically insignificant after the 
advance ratio increases to a certain point.
Figure 8 shows the pressure distributions at different pitch 
angles for the front face and back face for the ducted and 
non-ducted propeller designs at an advance ratio of J=0.16. 
In Figure 8, the front face shows the upstream region, and 
the back face shows the downstream region. The ducted 
propeller achieves a more homogeneous pressure distribution 
by increasing the pressure on the front face and decreasing 
the pressure on the back face, especially in the regions close 
to the blade tips up to a 40° pitch angle. In addition, because 
the flow is accelerated at all angles, a general reduction in the 
pressure distribution is obtained on the surfaces. In this case, 
the ducted design reduces the overall blade spindle torque 
on the propellers. However, the accelerated flow shows the 
blades to stall much earlier when changing pitch.

Figure 9 shows the velocity distributions on the longitudinal 
center plane for the ducted and non-ducted propeller designs. 
According to these velocity distributions, the use of a duct 
increases the current flowing through the propeller to about 
3%,thus increasing efficiency and reducing the torque on the 

Figure 9. Velocity distributions along the longitudinal center planes of ducted and non-duct-
ed propellers (J=0.16).
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blade shaft axis, which allows the blade to maneuver much 
more effectively. In addition, the wake zone distributions 
shown in Figure 9 also reveal the use of the duct to correct the 
propeller wake, thus contributing to the increase in efficiency.

4. CONCLUSION

This study placed a standard Duct 19A nozzle as a test duct 
on the VP1304 propeller, provided experimental data to 
the VP1304 as a CPP test propeller, and then examined the 
change in propeller performance. 
At low advance ratios (i.e., under heavy load conditions), 
the blade spindle torque was observed to decrease for the 
ducted propeller compared to the non-ducted propeller.
Because the flow is accelerated and a homogeneous 
distribution of the wake is obtained in the ducted propeller, 
the thrust values of the ducted propeller group increased 
at low advance ratios. At the same time, an increase in 
propeller efficiency was also achieved.
The blade spindle torque, which provides the movement of 
the blades for pitch change in CPP propellers, was observed 
to besignificantly reduced in the ducted propeller. This 
reduction was also found to be more pronounced at low 
advance ratios, with the use of ducts also observed to cause 
the blades to stall earlier.
Future studies should investigate the cavitation behavior and 
flow-induced noise in ducted and non-ducted CPP propellers.
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