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Abstract 

 

In this study, the algebraic structure of 1-absorbing ideals is first examined and applied to fuzzy sets, 

along with an investigation into the relationships and algebraic properties between them. The 

contribution to this work's literature involves examining 1-absorbing fuzzy primary ideals. Features of 

1-absorbing fuzzy primary ideals are explored, and it is demonstrated, for instance, that I  is deemed a 

1-absorbing fuzzy primary ideal of P if I is a fuzzy primary ideal of P. Additionally, I is considered a 

2-absorbing fuzzy primary ideal of P if I is a 1-absorbing fuzzy primary ideal of P. Furthermore, these 

theorems are elucidated through specific examples. 

 

 

Keywords: Fuzzy sets, Fuzzy ideals, 1-absorbing ideals, 1-absorbing fuzzy ideals, 1-absorbing fuzzy 
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1. Introduction 
 

American mathematician H. S. Vandiver established the notion of semirings in 1935, and 

numerous authors have subsequently examined it. Semirings are a natural generalization of 
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rings with a wide area of applications in the mathematical foundations of computer science 

[1]. 

 

In 1965, Zadeh introduced the theory of a fuzzy set in [2], and many scientists worked on 

developing this theory. Earth science, life and behavioral sciences, medical science, logic, 

operations research, decision theory, and especially electrical engineering and computer 

science have all used fuzzy set theory [3, 4]. In 1968, the article “Fuzzy Topological Spaces” 

was written by Zadeh’s student Chang in [5]. Chang’s article served as a source of inspiration 

for Rosenfeld, leading him to believe that these operations had the potential to be utilized in 

algebraic structures. This led him to write ”Fuzzy Groups,” as documented in [6]. Fuzzy 

algebra is constructed upon this foundation, and various researchers have extensively 

examined this concept in a wide range of algebraic systems. The notion of a fuzzy ideal of a 

ring was introduced by Liu in [7]. Abou-Zaid created the concept of fuzzy subnear-rings and 

fuzzy ideals in [8]. 

 

Atanassov extended Zadeh’s fuzzy set notion to the intuitionistic fuzzy set in [9]. These are 

primarily intended to reflect that the degree of non-membership of an element in an 

intuitionistic fuzzy set may not always be equal to 1 minus the degree of membership, but 

there may be some degree of hesitation [10]. 

 

The growing interest in fuzzy logic is evident in academic research as well. While the phrase 

‘fuzzy logic’ was present in the titles of scientific publications until 1990, it continued to be 

used in research paper titles starting from 2003, as noted in [11]. 

 

A. Badawi [12] proposed the 2-absorbing ideal of a commutative ring with identity as a 

generalization of the prime ideal in a commutative ring and investigated its features. 

Hashempoor et al. showed the view of a 2-absorbing fuzzy ideal of semiring P (2AFIS(P)) in 

[16]. A fuzzy ideal   of P is called a 2AFIS( P ) if  pqr   implies  pq   or 

 pr   or  qr   for all , ,p q r P  and  0, 1  . Researchers have conducted 

investigations into the concept of 2- absorbing, see ([18]-[25]). 

 

Then, Badawi et al. were the first to introduce and study 1-absorbing primary ideals and 

investigated a few notable features of 1-absorbing primary ideals in [13]. After this article, 

they studied 1-absorbing prime ideals of commutative rings in [14]. Every prime ideal is a 1-

absorbing prime ideal, and every 1-absorbing prime ideal is a 1-absorbing primary ideal. On 

the other hand, the inverse of this statement might not hold true as stated in [14]. Then, works 

on 1-absorbing have been studied by researchers, for more information see ([26]-[32]). 

 

The main focus of this article is on proving theorems and propositions for 2AFIS(P) that are 

well-known in fuzzy theory, as well as 1-absorbing fuzzy ideals of semiring P (1AFIS(P)). 

The relationship between 2AFIS(P) and 1-absorbing fuzzy ideals of the semiring P 

(1AFIS(P)) is investigated. Examples are presented to illustrate the distinctions between these 

two concepts, emphasizing the importance of studying both. 

 

2. Preliminaries 
 

We acknowledge that all semirings are commutative in this section, with 1 = 0. To begin, we  

 

will go through the basics of fuzzy sets and 1-absorbing ideal of semiring  P (1AIS(P)). 
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Definition 2.1 [17] A semiring is a non-empty set P  on which operations addition 

 

and multiplication (denoted by + and ·, respectively) have been defined such that 

 

the following conditions are satisfied: 

 

i.  ,P   is a commutative monoid with identity 0, 

ii. ( ,·)P  is a commutative semigroup, 

iii. ( )p q r pq pr    and ( )p q r pr qr    for all , ,p q r P , 

iv. 0 0 0  p p   for all p P . 

 

Definition 2.2 [32] A proper ideal I  of a semiring P  is said to be a 1AIS( P ) if 

 

pqr I  implies pq I  or r I  for all  , ,p q r P . 

 

Definition 2.3 [32] Let P  be a commutative semiring and I  be a proper ideal of P .  

 

Then I  is said to be a 1APIS( P ) if whenever , ,p q r P .    

 

We recall some definitions and results. 

 

Definition 2.4 [4] A fuzzy subset of a nonempty set P  is defined as a function   

 

 : 0,1 P  . For any fuzzy subset   of P  and  0,1 , the level subset of   is  

 

denoted by    and defined as   { : } p P p    . 

 

Definition  2.5 [4] Let   be a fuzzy subset of P  and p P . Then the radical of   is denoted  

 

by    and defined as   sup :np n N   . 

 

Definition 2.6 [15] Let   be a non empty fuzzy subset of a semiring P  (it means that anyone  

 

of  p   not equal to zero for some p P  ). Then   is called a fuzzy left ideal of  P  if 

 

i)     ( ) min ,p q p q     

ii)    pq q  . 

 

for all ,p q P . 

 

Likewise, we can define the fuzzy right ideal of P. 

 

Definition 2.7 [15]  Since  P   the characteristic function   of I  is defined by 
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1,

0,

p I

p I


 
  

 
. 

 

Now, we give the notion of morphism of semirings. 

 

Definition 2.8 [17] If R and S are semirings then a function :   R S   is a morphism of  

 

semirings if and only if : 

i) (0 ) 0R S  , 

ii) (1 ) 1R S  , 

iii)        r r r r         and      rr r r      for all ,  r r R . 

 

Given any two semirings R and S, let  µ be a fuzzy subset of R and let : R S   be any  

function. We define a fuzzy subset v  on S by 

 

   
   

1

1sup , ,

0,

x y

x if y y S
v y

otherwise



 






   
 

  
  

 

 

and we call v the image of µ  under  , written  µ . For any fuzzy subset v  on  R , we  

define a fuzzy subset µ  on R  by 

 

     1 v x v x    

 

for all x R , and we call µ  the preimage of v  under   [16]. 

 

3. On 1-absorbing fuzzy ideals on commutative semirings 
 

In this section, we will concentrate on 1AFIS(P) and unless stated differently, P symbolizes a 

commutative semiring. 

 

Definition 3.1 A fuzzy ideal   of P  is called a 1AFIS(P) if  pqr   implies 

 

 pq   or  r   for all , ,p q r P  and  0, 1  . 

 

The following are some examples of this definition. 

 

Example 3.2  Let P = {0, p, q} be a set with the operation addition and the multiplication   

defined as follows: 
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Then ( , ,.)P   forms a  commutative semiring Define fuzzy subset   of P by  0 1  , 

  0.4p  ,   1q  . Then   is a 1AFIS(P). 

 

Example 3.3   Let   0, , ,  P p q r  be a set  with the operation addition and the multiplication 

is defined as follows: 

 

 
 

Then (P, +, ·) forms a commutative semiring.  Define fuzzy subset ϕ of P by ϕ(0) = 1,  ϕ(p) = 

0.3, ϕ(q) = 1 and ϕ(r) = 0.9. Then  ϕ is a 1AFIS(P). 

 

Example 3.4  Let P Z . Consider the ideal 7I Z . 

 

 
1,

0,

p I
p

p I


 
  

 
 

 

Since   7.1.1 1  ,  1 0 1    but   7.1 1 1   . Thus I is a 1AFIS(P). 

 

Definition 3.5  A fuzzy ideal   of P  is called a 1-absorbing fuzzy primary ideal of semirin P  

(1AFIS(P)) if  pqr   implies    pq or r     for all , ,p q r P  and  0,1 .  

 

Theorem 3.6 Let   be a fuzzy subset of P . Then   is a 1AFIS(P) if and only if   is a 

1AIS(P). 

 

Proof. Let   be a 1AFIS(P) and pqr   for , ,p q r P  and  0,1 . Since   is a 

1AFIS(P), 

 

 

   

               

             or  

or

pqr pqr

pq r

pq r

 

 

 

  

  

  

 

 

Hence   is a 1AIS(P). Conversely, suppose   be a fuzzy subset of P such that   is a  

1AIS(P) for all  0,1  but   is not a 1AFIS(P). Therefore,  pqr   does not imply   
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 pq   or   r   for , ,p q r P and [0,1]  it means that pqr   does not imply 

pq   or  r   contradiction to the fact that    is a 1AIS(P). So   is a 1AFIS(P). 

 

Theorem 3.7 Let I  be a 1AIS(P) and  0,1  . Then, a fuzzy subset   of P given as 

 

 
1,

,

p I
p

p I




 
  

   
Then   is a 1AFIS(P). 

 

Proof. Let I  be a 1AIS(P) and , ,p q r P . Suppose    .pqr   

 

Case 1) Let   1,  Let pqr pqr I   .  Now, if   1pq    or    1r   ,  then 

,pq r I contradiction to the fact that I  is a 1AIS(P). 

 

Case 2) Let   ,  Here,  pqr  . If anyone of  pq  or   r  is equal to  , we are 

done. Otherwise  all of  pq  and  r  is equal to 1. In this case, ,pq r I  but pqr I , 

contradiction to  the fact that I  is a 1AIS(P). Therefore, the proof has been concluded. 

 

Now, we will charactarize 1AFIS(P) with the radical. 

 

Theorem 3.8  Let   be a 1AFPIS(P). Then,   is a 1AFIS(P).  

 

Proof. Let   be a 1AFPIS(P). Suppose for , ,p q r P  and  0,1 ,  pqr  . Then, 

 

    
  

sup :

sup : .

n

n n n

pqr pqr n Z

p q r n Z

 



   

  
 

 

Suppose that r  . So,  nr  ,  for  0,1  and n Z . Since   is a 1AFPIS(P), 

  k
n np q   for some k Z  and so   sup :m mp q m Z    it follows that pq  . 

Therefore,   is a 1AFIS(P).  

 

Theorem 3.9  Let 1  and 2  be 1AFIS(P). Then 1 2   is also a 1AFIS(P).  

 

Proof. The intersection of two fuzzy ideals of P  is also a fuzzy ideal of P , as we know. 

Let  1  and 2  be 1AFIS(P) and , ,p q r P . Then,  

 

       

         

     

1 2 1 2

1 2 1 2

1 2 1 2

inf ,

inf , inf ,

.

pqr pqr pqr

pq pq or r r

pq or r

   

   

   

   

  

    
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Hence, we reach 1 2   is a 1AFIS(P). Therefore, the result follows. 

 

Corollary 3.10 Let i  be a non-empty family of  1AFIS(P) for 1,2,...i  , then 
i  is 

also a 1AFIS(P).  

 

Proof. We know that the intersection of a non-empty family of fuzzy ideals of P  is also a 

fuzzy ideal of P . Now for 1AFIS(P), let  : 1, 2,...i i   be a non-empty family of 

a1AFIS(P) and , ,p q r P . 

 

    

     

   

inf

inf inf

.

i i

i I

i i

i i

i I i I

pqr pqr

pq or r

pq or r

 

 

 



 

 
   

 

  

   
     

   

 

 

As a result, the proof has been completed. 

 

Theorem 3.11 Let 1  and 2  be 1AFPIS(P). Then 1 2   is also a 1AFPIS(P).  

 

Proof. Similar to Theorem 3.9.  

 

Corollary 3.12 Let i  be a non-empty family of  1AFPIS(P) for 1,2,...i  , then i  is 

also a 1AFPIS(P).  

 

Proposition 3.13 Let :h R P  be a morphism of semirings and   be a 1AFIS(P). Then, 

 1h    is also a 1AFIS(R). 

 

Proof. Let :h R P  be a morphism of semirings and   be a 1AFIS(P). Now, for 

, ,p q r P  and  0,1 , by the definition of pre-image we get       1h pqr h pqr    

 

     

      

       

     

1

1 1 .

h pqr h pqr

h p h q h r

h p h q or h r

h pq or h r

 



 

 



 

  

 

  

  

 

 

Therefore,  1h   is a 1AFIS(R). 

 

Proposition 3.14  Let 1 2,   be two fuzzy subsets of P  such that 1  is a 1AFIS(P) and 

1 2  .  If for , ,p q r P  and  0,1 ,    2 1pqr pqr   , then 2  is also a 

1AFIS(P). 
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Proof. Let 1 2,   be two fuzzy subsets of P  such that 1 2   and 1  is a 1AFIS(P). Let 

, ,p q r P  and  0,1  be such that   2 pqr  . Since    2 1pqr pqr    and 1  is a 

1AFIS(P),  1 pq   or   1 r   which implies    2 1pq pq     or  

   2 1r r   . Hence 2  is  a 1AFIS(P). 

 

Definition 3.15 Let 1  and 2  be two fuzzy subsets of 1P  and 2P , respectively. The  

cartesian product of  1  and 2  is defined by  

 

       1 2 1 2  , min ,p q p q      

 

for all   1 2,p q P P  .  

 

Theorem 3.16 Let 1 2,P P  be two commutative semiring and   be a 1AFIS( 1P ). Then, 

2P   is a 1AFIS( 1 2P P ), where 
2P  is the characteristic function of 2P . 

 

Proof.Let 1 2,P P  be two commutative semiring and   be 1AFIS( 1P ) and 
2P be 1AFIS( 2P ) 

respectively. Now, for 1 1 1 1 2 2 2 2, , , , ,p q r P p q r P    and  0,1   

 

       

         
2 2

2 2

1 1 1 2 2 2 1 1 1 2 2 2

1 1 2 2 1 2

, min ,

min , min , .

P P

P P

p q r p q r p q r p q r

p q p q or r r

   

   

   

  
 

 

For 2 2 2 2, ,p q r P ,   
2 2 2 2 1P p q r    and so  

 

         
2 21 1 1min , min ,P Pp q mn or r mn      

 

where  2 2 2, , ,m n p q r . Therefore  
2P   is a 1AFIS( 1 2P P ). 

 

Theorem 3.17 Let   be a 1AFPIS( P ). Then   is a fuzzy prime ideal of P . 

 

Proof. Let  pq   for some ,p q P  and  0,1 . We may assume that p  and q  

are non-unit elements of P . Let 2n   be an even positive integer such that  
n

pq  . 

Then 2n m  for some positive integer 1.m   Since      
n n n m m npq p q p p q      

and    is a 1AFPIS( P ), we conclude that       m m n np p p or q     .  Hence,  

 p    or   q  . Thus   is a fuzzy prime ideal of P . 

 

Theorem 3.18 Let   be a fuzzy proper ideal of P . If   is a fuzzy primary ideal of 

semiring P  (FPIS(P)), then   is a 1AFPIS( P ).  
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Proof. Let   be a fuzzy primary ideal of semiring and for all , ,p q r P  and   0,1 . 

Admit that  pqr  . Since   is a fuzzy primary ideal of semiring P , then  

 

   pq or r   . 

 

It follows that    is a 1AFPIS( P ).  

 

Theorem 3.19 Let   be a fuzzy proper ideal of P . If   is a 1AFPIS( P ), then   is a  2-

absorbing fuzzy primary ideal of semiring P  (2AFPIS(P)). 

 

Proof. Let P  be a 1-absorbing primary ideal of semiring R . It follows that the 

characteristic function P  of P  is a fuzzy 1-absorbing primary ideal of R  and admit that 

  is a 1AFPIS( P ). Since every 1-absorbing primary ideal is a 2-absorbing primary ideal, 

then we get P  is a 2-absorbing primary ideal. It means that  P  is a fuzzy 1-absorbing 

primary ideal of R  and   is a 2AFPIS( P ). 

 

Example 3.20 Let P Z . Consider the ideal 2I Z  and  

 

 
1,

0,

p I
p

p I


 
  

 
 

 

Then,   is a 2AFPIS( P ). When    2.1.1 1, 1.1 0 1     but  2 1 1   . Thus,   is 

a 1AFPIS( P ). The following example shows that the converse of Theorem 3.19 may not 

be true. 

 

Example 3.21 Let P Z . Consider the ideal 18I Z  and  

 

 
1,

0,

p I
p

otherwise


 
  
 

 

 

Then,   is a  2AFPIS( P ). Since    2.3.3 1, 2.3 0 1    and  3 0 1.    

Therefore   is not a 1AFPIS( P ).The diagram below can be accessed from the algebraic 

structures obtained throughout the paper. 

 

Remark 3.22 We can give the given theorems as a diagram: 

 

       1 1 2      FPIS P AFIS P AFPIS P AFPIS P    

 

4. Conclusion 
 

In this study, the concept of 1AFIS(P) is investigated. Several theorems charac- terizing 

1AFIS(P) are obtained with the concepts of level subset, radical, charac- teristic function, 

morphism, and Cartesian product. Finally, a diagram is provided that connects these 

definitions and theorems. To further expand upon this research, various algebraic structures 



140 

can be examined, and additional research into their properties may be conducted. The authors 

employ this coherent approach to obtain various significant results regarding 1AFIS(P). 

Based on our work, we propose some research questions: 

 

1) Exploration of 1-absorbing bipolar fuzzy ideals of commutative semiring.  

2) Introduction of 1-absorbing bipolar valued intuitionistic fuzzy ideals of commutative 

semiring. 

3) Identification of 1-absorbing vague ideals of commutative semiring.  

4) Clarification of 1-absorbing neutrosophic ideals of commutative semiring. 

5) Definition of 1-absorbing complex fuzzy ideals of commutative semiring. 
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