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Abstract

In this paper, we consider Lorentz generalized Sasakian space forms admitting almost
η−Ricci solitons in some curvature tensors. Ricci pseudosymmetry concepts of Lorentz
generalized Sasakian space forms admitting η−Ricci soliton have introduced according
to the choice of some special curvature tensors such as Riemann, concircular, projective,
M−projective, W1 and W2. Then, again according to the choice of the curvature tensor,
necessary conditions are given for Lorentz generalized Sasakian space form admitting
η−Ricci soliton to be Ricci semisymmetric. Then some characterizations are obtained and
some classifications have made.

1. Introduction

The notion of Ricci flow was introduced by Hamilton in 1982. With the help of this concept, Hamilton found the canonical metric on a
smooth manifold. Then Ricci flow has become a powerful tool for the study of Riemannian manifolds, especially for those manifolds with
positive curvature. Perelman used Ricci flow and it surgery to prove Poincare conjecture in [1, 2]. The Ricci flow is a flow is an evolution
equation for metrics on a Riemannian manifold defined as follows:

∂

∂ t
g(t) =−2S (g(t)) .

A Ricci soliton emerges as the limit of the solitons of the Ricci flow. A solution to the Ricci flow is called Ricci soliton if it moves only by a
one parameter group of diffeomorphism and scaling.
During the last two decades, the geometry of Ricci solitons has been the focus of attention of many mathematicians. In particular, it has
become more important after Perelman applied Ricci solitons to solve the long standing Poincare conjecture posed in 1904. In [3], Sharma
studied the Ricci solitons in contact geometry. Thereafter Ricci solitons in contact metric manifolds have been studied by various authors
such as Ashoka et al. in [4, 5], Bagewadi et al. in [6], Ingalahalli in [7], Bejan and Crasmareanu in [8], Blaga in [9], Chandra et al. in [10],
Chen and Deshmukh in [11], Deshmukh et al. in [12], He and Zhu [13], Atçeken et al. in [14], Nagaraja and Premalatta in [15], Tripathi
in [16] and many others.
φ−sectional curvature plays the important role for Sasakian manifold. If the φ−sectional curvature of a Sasakian manifold is constant, then
the manifold is a Sasakian-space-form [17]. P. Alegre and D. Blair described generalized Sasakian space forms [18]. P. Alegre and D. Blair
obtained important properties of generalized Sasakian space forms in their studies and gave some examples. P. Alegre and A. Carriazo later
discussed generalized indefinite Sasakian space forms [19]. Generalized indefinite Sasakian space forms are also called Lorentz-Sasakian
space forms, and Lorentz manifolds are of great importance for Einstein’s theory of Relativity.
In this paper, we consider Lorentz generalized Sasakian space forms admitting almost η−Ricci solitons in some curvature tensors. Ricci
pseudosymmetry concepts of Lorentz generalized Sasakian space forms admitting η−Ricci soliton have introduced according to the choice
of some special curvature tensors such as Riemann, concircular, projective, M−projective, W1 and W2. Then, again according to the choice
of the curvature tensor, necessary conditions are given for Lorentz generalized Sasakian space form admitting η−Ricci soliton to be Ricci
semisymmetric. Then some characterizations are obtained and some classifications have made.
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2. Preliminaries

Let M̃ be a (2n+1)−dimensional semi-Riemannian manifold. If the M̃ semi-Riemannian manifold with (φ ,ξ ,η ,g) structure tensors satisfies
the following conditions, this manifold is called ε− almost contact metric manifold and (φ ,ξ ,η) triple is called almost contact structure.

φξ = 0, η ◦φ = 0, η (ξ ) = 1, φ
2 =−Id +η⊗ξ ,

g(Y1,Y2) = g(φY1,φY2)+ εη (Y1)η (Y2) , η (Y1) = εg(Y1,ξ )

where

ε = g(ξ ,ξ ) =±1.

If dη and g provide the relation

dη (Y1,Y2) = g(Y1,φY2)

then M̃ is called a contact pseudometric manifold and the (φ ,ξ ,η) triple is called a contact structure.

Let be define a
(

h
(

d
dY1

)
,Y2

)
vector field on R×M̃, where Y1 is a coordinate on R and h is a C∞ function on R×M̃. The structure defined as

J
(

h
d

dY1
,Y2

)
=

(
η (Y2)

d
dY1

,φY2−hξ

)
on R×M̃ is called a almost complex structure and J2 =−id. If J is integrable, the almost contact structure (φ ,ξ ,η) is said to be normal.
If Y1 is perpendicular to ξ , the plane spanned by Y1 and φY1, is called the φ−section. The curvature of the φ -section is called the φ -sectional
curvature. The curvature of the indefinite Sasakian manifold defined in this way is precisely determined by the φ−section curvature. If the
φ−section curvature of the indefinite Sasakian manifold is equal to a constant c, the curvature tensor of this manifold is defined as

R̃(Y1,Y2)Y3 =

(
c+3ε

4

)
{g(Y2,Y3)Y1−g(Y1,Y3)Y2}+

(
c− ε

4

)
{g(Y1,φY3)φY2−g(Y2,φY3)φY1 +2g(Y1,φY2)φY3}

+

(
c− ε

4

)
{η (Y1)η (Y3)Y2−η (Y2)η (Y3)Y1 +εg(Y1,Y3)η (Y2)ξ − εg(Y2,Y3)η (Y1)ξ} .

For an ε−almost contact metric manifold M̃, if there are z1,z2,z3 ∈C∞
(
M̃
)

functions such that

R̃(Y1,Y2)Y3 =z1 {g(Y2,Y3)Y1−g(Y1,Y3)Y2}+z2 {g(Y1,φY3)φY2−g(Y2,φY3)φY1 +2g(Y1,φY2)φY3}
+z3 {η (Y1)η (Y3)Y2−η (Y2)η (Y3)Y1 +εg(Y1,Y3)η (Y2)ξ − εg(Y2,Y3)η (Y1)ξ}

then manifold M̃ is called a generalized indefinite Sasakian space form.
In this article, only the Lorentzian case, which corresponds to the ε = −1, where the index of the metric is 1, will be discussed. Such
manifolds are called Lorentz generalized Sasakian space forms and are denoted by M2n+1 (z1,z2,z3) . Thus, the curvature tensor of a
(2n+1)−dimensional Lorentz generalized Sasakian space form is defined as

R̃(Y1,Y2)Y3 =z1 {g(Y2,Y3)Y1−g(Y1,Y3)Y2}+z2 {g(Y1,φY3)φY2−g(Y2,φY3)φY1 +2g(Y1,φY2)φY3}
+z3 {η (Y1)η (Y3)Y2−η (Y2)η (Y3)Y1 −g(Y1,Y3)η (Y2)ξ +g(Y2,Y3)η (Y1)ξ} .

(2.1)

Lemma 2.1. Let M2n+1 (z1,z2,z3) be the (2n+1)−dimensional Lorentz generalized Sasakian space form. The following relations are
provided for M2n+1 (z1,z2,z3).

5̃Y1
ξ = (z1 +z3)φY1, (2.2)

R̃(Y1,ξ )Y3 =−(z1 +z3) [g(Y1,Y3)ξ +η (Y3)Y1] , (2.3)

R̃(ξ ,Y2)Y3 = (z1 +z3) [g(Y2,Y3)ξ +η (Y3)Y2] , (2.4)

R̃(Y1,Y2)ξ = (z1 +z3) [η (Y1)Y2−η (Y2)Y1] , (2.5)

η
(
R̃(Y1,Y2)Y3

)
= (z1 +z3)g(η (Y2)Y1−η (Y1)Y2,Y3) , (2.6)

S (Y1,Y2) = (2nz1 +3z2 +z3)g(Y1,Y2)+(3z2− (2n−1)z3)η (Y1)η (Y2) , (2.7)

S (Y1,ξ ) =−2n(z1 +z3)η (Y1) , (2.8)

QY1 = (2nz1 +3z2 +z3)Y1 +((2n−1)z3−3z2) , (2.9)

Qξ = 2n(z1 +z3)ξ , (2.10)

where R̃,S and Q are the Riemann curvature tensor, Ricci curvature tensor and Ricci operator of M2n+1 (z1,z2,z3), respectively.

Let M be a Riemannian manifold, T is (0,k)−type tensor field and A is (0,2)−type tensor field. In this case, Tachibana tensor field Q(A,T )
is defined as

Q(A,T )(X1, ...,XK ;Y1,Y2) =−T ((Y1∧A Y2)X1, ...,Xk)− ...−T (X1, ...,Xk−1,(Y1∧A Y2)Xk) , (2.11)

where

(Y1∧A Y2)Y3 = A(Y2,Y3)Y1−A(Y1,Y3)Y2, (2.12)
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k ≥ 1, X1,X2, ...,Xk,Y1,Y2 ∈ Γ(T M).
Precisely, a Ricci soliton on a Riemannian manifold

(
M̃,g

)
is defined as a triple (g,ξ ,λ ) on M̃ satisfying

Lξ g+2S+2λg = 0 (2.13)

where Lξ is the Lie derivative operator along the vector field ξ and λ is a real constant. We note that if ξ is a Killing vector field, then the
Ricci soliton reduces to an Einstein metric (g,λ ) . Futhermore, in [20], generalization is the notion of η−Ricci soliton defined by J.T. Cho
and M. Kimura as a quadruple (g,ξ ,λ ,µ) satisfying

Lξ g+2S+2λg+2µη⊕η = 0 (2.14)

where λ and µ are real constants and η is the dual of ξ and S denotes the Ricci tensor of M̃. Furthermore if λ and µ are smooth functions on
M̃, then it called almost η−Ricci soliton on M̃ [20].
Suppose the quartet (g,ξ ,λ ,µ) is almost η−Ricci soliton on manifold M̃. Then,

• If λ < 0, then M̃ is shriking.
• If λ = 0, then M̃ is steady.
• If λ > 0, then M̃ is expanding.

3. Almost η−Ricci Solitons on Ricci Pseudosymmetric and Ricci Semisymmetric Lorentz Gener-
alized Sasakian Space Forms

Now let (g,ξ ,λ ,µ) be almost η−Ricci soliton on Lorentz generalized Sasakian space form. Then we have(
Lξ g

)
(Y1,Y2) =Lξ g(Y1,Y2)−g

(
LξY1,Y2

)
−g
(

Y1,LξY2

)
=ξ g(Y1,Y2)−g([ξ ,Y1] ,Y2)−g(Y1, [ξ ,Y2])

=g
(

∇ξY1,Y2

)
+g
(

Y1,∇ξY2

)
−g
(

∇ξY1,Y2

)
+g(∇Y1 ξ ,Y2)−g

(
∇ξY2,Y1

)
+g(Y1,∇Y2 ξ ) ,

for all Y1,Y2 ∈ Γ(T M) . By using φ is anti-symmetric, we have(
Lξ g

)
(Y1,Y2) = 0. (3.1)

Thus, in a Lorentz generalized Sasakian space form, from (2.14) and (3.1), we have

S (Y1,Y2)+λg(Y1,Y2)+µη (Y1)η (Y2) = 0. (3.2)

It is clear from (16) that the (2n+1)−dimensional Lorentz generalized Sasakian admitting almost η−Ricci soliton
(
M2n+1,g,ξ ,λ ,µ

)
is an

η−Einstein manifold.
For Y2 = ξ in (3.2), this implies that

S (ξ ,Y1) = (λ −µ)η (Y1) . (3.3)

Taking into account of (3.3), we conclude that

µ−λ = 2n(z1 +z3) .

Definition 3.1. Let M2n+1 be an (2n+1)−dimensional Lorentz generalized Sasakian space form. If R̃ ·S and Q(g,S) are linearly dependent,
then the M2n+1 is said to be Ricci pseudosymmetric.

In this case, there exists a function L1 on M2n+1 such that

R̃ ·S = L1Q(g,S) .

In particular, if L1 = 0, the manifold M2n+1 is said to be Ricci semisymmetric.
Let us now investigate the Ricci pseudosymmetric case of the (2n+1)−dimensional Lorentz generalized Sasakian space forms.

Theorem 3.2. Let M2n+1 be Lorentz generalized Sasakian space forms and (g,ξ ,λ ,µ) be almost η−Ricci soliton on M2n+1. If M2n+1 is a
Ricci pseudosymmetric, then

L1 =
(z1 +z3) [λ −2n(z1 +z3)]

µ

provided µ 6= 0.

Proof. Let be assume that Lorentz generalized Sasakian space form M2n+1 be Ricci pseudosymmetric and (g,ξ ,λ ,µ) be almost η−Ricci
soliton on Lorentz generalized Sasakian space forms M2n+1. That is mean(

R̃(Y1,Y2) ·S
)
(Y4,Y5) = L1Q(g,S)(Y4,Y5;Y1,Y2) ,

for all Y1,Y2,Y4,Y5 ∈ Γ
(
T M2n+1) . From the last equation, we can easily write

S
(
R̃(Y1,Y2)Y4,Y5

)
+S
(
Y4, R̃(Y1,Y2)Y5

)
= L1

{
S
((

Y1∧g Y2
)

Y4,Y5
)
+S
(
Y4,
(
Y1∧g Y2

)
Y5
)}

. (3.4)
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If we choose Y5 = ξ in (3.4), we get

S
(
R̃(Y1,Y2)Y4,ξ

)
+S
(
Y4, R̃(Y1,Y2)ξ

)
= L1 {S (g(Y2,Y4)Y1−g(Y1,Y4)Y2,ξ ) +S (Y4,η (Y1)Y2−η (Y2)Y1)} . (3.5)

If we make use of (2.5) and (2.8) in (3.5), we have

S (Y4,(z1 +z3) [η (Y2)Y1−η (Y1)Y2])−2n(z1 +z3)η
(
R̃(Y1,Y2)Y4

)
= L1 {−2n(z1 +z3)g(η (Y1)Y2−η (Y2)Y1,Y4) +S (Y4,η (Y1)Y2−η (Y2)Y1)} .

(3.6)

If we use (2.6) in the (3.6), we get

−2n(z1 +z3)
2 g(η (Y2)Y1−η (Y1)Y2,Y4)+(z1 +z3)S (η (Y1)Y2−η (Y2)Y1,Y4)

= L1 {−2n(z1 +z3)g(η (Y1)Y2−η (Y2)Y1,Y4) +S (Y4,η (Y1)Y2−η (Y2)Y1)} .

If we use (3.2) in (3.5), we can write

[(z1 +z3) [2n(z1 +z3)−λ ]+ [λ +2n(z1 +z3)]L1]×g(η (Y1)Y2−η (Y2)Y1,Y4) = 0. (3.7)

It is clear from (3.7)

L1 =
(z1 +z3) [λ −2n(z1 +z3)]

λ +2n(z1 +z3)
.

This completes the proof.

We can give the results obtained from this theorem as follows.

Corollary 3.3. Let M2n+1 be a Lorentz generalized Sasakian space form and (g,ξ ,λ ,µ) be almost η−Ricci soliton on M2n+1. If M2n+1 is
a Ricci semisymmetric, then λ = 2n(z1 +z3) and µ = 4n(z1 +z3) .

Corollary 3.4. Let M2n+1 be a Lorentz generalized Sasakian space form and (g,ξ ,λ ,µ) be almost η−Ricci soliton on M2n+1. If M2n+1 is
a Ricci semisymmetric, then M2n+1 is an η−Einstein manifold.

Corollary 3.5. Let M2n+1 be a Lorentz generalized Sasakian space form and (g,ξ ,λ ,µ) be almost η−Ricci soliton on M2n+1. If M2n+1 is
a Ricci semisymmetric, then we observe that:

(i) M2n+1 is expanding, if z1 +z3 > 0.
(ii) M2n+1 is shriking, if z1 +z3 < 0.

For a (2n+1)−dimensional semi-Riemann manifold M, the concircular curvature tensor is defined as

C (Y1,Y2)Y3 = R(Y1,Y2)Y3−
r

2n(2n+1)
[g(Y2,Y3)Y1−g(Y1,Y3)Y2] . (3.8)

For a (2n+1)−dimensional Lorentz generalized Sasakian space form, if we choose Y3 = ξ in (3.8), we can write

C (Y1,Y2)ξ =

[
(z1 +z3)−

r
2n(2n+1)

]
[η (Y1)Y2−η (Y2)Y1] , (3.9)

and similarly if we take the inner product of both sides of (24) by ξ , we get

η (C (Y1,Y2)Y3) =

[
(z1 +z3)−

r
2n(2n+1)

]
g(η (Y2)Y1−η (Y1)Y2,Y3) . (3.10)

Definition 3.6. Let M2n+1 be a (2n+1)−dimensional Lorentz generalized Sasakian space form. If C ·S and Q(g,S) are linearly dependent,
then the manifold is said to be concircular Ricci pseudosymmetric.

In this case, there exists a function L2 on M2n+1 such that

C ·S = L2Q(g,S) .

In particular, if L2 = 0, the manifold M2n+1 is said to be concircular Ricci semisymmetric.
Let us now investigate the concircular Ricci pseudosymmetric case of the Lorentz generalized Sasakian space form.

Theorem 3.7. Let M2n+1 be a Lorentz generalized Sasakian space forms and (g,ξ ,λ ,µ) be almost η−Ricci soliton on M2n+1. If M2n+1 is
a concircular Ricci pseudosymmetric, then

L2 =
[λ −2n(z1 +z3)] [2n(2n+1)(z1 +z3)− r]

2n(2n+1)µ
,

provided µ 6= 0.
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Proof. Let be assume that Lorentz generalized Sasakian space form M2n+1 be concircular Ricci pseudosymmetric and (g,ξ ,λ ,µ) be almost
η−Ricci soliton on Lorentz generalized Sasakian space form M2n+1. That is mean

(C (Y1,Y2) ·S)(Y4,Y5) = L2Q(g,S)(Y4,Y5;Y1,Y2) ,

for all Y1,Y2,Y4,Y5 ∈ Γ
(
T M2n+1) . From the last equation, we can easily write

S (C (Y1,Y2)Y4,Y5)+S (Y4,C (Y1,Y2)Y5) = L2
{

S
((

Y1∧g Y2
)

Y4,Y5
)
+S
(
Y4,
(
Y1∧g Y2

)
Y5
)}

. (3.11)

If we choose Y5 = ξ in (3.11), we get

S (C (Y1,Y2)Y4,ξ )+S (Y4,C (Y1,Y2)ξ ) = L2 {S (g(Y2,Y4)Y1−g(Y1,Y4)Y2,ξ ) +S (Y4,η (Y1)Y2−η (Y2)Y1)} . (3.12)

By using of (2.8) and (3.9) in (3.12), we have

S (Y4,A [η (Y1)Y2−η (Y2)Y1])−2n(z1 +z3)η (C (Y1,Y2)Y4)

= L2 {−2n(z1 +z3)g(η (Y1)Y2−η (Y2)Y1,Y4) +S (Y4,η (Y1)Y2−η (Y2)Y1)} ,
(3.13)

where A = (z1 +z3)− r
2n(2n+1) . Substituting (3.10) into (3.13), we have

−2n(z1 +z3)Ag(η (Y2)Y1−η (Y1)Y2,Y4)+AS (η (Y1)Y2−η (Y2)Y1,Y4)

= L2 {−2n(z1 +z3)g(η (Y1)Y2−η (Y2)Y1,Y4) +S (η (Y1)Y2−η (Y2)Y1,Y4)} .
(3.14)

If we use (3.2) in the (3.14), we can write

{A [2n(z1 +z3)−λ ]+ [λ +2n(z1 +z3)]L2}×g(η (Y1)Y2−η (Y2)Y1,Y4) = 0. (3.15)

It is clear from (3.15),

L2 =
[λ −2n(z1 +z3)] [2n(2n+1)(z1 +z3)− r]

2n(2n+1)µ
.

This completes the proof.

We can give the results obtained from this theorem as follows.

Corollary 3.8. Let M2n+1 be Lorentz generalized Sasakian space form and (g,ξ ,λ ,µ) be almost η−Ricci soliton on M2n+1. If M2n+1 is a
concircular Ricci semisymmetric, then M2n+1 is either manifold with scalar curvature r = 2n(2n+1)(z1 +z3) or λ = 2n(z1 +z3) .

Corollary 3.9. Let M2n+1 be Lorentz generalized Sasakian space form and (g,ξ ,λ ,µ) be almost η−Ricci soliton on M2n+1. If M2n+1 is a
concircular Ricci semisymmetric, then we observe that:

(i) The soliton M2n+1 is expanding, if (z1 +z3)> 0.
(ii) The soliton M2n+1 is shriking, if (z1 +z3)< 0.

For a (2n+1)−dimensional semi-Riemann manifold M, the projective curvature tensor is defined as

P(Y1,Y2)Y3 = R(Y1,Y2)Y3−
1

2n
[S (Y2,Y3)Y1−S (Y1,Y3)Y2] . (3.16)

For a (2n+1)−dimensional Lorentz generalized Sasakian space form, if we choose Y3 = ξ in (3.16) we can write

P(Y1,Y2)ξ = 0, (3.17)

and similarly if we take the inner product of both sides of (3.16) by ξ , we get

η (P(Y1,Y2)Y3) = 0. (3.18)

Definition 3.10. Let M2n+1 be an (2n+1)−dimensional Lorentz generalized Sasakian space form. If P · S and Q(g,S) are linearly
dependent, then the manifold is said to be projective Ricci pseudosymmetric.

In this case, there exists a function L3 on M2n+1 such that

P ·S = L3Q(g,S) .

In particular, if L3 = 0, the manifold M2n+1 is said to be projective Ricci semisymmetric.
Let us now investigate the projective Ricci pseudosymmetry case of the Lorentz generalized Sasakian space form.

Theorem 3.11. Let M2n+1 be Lorentz Sasakian space forms and (g,ξ ,λ ,µ) be almost η−Ricci soliton on M2n+1. If M2n+1 is a projective
Ricci pseudosymmetric, then M2n+1 is either projective Ricci semisymmetric or almost η−Ricci soliton (g,ξ ,λ ,µ) reduces almost Ricci
soliton (g,ξ ,λ ) .
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Proof. Let be assume that Lorentz generalized Sasakian space form M2n+1 be projective Ricci pseudosymmetric and (g,ξ ,λ ,µ) be almost
η−Ricci soliton on Lorentz generalized Sasakian space form M2n+1. Then we have

(P(Y1,Y2) ·S)(Y4,Y5) = L3Q(g,S)(Y4,Y5;Y1,Y2) ,

for all Y1,Y2,Y4,Y5 ∈ Γ
(
T M2n+1) . From the last equation, we can easily write

S (P(Y1,Y2)Y4,Y5)+S (Y4,P(Y1,Y2)Y5) = L3
{

S
((

Y1∧g Y2
)

Y4,Y5
)
+S
(
Y4,
(
Y1∧g Y2

)
Y5
)}

. (3.19)

If we choose Y5 = ξ in (3.19), we get

S (P(Y1,Y2)Y4,ξ )+S (Y4,P(Y1,Y2)ξ ) = L3 {S (g(Y2,Y4)Y1−g(Y1,Y4)Y2,ξ ) +S (Y4,η (Y1)Y2−η (Y2)Y1)} . (3.20)

If we make use of (2.8) and (3.17) in (3.20) we have

−2n(z1 +z3)η (P(Y1,Y2)Y4) = L3 {−2n(z1 +z3)g(η (Y1)Y2−η (Y2)Y1,Y4) +S (Y4,η (Y1)Y2−η (Y2)Y1)} . (3.21)

If we use (3.18) in the (3.21), we get

L3 {−2n(z1 +z3)g(η (Y1)Y2−η (Y2)Y1,Y4) +S (η (Y1)Y2−η (Y2)Y1,Y4)}= 0. (3.22)

If we use (3.2) in the (3.22), we can write

L3 [λ +2n(z1 +z3)]g(η (Y1)Y2−η (Y2)Y1,Y4) = 0. (3.23)

It is clear from (3.23),

µL3 = 0.

This completes the proof.

We can give the results obtained from this theorem as follows.

Corollary 3.12. Let M2n+1 be Lorentz generalized Sasakian space form and (g,ξ ,λ ,µ) be almost η−Ricci soliton on M2n+1. If M2n+1 is
a projective Ricci pseudosymmetric, then M2n+1 is either projective Ricci semisymmetric or we observe that:

(i) The soliton M2n+1 is expanding, if z1 +z3 < 0.
(ii) The soliton M2n+1 is shriking, if z1 +z3 > 0.

For a (2n+1)−dimensional semi-Riemann manifold M, the M−projective curvature tensor is defined as

M (Y1,Y2)Y3 = R(Y1,Y2)Y3− 1
2n [S (Y2,Y3)Y1−S (Y1,Y3)Y2 +g(Y2,Y3)QY1−g(Y1,Y3)QY2] (3.24)

For a (2n+1)−dimensional Lorentz generalized Sasakian space form, if we choose Y3 = ξ in (3.24), we obtain

M (Y1,Y2)ξ =
1

2n
[η (Y2)QY1−η (Y1)QY2] , (3.25)

and similarly if we take the inner product of both of sides of (3.24) by ξ , we get

η (M (Y1,Y2)Y3) =
1
2n

S (η (Y1)Y2−η (Y2)Y1,Y3) . (3.26)

Definition 3.13. Let M2n+1 be an (2n+1)−dimensional Lorentz generalized Sasakian space form. If M · S and Q(g,S) are linearly
dependent, then the manifold is said to be M−projective Ricci pseudosymmetric.

In this case, there exists a function L4 on M2n+1 such that

M ·S = L4Q(g,S) .

In particular, if L4 = 0, the manifold M2n+1 is said to be M−projective Ricci semisymmetric.
Let us now investigate the M−projective Ricci pseudosymmetric case of the Lorentz generalized Sasakian space form.

Theorem 3.14. Let M2n+1 be Lorentz generalized Sasakian space forms and (g,ξ ,λ ,µ) be almost η−Ricci soliton on M2n+1. If M2n+1 is
a M−projective Ricci pseudosymmetric, then

L4 =
λ 2−2n(z1 +z3)λ

2nµ
,

provided µ 6= 0.
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Proof. Let be assume that Lorentz generalized Sasakian space form M2n+1 be projective M−projective Ricci pseudosymmetric and
(g,ξ ,λ ,µ) be almost η−Ricci soliton on Lorentz generalized Sasakian space form M2n+1. That is mean

(M (Y1,Y2) ·S)(Y4,Y5) = L4Q(g,S)(Y4,Y5;Y1,Y2) ,

for all Y1,Y2,Y4,Y5 ∈ Γ
(
T M2n+1) . From the last equation, we can easily write

S (M (Y1,Y2)Y4,Y5)+S (Y4,M (Y1,Y2)Y5) = L4
{

S
((

Y1∧g Y2
)

Y4,Y5
)
+S
(
Y4,
(
Y1∧g Y2

)
Y5
)}

. (3.27)

If we choose Y5 = ξ in (3.27) we get

S (M (Y1,Y2)Y4,ξ )+S (Y4,M (Y1,Y2)ξ ) = L4 {S (g(Y2,Y4)Y1−g(Y1,Y4)Y2,ξ ) +S (Y4,η (Y1)Y2−η (Y2)Y1)} . (3.28)

If we make use of (2.8) and (3.25) in (3.28), we have

−2n(z1 +z3)η (M (Y1,Y2)Y4)+S
(

Y4,
1
2n

[η (Y2)QY1−η (Y1)QY2]

)
= L4 {−2n(z1 +z3)g(η (Y1)Y2−η (Y2)Y1,Y4) +S (Y4,η (Y1)Y2−η (Y2)Y1)} .

(3.29)

By using (3.26) in the (3.29), we get

− (z1 +z3)S (η (Y1)Y2−η (Y2)Y1,Y4)+
1
2n

S (η (Y2)QY1−η (Y1)QY2,Y4)

= L4 {−2n(z1 +z3)g(η (Y1)Y2−η (Y2)Y1,Y4) +S (η (Y1)Y2−η (Y2)Y1,Y4)} .
(3.30)

If we put (3.2) in (3.30), we can write

λ (z1 +z3)g(η (Y1)Y2−η (Y2)Y1,Y4)−
λ

2n
S (η (Y2)Y1−η (Y1)Y2,Y4)

= L4 [λ +2n(z1 +z3)]g(η (Y1)Y2−η (Y2)Y1,Y4)

(3.31)

Again, if we use (3.2) in the (3.31), we obtain{
λ 2

2n − (z1 +z3)λ −L4 [λ +2n(z1 +z3)]
}
×g(η (Y2)Y1−η (Y1)Y2,Y4) = 0. (3.32)

It is clear from (3.32),

L4 =
λ 2−2n(z1 +z3)λ

2n [2n(z1 +z3)+λ ]
.

This completes the proof.

We can give the following corollaries.

Corollary 3.15. Let M2n+1 be Lorentz generalized Sasakian space form and (g,ξ ,λ ,µ) be almost η−Ricci soliton on M2n+1. If M2n+1 is
a M−projective Ricci semisymmetric, then M2n+1 is either steady or η−Einstein manifold.

Corollary 3.16. Let M2n+1 be Lorentz generalized Sasakian space form and (g,ξ ,λ ,µ) be almost η−Ricci soliton on M2n+1. If M2n+1 is
a M−projective Ricci semisymmetric, then M2n+1 is either steady or we observe that:

(i) The soliton M2n+1 is shriking if λ is between 0 and 2n(z1 +z3).
(ii) The soliton M2n+1 is steady if λ = 0.

(iii) The soliton M2n+1 is expanding for other cases of λ .

For a (2n+1)−dimensional semi-Riemann manifold M, the W1−curvature tensor is defined as

W1 (Y1,Y2)Y3 = R(Y1,Y2)Y3 +
1

2n
[S (Y2,Y3)Y1−S (Y1,Y3)Y2] . (3.33)

For a (2n+1)−dimensional Lorentz generalized Sasakian space form, if we choose Y3 = ξ in (3.33), we can write

W1 (Y1,Y2)ξ = 2(z1 +z3) [η (Y1)Y2−η (Y2)Y1] , (3.34)

and similarly if we take the inner product of both of sides of (3.33) by ξ , we get

η (W1 (Y1,Y2)Y3) = 2(z1 +z3)g(η (Y2)Y1−η (Y1)Y2,Y3) . (3.35)

Definition 3.17. Let M2n+1 be a (2n+1)−dimensional Lorentz generalized Sasakian space form. If W1 · S and Q(g,S) are linearly
dependent, then the manifold is said to be W1−Ricci pseudosymmetric.

In this case, there exists a function L5 on M2n+1 such that

W1 ·S = L5Q(g,S) .

In particular, if L5 = 0, the manifold M2n+1 is said to be W1−Ricci semisymmetric.
Let us now investigate the W1−Ricci pseudosymmetric case of the Lorentz generalized Sasakian space form.
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Theorem 3.18. Let M2n+1 be Lorentz generalized Sasakian space forms and (g,ξ ,λ ,µ) be almost η−Ricci soliton on M2n+1. If M2n+1 is
a W1−Ricci pseudosymmetric, then

L5 =
2(z1 +z3) [λ −2n(z1 +z3)]

µ

provided µ 6= 0.

Proof. Let be assume that Lorentz Sasakian space form M2n+1 be W1−Ricci pseudosymmetric and (g,ξ ,λ ,µ) be almost η−Ricci soliton
on Lorentz generalized Sasakian space form M2n+1. That is mean

(W1 (Y1,Y2) ·S)(Y4,Y5) = L5Q(g,S)(Y4,Y5;Y1,Y2) ,

for all Y1,Y2,Y4,Y5 ∈ Γ
(
T M2n+1) . From the last equation, we can easily write

S (W1 (Y1,Y2)Y4,Y5)+S (Y4,W1 (Y1,Y2)Y5) = L5
{

S
((

Y1∧g Y2
)

Y4,Y5
)
+S
(
Y4,
(
Y1∧g Y2

)
Y5
)}

. (3.36)

If we choose Y5 = ξ in (3.36), we get

S (W1 (Y1,Y2)Y4,ξ )+S (Y4,W1 (Y1,Y2)ξ ) = L5 {S (g(Y2,Y4)Y1−g(Y1,Y4)Y2,ξ ) +S (Y4,η (Y1)Y2−η (Y2)Y1)} . (3.37)

If we make use of (2.8) and (3.34) in (3.37) we have

2(z1 +z3)S (Y4,η (Y1)Y2−η (Y2)Y1)−2n(z1 +z3)η (W1 (Y1,Y2)Y4)

= L5 {−2n(z1 +z3)g(η (Y1)Y2−η (Y2)Y1,Y4) +S (Y4,η (Y1)Y2−η (Y2)Y1)} .
(3.38)

If we use (3.35) in the (3.38), we get

−4n(z1 +z3)
2 g(η (Y2)Y1−η (Y1)Y2,Y4)+2(z1 +z3)S (η (Y1)Y2−η (Y2)Y1,Y4)

= L5 {−2n(z1 +z3)g(η (Y1)Y2−η (Y2)Y1,Y4) +S (η (Y1)Y2−η (Y2)Y1,Y4)} .
(3.39)

If we use (3.2) in the (3.39), we can write

{2(z1 +z3) [2n(z1 +z3−λ )]+L5 [λ +2n(z1 +z3)]}×g(η (Y1)Y2−η (Y2)Y1,Y4) = 0 (3.40)

It is clear from (3.40),

L5 =
2(z1 +z3) [λ −2n(z1 +z3)]

λ +2n(z1 +z3)
.

This completes the proof.

We can give the results obtained from this theorem as follows.

Corollary 3.19. Let M2n+1 be Lorentz generalized Sasakian space form and (g,ξ ,λ ,µ) be almost η−Ricci soliton on M2n+1. If M2n+1 is
a W1−Ricci semisymmetric, then λ = 2n(z1 +z3) provided µ 6= 0.

Corollary 3.20. Let M2n+1 be Lorentz generalized Sasakian space form and (g,ξ ,λ ,µ) be almost η−Ricci soliton on M2n+1. If M2n+1 is
a W1−Ricci semisymmetric, then we observe that:

(i) The soliton M2n+1 is expanding, if (z1 +z3)> 0.
(ii) The soliton M2n+1 is shriking, if (z1 +z3)< 0.

For a (2n+1)−dimensional semi-Riemann manifold M, the W2−curvature tensor is defined as

W2 (Y1,Y2)Y3 = R(Y1,Y2)Y3−
1

2n
[g(Y2,Y3)QY1−g(Y1,Y3)QY2] . (3.41)

For a (2n+1)−dimensional Lorentz generalized Sasakian space form, if we choose Y3 = ξ in (3.41), we can write

W2 (Y1,Y2)ξ = (z1 +z3) [η (Y1)Y2−η (Y2)Y1]− 1
2n [η (Y1)QY2−η (Y2)QY1] , (3.42)

and similarly if we take the inner product of both sides of (3.41) by ξ , we get

η (W2 (Y1,Y2)Y3) = (z1 +z3)g(η (Y2)Y1−η (Y1)Y2,Y3)+
1

2n S (η (Y1)Y2−η (Y2)Y1,Y3) . (3.43)

Definition 3.21. Let M2n+1 be an (2n+1)−dimensional Lorentz generalized Sasakian space form. If W2 · S and Q(g,S) are linearly
dependent, then the manifold is said to be W2−Ricci pseudosymmetric.

In this case, there exists a function L6 on M2n+1 such that

W2 ·S = L6Q(g,S) .

In particular, if L6 = 0, the manifold M2n+1 is said to be W2−Ricci semisymmetric.
Let us now investigate the W2−Ricci pseudosymmetric case of the Lorentz generalized Sasakian space form.
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Theorem 3.22. Let M2n+1 be Lorentz generalized Sasakian space form and (g,ξ ,κ1,κ2) be almost η−Ricci soliton on M2n+1. If M2n+1 is
a W2−Ricci pseudosymmetric, then

L6 =−
λ 2 +4n2 (z1 +z3)

2

2nµ

provided µ 6= 0.

Proof. Let be assume that Lorentz generalized Sasakian space form be W2−Ricci pseudosymmetric and (g,ξ ,λ ,µ) be almost η−Ricci
soliton on Lorentz generalized Sasakian space form. That is mean

(W2 (Y1,Y2) ·S)(Y4,Y5) = L6Q(g,S)(Y4,Y5;Y1,Y2) ,

for all Y1,Y2,Y4,Y5 ∈ Γ
(
T M2n+1) . From the last equation, we can easily write

S (W2 (Y1,Y2)Y4,Y5)+S (Y4,W2 (Y1,Y2)Y5) = L6
{

S
((

Y1∧g Y2
)

Y4,Y5
)
+S
(
Y4,
(
Y1∧g Y2

)
Y5
)}

. (3.44)

If we choose Y5 = ξ in (3.44), we get

S (W2 (Y1,Y2)Y4,ξ )+S (Y4,W2 (Y1,Y2)ξ ) = L6 {S (g(Y2,Y4)Y1−g(Y1,Y4)Y2,ξ ) +S (Y4,η (Y2)Y1−η (Y1)Y2)} . (3.45)

If we make use of (2.8) and (3.42) in (3.45), we have

−2n(z1 +z3)η (W2 (Y1,Y2)Y4)+S
(

Y4,(z1 +z3) [η (Y1)Y2−η (Y2)Y1]−
1

2n
[η (Y1)QY2−η (Y2)QY1]

)
= L6 {−2n(z1 +z3)g(η (Y1)Y2−η (Y2)Y1,Y4) +S (Y4,η (Y1)Y2−η (Y2)Y1)} .

(3.46)

If we use (3.43) in the (3.46), we get

−2n(z1 +z3)
2 g(η (Y2)Y1−η (Y1)Y2,Y4)−

1
2n

S (Y4,η (Y1)QY2−η (Y2)QY1)

= L6 {S (Y4,η (Y1)Y2−η (Y2)Y1) −2n(z1 +z3)g(η (Y1)Y2−η (Y2)Y1,Y4)} .
(3.47)

If we use (3.2) in the (3.47), we have

−2n(z1 +z3)
2 g(η (Y2)Y1−η (Y1)Y2,Y4)−

λ

2n
S (η (Y1)Y2−η (Y2)Y1,Y4)

=−L6 [λ +2n(z1 +z3)]g(η (Y1)Y2−η (Y2)Y1,Y4)

(3.48)

Again, if we use (3.2) in (3.48), we obtain{
λ 2

2n +2n(z1 +z3)
2 +L6 [λ +2n(z1 +z3)]

}
×g(η (Y1)Y2−η (Y2)Y1,Y4) = 0. (3.49)

It is clear from (3.49),

L6 =−
λ 2 +4n2 (z1 +z3)

2

2n [λ +2n(z1 +z3)]
.

This completes the proof.

4. Conclusion

In this paper, we consider Lorentz generalized Sasakian space forms admitting almost η−Ricci solitons in some curvature tensors. Ricci
pseudosymmetry concepts of Lorentz generalized Sasakian space forms admitting η−Ricci soliton have introduced according to the choice
of some special curvature tensors such as Riemann, concircular, projective, M−projective, W1 and W2. Then, again according to the choice
of the curvature tensor, necessary conditions are given for Lorentz generalized Sasakian space form admitting η−Ricci soliton to be Ricci
semisymmetric. Then some characterizations are obtained and some classifications have made.
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