
 
* Corresponding author. 

E-mail address: toyin.ajayi@aaua.edu.ng (A. T. Ajayi).  

https://doi.org/10.51753/flsrt.1036051 Author contributions 
Received 14 December 2021; Accepted 20 February 2022 

Available online 28 March 2022 

2718-062X © 2022 This is an open access article published by Dergipark under the CC BY license. 
     7 

 

 

 

 

 

 
 
Research article 

  

Genotype × environment interaction and adaptation of cowpea genotypes 

across six planting seasons 
          

Abiola Toyin Ajayi*1       , Alaba Emmanuel Gbadamosi1     , Oluwatoyin Sunday Osekita1     ,  

Babatunde Hakim Taiwo2     , Fawibe Ato Babawole1      , Iyanu Adedeji1     ,  

Temitope Folukemi Omisakin1 

 
1 Plant Breeding Unit, Department of Plant Science and Biotechnology, Adekunle Ajasin University, Akungba-Akoko, Nigeria 
2 Global Emerging Pathogens Treatment Consortium, Ibadan, Nigeria  

 
 

Abstract 

 

Cowpea exhibits significantly inconsistent performances across different environments, and hence demands performance 

evaluation of genotypes prior release or cultivation in every breeding program. Hence, the goal of this study was to compare 16 

cowpea genotypes over six planting seasons (2014-2019) in Akungba-Akoko, Nigeria for their stability and adaptation through 

Finlay and Wilkinson (FW), Additive Main Effects and Multiplicative Interaction (AMMI) and Genotype and Genotype × 

Environment (GGE) analyses. ANOVA revealed high significant genotype (15.33%), environment (14.71%) and GEI (64.34%) 

effects for seed yield among genotypes. All analyses were able to pinpoint stable high-yielding genotypes including G14 and G9. 

Genotypes G14, G3, G4, G5, G6 and G9 were high yielding and stable according to FW; AMMI showed G10, G9, G16, G14 and 

G13 stable high-yielding while GGE showed G14, G16, G9 and G13 as stable high-yielding. As analyses explored the variation in 

the data due to GEI, they also complemented one another, in that where one erroneously included a wrong genotype as stable; the 

other excluded such genotype, making recommendation possible on the basis of consistency to gain reliability. 
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1. Introduction 

 

Cowpea [Vigna unguiculata (L.) Walp], one of Nigeria’s 

most popular grain legumes, and in all the tropical and sub-

tropical countries (Ajayi and Gbadamosi, 2020). This legume is 

vital for its contribution to the nutrition of people and livestock. 

Its high plasticity nature allows it to adapt to wide range of 

environmental conditions. Its inherent ability at fixing 

atmospheric nitrogen in soil with consequent soil enhancement 

(Olayiwola et al., 2015; Gomes et al., 2019; Aliyu et al., 2019) 

and being a source of income to millions of people of these 

regions (Kebede and Bekeko, 2020) make it a choice crop for 

cultivation. Cowpea seeds are rich in protein and minerals 

(Gerrano et al., 2015). Its capacity in biological nitrogen fixation 

ranges between 70 and 350 kg of nitrogen per hectare with its 

impact projected to reach 77, 320 tons in 2020.  Presently, Africa 

accounts for 94.9 percent of the total worldwide cowpea 

production (7.23 MT/annum) and harvested area of land 

(12.59M ha), with more than 36 percent of the total production 

accounted for by Nigeria (at 2.61 MT/annum) as the largest 

word’s producer (FAOSTAT, 2020). In spite of this, grain yield 

of cowpea in Nigeria has been seriously compromised by 

inappropriate cultural practices, abiotic and biotic factors (Ajayi 

and Gbadamosi, 2020) making its productivity grossly 

inadequate to cater for the protein needs of the ever-increasing 

population of the country.  
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According to the United Nations (UN), the current world 

population explosion is predicted to be increased from Africa; 

with an expected addition of 1.2 billion people of the projected 

1.9 billion increase between 2020 and 2050. Also, the Nigerian 

population is expected to surpass that of the United States during 

the same period (UN, 2019) demanding an accelerated food 

production to meet the Nigerian growing population. In the same 

vein, climate change is expected to aggravate rising temperature 

and free CO2, disorganize rainfall patterns and soil salinity 

thereby, making occurrence of drought highly unpredictable; 

when combined with population growth, their impacts on food 

and nutritional security would be devastating (Gomes et al., 

2019; Ajayi et al., 2020). Therefore, in line with the present 

reality, there is need for quick and sustainable increase in 

domestic cowpea production in Nigeria. However, the biggest 

challenge associated with the improvement of yield is the 

complexity of the trait, in that it is polygenic in nature with 

strong environmental influences.  

Cowpea genotypes have been found to exhibit significantly 

inconsistent performances across different environments (Ajayi 

and Gbadamosi, 2020), which is regarded as genotype-by-

environment interaction (GEI / G × E). Before the release of 

novel genotypes or varieties, their GEI must be evaluated to 

pinpoint individuals that show both superior performances (in 

terms of mean yield) coupled with extraordinary stability across 

multiple environment trials (MET) (Agahi et al., 2020; Pour-

Aboughadareh et al., 2022). 

Innumerable multivariate techniques have previously been 

employed to assess the existence of yield stability and G × E in 

crop species (Bocianowski and Prazak, 2022; Pour-

Aboughadareh et al., 2022). Among them, the Finlay and 

Wilkinson analysis (FW), Additive Main Effects and 

Multiplicative Interaction (AMMI) model and Genotype and 

Genotype × Environment (GGE) Biplot analysis are the most 

commonly used ones in plant breeding research, recently. These 

three analyses have been proven to be highly effective, 

sophisticated and efficient (Olayiwola et al., 2015). FW relies on 

the regression of the performance of each genotype on 

environmental means in two-step procedure; step one computes 

environmental sample means, while the second step deals with 

the estimation of intercepts and slopes of each line, by regressing 

within line the performance of each line on estimated 

environmental means (Olayiwola et al., 2015; Lian and Campos, 

2016).  

AMMI pools Principal Component Analysis (PCA) and 

Analysis of Variance (ANOVA) for effective interpretation of 

GEI (Aremu et al., 2020) whereas the GGE analysis uses the 

Sites Regression (SREG) model with emphasis on the 

importance of genotype main effects and effects of GEI. While 

both AMMI and GGE combine G and GE in mega environment 

study and assessment, the GGE superiority over AMMI lies in 

the fact that it elucidates more of the G+GE plus possession of 

inner product property of the biplot, and has higher discerning 

and representative power which is effective for test environment 

evaluation (Yan et al., 2007; Neisse et al., 2018; Maniruzzaman 

et al., 2019; Kebede and Bekeko, 2020). To improve and sustain 

yield, it is imperative to identify cowpea genotypes suitable for 

specific regions in Nigeria because of its diverse agro-ecological 

zones.  

The goal of this study was therefore to evaluate, through 

FW, GGE and AMMI analysis, sixteen cowpea genotypes over 

six years in Akungba-Akoko, to identify stable high-yielding 

genotypes that are appropriate for cultivation in tropical regions. 

2. Materials and methods 

 

2.1. Collection procedure of materials 
 

The 16 selected cowpea genotypes came from a germplasm 

of 25 genotypes collected from the International Institute of 

Tropical Agriculture (IITA), Nigeria. The selection was based 

on their consistency in both germination rate and vigorous 

growth pattern at the same field across 6 years survey spanning 

2014 through 2019 at Adekunle Ajasin University, Plant 

Breeding Unit Experimental Field, Department of Plant Science 

and Biotechnology. The Latitude, Longitude and Altitude of the 

site lie between 7.2° N, 5.44′ E and 423 m above the sea level, 

respectively. The planting season of 2014 fell between March 

and June, while that of 2015 through 2019 fell between May and 

October; all of which fell within the raining seasons. 

The site of the study is characterized with tropical climate 

located within the southwestern Nigeria. It has variable rainy 

and dry seasons, with rainy season lasting from March to 

November accompanied by an August break which is an 

interruption of rains leading to a short dry season. The region 

has a mean annual rainfall ranging between 800 mm and 1, 500 

mm with about 85% of the rains falling from June to September. 

The average air temperature of the location is 24.7°C, and the 

type of soil is sandy loam ultisol (Salami and Sangoyomi, 2013; 

Oladele et al., 2019; Akinde et al., 2020). Besides, the initial 

physico-chemical properties of the experimental site were done 

in 2014 according to procedures cited in Oladele et al. (2019; 

2022). The soil initial pH was 6.50, total organic matter (TOM) 

of 2.60, total nitrogen, TN (%) of 0.70, available phosphorus, 

(P) of 2.20 cmol kg-1, cation exchange capacity (CEC) of 11.74 

cmol kg-1, and texture class of sandy loam.  

The selected genotypes, their origins, biological status and 

identification codes are provided in Table 1. In each year, plant 

materials were sown in randomized complete block design 

(RCBD) with three replications.  

 
Table 1 

List of cowpea genotypes used in G×E analysis with their origin. 

 
Two rows within plots were utilized; spacing within and 

between rows were 30 cm and 50 cm, respectively. Each plot 

was 5 m x 1 m in dimension. Each plot was separated from the 

other by 1 m, while each replicate was separated from the other 

by 2 m. No fertilizer application was performed during the 

seasons in order to access the natural genetic potentials of the 

genotypes. Hand weeding of the field was done when required. 

During the flowering and podding phases, 10% EC 

Cypermethrin was applied to control insect pest. Determination 

S/N Genotype ID Biological Status Origin Code 

1 TVu-7362 Landrace Ghana G1 

2 TVu-199 Breeding material USA G2 
3 TVu-207 Breeding material USA G3 

4 TVu-224 Breeding material USA G4 

5 TVu-235 Breeding material Ghana G5 
6 TVu-236 Breeding material Ghana G6 

7 Tvu-239 Breeding material South Africa G7 

8 TVu-241 Breeding material USA G8 
9 IT98K-205-8 Unknown Nigeria G9 

10 IT98K-555-1 Unknown Nigeria G10 

11 TVu-4886 Landrace Niger G11 

12 TVu-4866 Landrace Niger G12 

13 TVu-9225 Landrace Tanzania G13 

14 TVu-9256 Landrace Burkina Faso G14 
15 TVu-9252 Landrace Burkina Faso G15 

16 TVu-11979 Landrace Sudan G16 
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of the yield (in grams) for data analyses was performed on a 

plant basis in each season. 

 

2.2. Data analysis 
 

ANOVA was adopted for determining the effect of 

genotype, environments, and their interaction across the years 

using the version 20 of the SPSS Program (SPSS, 2017). 

Significant differences of the means were performed at P ≤ 0.05 

level of probability by DMRT. The AMMI and GGE analyses 

were performed by using the version 1.4 of the Plant Breeding 

Tools (PBTools, 2014).  

The AMMI model was determined in line with Agahi et al. 

(2020) as: 

 

𝑌𝑔𝑒 =  𝜇 + 𝛼𝑔 + 𝛽𝑒 + Σ𝑛 𝜆𝑛 𝛿𝑔𝑛𝛿𝑒𝑛 + 𝜌𝑔𝑒  ;  

 

Where, Yge = mean yield of genotype g in environment e; μ 

= grand mean; αg = genotype deviation from the grand mean; βe 

= environmental deviation; λn = the singular value for principal 

component (PC) n; δgn = eigenvector value for genotype g and 

component n; δen = eigenvector value for environment e and 

component n; ρge = residual. 

The GGE biplot was determined in line with Das et al. 

(2019) as: 

 

 𝑌𝑖𝑗=𝜇 + 𝑒𝑗 + ∑ 𝜆𝑁
𝑛−1 n𝛾𝑖𝑛𝛿𝑗𝑛 + 𝜖𝑖𝑗  ;  

 

Where, Yij = mean response of ith genotype in the jth 

environment; µ = grand mean; ej = environment deviations from 

the grand mean; λn = the eigen value of PC analysis axis; δin and 

δjn = genotype and environment PCs scores for axis n; N = 

number of PCs retained in the model; ϵij = residual effect. 

 

3. Results and discussion 

 

The focus of plant breeding programs is principally on 

yield as it relates to stability and adaptability of genotypes. 

Ability of a genotype to utilize the environmental stimuli and 

show a highly predictable behavior is referred to as stability 

(Almeida et al., 2012). ANOVA revealed noteworthy 

differences amongst the 16 genotypes (15.33%) of cowpea for 

seed yield. Highly significant environment (14.71%), replication 

(0.05%) and genotype x environment (64.34%) effects were 

observed (Table 2). 

 
Table 2 

Analysis of variance and degree of freedom (DF) for seed yield (g plant-

1) measured among 16 cowpea genotypes evaluated in Akungba-

Akoko, Nigeria across 6 seasons (2014-2019). 

 

In literature, large magnitude of G × E interactions have 

been observed in cowpea (Olayiwola et al., 2015; Tariku et al., 

2018; Horn et al., 2018; Odeseye et al., 2018; Sousa et al., 2018; 

Owusu et al., 2020) and other crop species (Baraki et al., 2020; 

Verma et al., 2020).  The variations among the present genotypes 

may be due to genotype and environment factors because in 

most cases, different genotypes won in different environments. 

This level of variation indicates the importance of multi-

environment evaluation of genotypes since the aim is to pinpoint 

genotypes possessing predictable characters across diverse 

environments to guide against errors afflicting recommendation 

of genotypes (Almeida et al., 2012; Aremu et al., 2020). The 

level of diversity displayed among the genotypes in the present 

study would be useful for selection of parents for breeding 

programs and also for exploiting heterosis in the development of 

hybrids (Gerrano et al., 2020).     

Yield for the genotypes studied across the six (6) 

environments are shown in Table 3. G14 won in E1 (134.97 g), 

G16 won in E2 (54.09 g) with G2 producing no seeds (0.00 g), 

G6 won in E3 (98.67 g), G3 consistently won in E4 (57.56 g) 

and E6 (63.88 g), whereas the performance of G15 was 

consistently the poorest in five of the six environments (E1, E2, 

E4, E5 and E6). The poor performance of G15 in terms of yield 

was due to the fact that it was unable to flower in most of the 

environments included in the study, which indicated low 

adaptability of the genotype to these environments (Oliveira et 

al., 2020). The overall best across the six environments was G10 

(49.05 g), followed by G16 (45.08 g), while G14 fell in the third 

position with mean yield of 43.85 g per plant. The best 

environment for the genotypes was E1 with pooled mean yield 

of 47.75 g per plant, followed by E3 (44.23 g), and E6 (32.84 g) 

taking the third position. According to Aremu et al. (2020), 

differences in weather across years (environments) cause 

differential responses of genotypes indicating the presence of G 

× E, hence justifying the adoption of stability, AMMI and GGE 

for further analysis of the performance of the crop as also opined 

by others (Olayiwola et al., 2015; Das et al., 2019).  

FW utilizes regression coefficient as a measure of stability, 

and it states that regression coefficients approaching 1.0 is an 

indication of average stability and in turn must be linked and 

inferred with the mean of genotype yield to confirm adaptability 

(Lian and de lo Campos, 2016; Osekita, 2019). From the present 

FW stability analysis and ranking of seed yield across test 

environments (Table 4), nine out of the sixteen genotypes 

showed average stability with high mean yield. Genotypes 10, 

16, 13 and 8 which had very high mean yield were found 

unstable due to the low slope of regression. The first two 

genotypes with the highest mean yield (G10 and G16), were 

unstable whereas, from the rear genotypes 12 and 2 with very 

low mean yields were stable judging from the slope of regression 

in Table 4. At the same time, selecting on the basis of stability 

and average yield identified the following genotypes; 2, 3, 4, 5, 

6, 7, 9, 12 and 14 as the best stable genotypes out of the sixteen 

genotypes evaluated across the test environments. These 

findings indicate that genotypes identified as the most stable by 

FW may not necessarily be the most productive as established 

in the present study (Padi, 2007; Almeida et al., 2012).  

AMMI and GGE concepts are useful methodologies in 

genotype evaluation. AMMI combines ANOVA and PCA into a 

unified approach (Agahi et al., 2020; Verma et al., 2020), while 

GGE visually analyzes the results of site regression analysis for 

multi-environment trial data (Osekita, 2019; Tena et al., 2019). 

Comparison of the two analytical techniques is presented in 

Table 5. IPCs 1 to 3 jointly accounted for 94.7% of the entire 

variation among the genotypes in AMMI analysis, whereas in 

GGE analysis, same IPCs (1 to 3) jointly accounted for 94.1% 

of the entire variation. These are higher than the contributions of 

three PCs reported by Tariku et al. (2018) among sixteen 

accessions of cowpea, but similar to the findings of  Baraki et al.  

Source of Variation DF SS MS %TSS 

Environment (E) 5 32124.35 6424.87** 14.71 

Genotype (G) 15 33461.55 2230.77** 15.33 

Replicate 2 114.56 57.28** 0.05 
G×E 75 140467.42 1871.57** 64.34 

Residual 190 12149.23 63.94 5.56 

Total 287 218317.11 10648.43  
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Mean yield (g plant-1) of 16 cowpea genotypes evaluated in Akungba-Akoko, Nigeria across 6 seasons (2014-2019). 

AMMI and GGE analyses for seed yield (g plant-1) of 16 cowpea genotypes evaluated in Akungba-Akoko, Nigeria across 6 seasons (2014-2019). 

**: Highly significant; ns: Not significant. 

DF: Degree of freedom; SS: Sum of squares; MS: Mean squares   

Table 3 

 

 
Table 4 

Finlay-Wilkinson stability analysis and ranking for seed yield (g plant-

1) of 16 cowpea genotypes evaluated in Akungba-Akoko, Nigeria 

across 6 seasons (2014-2019). 

Note: + stable genotypes across environments 
 

(2020) among six genotypes of mung bean. At the fifth PC, 

AMMI analysis accounted for 100% of the total variation, while 

100% variation was accounted for at PC6 in GGE analysis 

indicating that wide differences was quickly achieved in AMMI 

compared to GGE analysis among genotypes tested in various 

test environments. The complete AMMI model showed the 

presence of significance of the G × E interactions partitioned 

among the five IPCAs (100%) without residuals in line with 

Osekita et al. (2019), and the six IPCAs for the GGE analysis. 

However, only the IPCA1 was significant among cowpea 

genotypes evaluated in South Africa (Gerrano et al., 2020) due 

to GEI. The observed interaction captured in a diatonic sequence 

among   the  IPCAs  has  been  reported  among  many  workers  

 
Table 5 

 

 

 

 

 
(Aremu et al., 2020).  

Fig. 1 presents the AMMI biplot of the first PC for yield 

stability among sixteen genotypes evaluated in six 

environments. The biplot is often used to investigate the 

response pattern of G, E, and their interaction (GEI) (Verma et 

al., 2020) utilizing means’ main effect versus the first interaction 

principal component axis (IPCA1) (Yan et al., 2007). It is also 

used to discover genotypes for seed yield that have broad and 

particular adaptation to target conditions. By graphically 

combining genotypes and environments on a graph, the link 

between genotypes and environments became clearer. In the 

case of seed yield, displacement along the horizontal axis 

revealed variations in the main effect, but displacement along 

the vertical axis revealed differences in the first PCA. 

Furthermore, the biplot accounted for 90.2% of the treatment 

sum of squares, whereas the residual accounted for 9.8%. This 

indicates sufficient variability as 70% is the minimal amount of 

variability required for the AMMI to be reasonably trustworthy 

(Neisse et al., 2018).  In addition, Tariku et al. (2018) suggested 

that the first three multiplicative component axes are adequate 

for the authentication of variation explained by GEI. This value 

is higher than the values reported by many workers, especially 

in cowpea (Tariku et al., 2018) and sugarcane (Tena et al., 2019). 

G11 and G12 were considered the most stable genotypes, with 

suitable adaptation to test environments (Fig. 2) and being the 

genotypes closest to zero. Since AMMI positioned them on the 

right-hand side of the biplot, genotypes G9, G10, G13, G14, and 

G16 were significantly greater yielding (Fig. 1). Likewise, in 

terms of both major effects and interaction, the environments 

were heterogeneous. Nonetheless, E2, E3, E4, E5 and E6 

exhibited consistency in their responses to genotypes, and while 

E1 was significantly different from other environments, it was 

shown that E2 and E6 had relatively similar mean yield.  

 

 

 

 

Genotype E1 (2014) E2 (2015) E3 (2016) E4 (2017) E5 (2018) E6 (2019) Genotype Mean 

G1 12.59ab 27.07bcd 30.11b 23.66fg 21.57bcd 28.47c 23.91bc 

G2 12.04ab 50.83de 0.00a 28.94h 35.20ef 14.33b 23.56b 
G3 15.75ab 34.38cde 38.34bc 57.56i 44.33fg 63.88g 42.38f 

G4 16.12ab 27.71bcd 84.13fg 18.81de 20.1bc 46.35d 35.54e 

G5 14.50ab 27.40bcd 69.01ef 25.27gh 53.3g 27.45c 36.16e 
G6 22.71b 28.43bcd 98.67g 15.45cd 33.37def 53.48ef 42.02f 

G7 8.39ab 28.19bcd 57.65de 20.74ef 40.57ef 30.21c 30.96de 

G8 10.24ab 32.78b-e 51.81cd 19.55e 28.8cde 31.78c 29.16cd 
G9 98.43d 15.49abc 31.74b 12.92bc 22.17bcd 31.89c 35.44e 

G10 98.45d 52.91e 35.06bc 18.26de 33.53def 56.07f 49.05g 
G11 50.81c 34.68cde 40.57bc 11.29b 0.44a 1.26a 23.18b 
G12 37.39c 8.315ab 43.85bcd 12.65de 0.52a 18.92b 20.27b 

G13 123.99e 16.23abc 30.51b 8.93ab 3.27a 19.95b 33.81de 

G14 134.97e 31.62bcd 31.37b 9.09ab 3.05a 53.04def 43.85fg 
G15 0.00a 0.00a 33.84b 5.46a 0.00a 0.00a 6.55a 

G16 107.68e 54.09e 31.09b 17.13de 12.23ab 48.25de 45.08fg 

Env. Mean 47.75 29.38 44.23 19.11 22.03 32.84 32.56 

Code Slope 

Standard 

Error 

Mean 

Yield 

Yield 

Rank 

Stable 

Genotype 

G1 -0.12 0.27 23.91 5  

G2 2.12 0.88 23.56 4 + 
G3 1.73 0.84 42.38 13 + 

G4 1.46 0.58 35.54 10 + 

G5 1.32 0.32 36.16 11 + 
G6 3.05 1.21 42.02 12 + 

G7 3.25 1.29 30.96 7 + 

G8 0.48 0.53 29.16 6  
G9 0.21 1.02 35.44 9 + 

G10 -1.1 0.57 49.05 16  

G11 -0.96 0.57 23.18 3  
G12 1.03 1.01 20.27 2 + 

G13 0.07 0.89 33.81 8  
G14 1.29 1.15 43.85 14 + 

G15 0.02 0.02 6.55 1  

G16 0.15 0.15 45.08 15   

Source DF 

AMMI Analysis GGE Analysis 

Variance (%) 
Acum  

Variance (%) 
SS MS Variance (%) 

Acum 

Variance (%) 
SS MS 

IPC1 19 74.30 74.30 104238.35 5486.23** 63.20 63.20 109840.89 5781.09** 

IPC2 17 15.90 90.20 22327.29 1313.37** 18.30 81.50 31776.18 1869.18** 
IPC3 15 4.50 94.70 6326.71 421.78** 12.60 94.10 21902.75 1460.18** 

IPC4 13 3.10 97.80 4403.80 338.75** 2.90 97.00 5053.56 388.74** 

IPC5 11 2.20 100.00 3071.27 279.21** 2.40 99.40 4120.47 374.59** 
IPC6 9 0.00 100.00 0.00 0.00ns 0.70 100.00 1135.12 126.12** 
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Fig. 1. AMMI Biplot showing yield (g plant-1) stability on axis 1 of the 

Principal Component for 16 cowpea genotypes evaluated in Akungba-

Akoko, Nigeria across 6 seasons (2014-2019).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Adaptation map showing stability of genotype interaction with 

the first Principal Component for seed yield (g plant-1) of 16 cowpea 

genotypes evaluated in Akungba-Akoko, Nigeria across 6 seasons 

(2014-2019). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 3. AMMI Biplot for Axis 1 and 2 of the Principal Component for 

seed yield (g plant-1) of 16 cowpea genotypes evaluated in Akungba-

Akoko, Nigeria across 6 seasons (2014-2019). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Environment-vector view of the GGE biplot to show similarity 

among test environments in discriminating the 16 cowpea genotypes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5. The discrimination and representativeness view of the GGE 

biplot to rank test genotypes relative to an ideal test environment 

(season). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 6. The Genotype-vector view of the GGE biplot showing the 

performance of 16 cowpea genotypes in test environments (6 seasons). 
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Fig. 7. Ranking of 16 cowpea genotypes based on mean yield (g plant-

1) and stability relative to an ideal genotype. 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
Fig. 8. Polygon view of the GGE biplot based on symmetrical scaling 

for the which-won-where pattern for genotypes and environments 

(seasons). 

 

Fig. 3 illustrates AMMI biplot for cowpea seed yield 

indicating the pattern of reflection of the six environments from 

the biplot origin. Six rays originated from the biplot origin to 

show the extent of variation across the test environments. E1 had 

the longest ray and make an obtuse angle with the biplot origin. 

E2, E4 and E5 were on the same quadrant with almost equal rays 

making an acute angle with the biplot origin in the anti-

clockwise direction. E6 had the shortest ray from the biplot 

origin. All the six environments make an obtuse angle with E1 

in reference to the biplot origin which is an indication that 

differences exist between the test environment and the 

genotypes. G11 that falls within the circle towards the biplot 

origin was considered the most stable genotype across the 

environment; whereas, G9, G10, G13, G14, and G16 did not 

differ in terms of yield, because AMMI model retained them on 

the right-hand side of the biplot. The present observation 

indicates the appropriateness of AMMI in agricultural analyses 

for the effective separation of G and E from GE interaction 

(Neisse et al., 2018). These are comparable to the outcomes of 

Aremu et al. (2020) in African yam bean. 

Fig. 4 shows the environment-vector perception of the 

GGE biplot; it is predicated on an environment-centered 

(centering = 2) G by E table with no scaling (i.e. zero), is 

environment-metric preserving (SVP=2), and its axes are scaled 

(Yan et al., 2007; Neisse et al., 2018). This biplot described 

81.5% of the overall variation in the environment-centered G × 

E (PC1 = 63.2 percent, PC2 = 18.3 percent). This is similar to 

the value reported by Gerrano et al. (2020) in cowpea genotypes. 

Vectors are the lines that connect the test environments to the 

biplot origin. The cosine of angle between two vectors 

approximates the correlation between them (Yan and Tinker, 

2006; Maniruzzaman et al., 2019; Baraki et al., 2020). In this 

figure, E1, E2 and E6 are positively correlated (acute angle). 

Similarly, E3, E4 and E5 are positively correlated. The gap 

between adjacent environments indicates their disparity in 

respect of genotype classification. As a result, the consistency 

(covariance) of two environments is dictated by the length of 

respective vectors as well as the cosine of the angle between 

them. The biplot's concentric circles aid in visualizing the extent 

of the environment vectors, which is equal to the standard 

deviation inside the distinct environments and is a gauge of 

discriminating power (Yan and Tinker, 2006; Neisse et al., 

2018). Hence, E1, E5 and E6 were the most discriminating 

whereas E2 and E3 the least discriminating (non-informative). 

Test environments found continuously non-discriminatory yield 

minimal information on genotypes and should thus not be used 

as test environments. 

Fig. 5 shows the discriminatory plus representativeness 

perspective of the GGE biplot to classify test environments 

compared to an ideal test environment. The optimum test 

environment inside a single mega environment should be the 

most discriminating (informative) as well as the most reflective 

of the target environment (Yan and Tinker, 2006; Tariku et al., 

2018; Tena et al., 2019; Gerrano et al., 2020). As a result, the 

center of the concentric circles in this figure represents an “ideal 

test environment”. It is a positive point on the Average 

Environment Axis (AEA) (most informative) (Sharma et al., 

2016; Maniruzzaman et al., 2019; Baraki et al., 2020); E2 in 

addition to E6 with the smallest angle to AEA are the most 

representative. However, E1 with longer vector length is 

considered as the unsurpassed environment for choosing far and 

wide adapted genotypes, whereas E5 is a little bit farther and 

may not be adequate for choosing genotype adapted to the test 

environment although extra years may be necessary to ratify that 

an exact test environment is “ideal”. This is corroborated by the 

reports of Yan et al. (2007). Because E6 is both discriminating 

and representative, it can be an excellent test environment for 

choosing genotypes with broad adaptation, however E2 (most 

representative and least discriminative) is less useful with no 

appreciable information as suggested by Yan and Tinker (2006). 

Fig. 6 portraits the genotype-vector view of the GGE biplot 

depicting genotype performance in test environments. The 

genotype and environment vectors are both drawn here in order 

to visualize the specific interactions between a genotype and an 

environment. A genotype's productivity in an environment is 
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better than average if the angle between its vector and the vector 

of the environment is less than 90°, worse than average if the 

angle is greater than90°, and near average if the angle is 

approximately 90° (Baraki et al., 2020). Based on the above, 

genotypes G9, G10, G11, G13, G14 and G16 were greater than 

average in E1 forming acute angles, whereas, other genotypes 

were below average indicating that they made obtuse angles 

with E1 which is the ideal environment. Fayeun et al. (2016) and 

Osekita et al. (2019) obtained similar results. 

Fig. 7 displays the classification of genotypes founded on 

mean yield and stability comparative to an ideal genotype. 

Properties of an ideal genotype are high mean productivity and 

stability across environments (Maniruzzaman et al., 2019). This 

figure defines an ideal genotype as a positive point on the AEA 

with a vector length equal to the longest vectors of the genotypes 

along AEA positive side (highest mean performance). 

Consequently, genotypes positioned closer to the ‘ideal 

genotype’ are superior to others (Yan et al., 2007; Tena et al., 

2019; Gerrano et al., 2020). Thus, G14 was superior to G10, 

despite the fact that G10 had higher average yield showing that 

it had high yield and stability. Other genotypes next to G14 with 

high stability and yield that could be selected for breeding 

programs include G16, G9 and G13. G15 was the poorest 

genotype for the reason that it was consistent the lowest in terms 

of average yield. This figure also depicts the concept of stability; 

the term “high stability” is only relevant when combined with 

“average performance”. G15 was highly unstable and poor 

yielding whereas others were unstable and low yielding except 

G2, G7, and G12 which had yield below average and highly 

stable. Similar results were obtained by Yan and Kang (2003), 

Tena et al. (2019) and Gerrano et al. (2020).   

Fig. 8 displays a polygon view of the which-won-where 

trend of cowpea genotypes tested in six environments. The GGE 

biplot's polygon view reveals which genotype achieved the best 

performance in which environment (Yan and Tinker, 2006; 

Horn et al., 2018; Das et al., 2019; Maniruzzaman et al., 2019; 

Tena et al., 2019; Baraki et al., 2020; De Melo et al., 2020). A 

polygon is constructed on genotypes farthest from the biplot 

origin so that all other genotypes are confined inside the 

polygon, and then perpendicular lines are drawn beginning from 

the biplot origin on each side of the polygon (Yan et al., 2007). 

In this figure a pentagon was drawn with genotypes G13, G14, 

G10, G6 and G15 at the vertex of the pentagon. Perpendicular 

lines drawn from the biplot's origin divide the pentagon into 

three sectors. The equality between G13 and G14 indicates that 

G13 and G14 were better in all the environments, it is also noted 

that G9 falls within the line that connects G13 and G14, also G16 

falls within the line which connects G14 and G10, by ranking it 

means that G13>G9>G14>G16>G10 through the environments. 

The equality lines that partition the biplot into sectors, with the 

winning genotype located on the respective vertex, which are 

G13, G14, G10, G6 and G15. The following genotypes; G9, 

G10, G13, G14 and G16 fell into sector 1 and perform best in 

environments E1 and E2, while G3, G4, G5, G6, G7 and G8 fell 

into sector 2 having environments E3, E4, E5 and E6 in 

common, G1, G2, G11, G12 and G15 fell into the third sector. 

G15 located on the vertex of the polygon without any 

corresponding environment is considered as low yielder as 

reported by Baraki et al. (2020), hence cannot be recommended 

for breeding programs as described by Gerrano et al. (2020).   

Fig. 9 indicates the outlook of the genotypes in response to 

the sixteen cowpea genotypes. The performance of the 

genotypes varied widely in environment 1. The extent of 

variation in environment 4 is convergent except for G3 that 

separated widely. In other environments the dispersibility of the 

genotypes followed a unique pattern and better response of the 

cowpea genotypes in terms of mean yield.  

 

 

 

 
 

 

 

 

 

 

 

 

 
Fig. 9. Environment (season) response view of the GGE Biplot among 

the 16 cowpea genotypes. 

 

Fig. 10 displays the environment view based on the cowpea 

genotypes, environment 4 and 6 were consistently the poorest 

for evaluation of the sixteen cowpea genotypes according to the 

graphical representation of the environment view, while others 

show diversity in performance in the remaining four 

environments. Similar results were reported by Osekita (2018).  

 

 

 

 

 

 
 

 

 

 

 

 

 
Fig. 10. Genotype response view of the GGE Biplot across test 

environments (seasons). 

 

The outcomes of the current study indicate that the existing 

genotypes of cowpea in Nigeria and other tropical countries of 

the world have high stability and yield potential that could be 

exploited in breeding programs of the crop. For instance, G14 

and G9 which were the most stable genotypes were respectively, 

from Burkina Faso and Nigeria in West Africa, these genotypes 

outperformed others which are all of tropical origins. Adoption 

of these genotypes in tropical countries of the world will 

contribute positively to the productivity of cowpea in those 

regions. Regions of the world where the present information 

could be useful include Central America, Mexico, the Caribbean 

islands, all of Africa excluding Tunisia, Lesotho and Swaziland. 

Others include part of Middle East, part of India and all countries 

in the South East Asia. Countries situated within the tropic are 

known as Tropical countries (Morgan, 2011).  

 

4. Conclusion 

 

In the present evaluation, seed yield was highly influenced 

by genotype effect, environment, and GEI. All analyses were 

able to pinpoint high yielding and stable genotypes in Akungba-
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Akoko environment; and these included G14 and G9 as the 

consistent high yielding stable genotypes adopted by FW, GGE 

and AMMI. G14, G3, G4, G5, G6 and G9 were high yielding 

and stable according to FW; AMMI showed G10, G9, G16, G14 

and G13 as high yielding and stable, while GGE showed G14, 

G16, G9 and G13 as high yielding and stable. However, 

consistencies of G14 and G9 with the three methods make them 

the candidates of choice for Akungba-Akoko environment, other 

parts of south west Nigeria, and are hence recommended for 

cultivation.  

These genotypes may also exhibit similar stability and 

yield performances in other tropical regions of similar 

characteristics in Africa, Asia, America, and hence could be 

included in plant breeding programs of such regions. As 

analyses explored the variation in the data due to GEI, they also 

complemented one another, in that where one erroneously 

included a wrong genotype as stable; the other excluded such 

genotype, making recommendation possible on the basis of 

consistency to gain reliability.  
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