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Abstract 

 

In recent years, severe mucilage formation threatening nearshore marine ecosystems has intensified 

investigations on possible separation of components forming mucilage flocculation, deactivating 

bacteria adhesion and decomposing the colloidal structure. Challenges to eliminating mucilage 

formation in marine ecosystems require long-term measures, however quick reaction with environment-

friendly approach is of great importance for the control of mucilage expansion since the impact of 

mucilage can be significantly hazardous in nearshore marine areas during seasonal change and may 

spread to more expansive areas when disregarded. In the present study, ultrasonic vibration at 40 kHz 

frequency generated by sonication showed a time-dependent destructive effect on the colloidal structure 

of mucilage. Results showed that an ultrasound wave with 40 kHz frequency for 60 minutes of 

application could be effective for nearly 50% dispersal of mucilage aggregation on sea surface that in 

terms might be a useful tool for rapid response in an Emergency Action Plans. However, further research 

is encouraged for understanding how sonication mitigates the aggregation of phytoplankton and bacteria 

forming the complex matrix of polymeric mucilage structure. 
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1. Introduction 
 

The formation of mucilage in nearshore marine ecosystems has been reported for many years 

ago in different areas around the World [1-3]. Some recent reports have documented mucilage 

events in the Mediterranean Sea since the 1980s [4, 5]. Several earlier studies reported diatom 

species (Skeletonema costatum and Cylindrotheca Closterium) as the main reason for mucilage 

formation [1, 6-8], while others pointed on dinoflagellates [9]. Other researchers reported high 

organic carbon levels in cellular secretions, mainly in carbohydrates, as a reason for mucilage 

occurrence [2, 3, 5]. It was underlined that mucilage can be the evolutionary product of smaller 

organic matter aggregates because the two subfractions always showed high compositional and 
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structural similarities [10]. Stratification of the water column in high temperature conditions 

may provide a favourable ambient for the increasing coalescence of small-sized aggregates, the 

so-called "marine snow", that is ever-present in the oceans all around the World [11]. These 

compounds are high-level organic matter aggregates in the marine ecosystem, basically formed 

by extracellular polymeric substances released through decaying organisms or other organic 

matter coupled with dead plankton, diatoms, fecal matter, bacteria, and high levels of nutrients 

penetrating the oceans through several paths [12-14]. With time, these aggregates can form 

huge blankets, thin layers, and flocs, forming the mucilage [15] altogether through enzymatic 

activities of prokaryotic bacteria [16, 17]. Suppose the equilibrium between degradation and 

aggregation reactions of organic matter caused by the persistence of anoxic conditions becomes 

unbalanced. In that case, the complex formation of mucilage can occur [10], as a booming 

progressive stage of marine snow with a size ranging from a few millimeters to several meters 

[11], that in terms may threaten huge areas along the coastline [14, 18-20], with significant 

economic impacts and social concern. 

 

Sound treatment in water ambience uses waterborne acoustic energy and sounds with 

frequencies below 1 kHz are classified as low-frequency sound [21]. Sound is often used for 

the acoustic energy range of 20Hz - 20kHz, which is audible for the human ear [22]. 

Ultrasounds are sound waves above 20 kHz (20kHz - 1GHz), which are not audible for humans 

[23, 24]. Vibration treatment uses solid-borne acoustic energy in mechanical structures such as 

pipes, walls of containments, etc. [21]. Successful findings regarding detrimental and 

destructive impacts of a wide range of acoustic energy (sound or vibration) on several forms of 

biofouling organisms have been reported earlier [25-29]. Microbial inactivation by ultrasonic 

treatment (> 20 kHz) was reported [30], with detrimental effects on bacterial growth [31, 32]. 

Ultrasound may potential promote or damage effects on enzymes, substrates, the reactions 

between enzymes and surrounding substrates [30, 33]. Earlier reports tested a wide range of 

audible sound frequencies from 30-100 Hz [26, 27, 29, 34, 35] to 445-5.000 Hz [26, 29, 35], 

and others used ultrasonic frequency range from 17-30 kHz [26, 36-38] to 63-102 kHz [38] for 

the control of biofouling organisms such as tubeworms, bryozoans, ascidians, barnacles, 

oysters, and algae. In a detailed investigation [21], it was noted that ultrasonic cavitation with 

frequencies between 20 and 42 kHz can be used as a destructive measure in biofouling control 

of mussel infestation, based on earlier reports [39, 40]. 

 

Considering various sound energy impacts on biofouling organisms, acoustic energy could be 

a valuable method for biofouling control. Nevertheless, information about the effects of 

acoustics on biofouling development remains inconsistent, and more research is necessary to 

understand and develop adequate strategies of biofouling control using acoustics [41]. 

Additionally, sound energy could be a practical tool and easily applicable method in the 

challenge with mucilage formation, as mobile sound generator installations can be easily carried 

and applied in different locations [42]. 

 

However, to our knowledge, so far, there is no published information available regarding 

possible impacts of acoustic energy on the control mechanism, dispersal or mitigation of 

mucilage formation in the marine ecosystem. Therefore, based on earlier success in microbial 

inactivation by ultrasonic treatment with above 20 kHz frequency [30], and the destructive 

effect on the biofouling of mussel infestation using ultrasonic cavitation between 20 and 42 

kHz frequency [21].  The present study aimed to investigate increasing levels of exposure time 

of 40 kHz frequency sonication on possible dispersal of mucilage formation, as a practical and 

environment-friendly control measure. 
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2. Material and Method 

 

This study has been done by the permission of  Turkish Ministry of Agriculture and Forestry 

(Ankara - Turkey) (E-67852565-140.03.03-3911695). Mucilage samples were randomly 

collected from the Strait of Canakkale (Canakkale Marina, Turkey; 40°09' 00" N-26°29'02" E) 

during a mucilage formation event in the Sea of Marmara and the Turkish Straits (Istanbul-

Bosphorus and Canakkale Strait) in 2021. Triplicate samples of mucilage layer were directly 

taken into 10 L volume plastic drums with sealable cover (Fig. 1), and immediately transferred 

to the laboratories of Marine Technology Engineering Department, Faculty of Marine Sciences 

and Technology, Çanakkale Onsekiz Mart University (Turkey), and stored in ambient condition 

without sunlight penetration. Samples taken from the Canakkale Strait were delivered to the 

laboratory within 25 minutes. Water quality parameters of temperature, salinity and pH was 

recorded  applying an automatic water quality measuring device (brand of YSI), and resulted 

as respectively: 16,4 °C, 27,9 ppt , and 8,03. 

 

 
Figure 1. Mucilage event in Canakkale Strait (Turkey) and sampling area 

 

 

Before ultrasonic treatment, random samples of mucilage collected from the main stock and 

transferred into 100 ml beakers were used for image capture of mucilage structure under light 

microscope (OLYMPUS CX21, 10X/18, magnification 4 x 0 10) and captured images of initial 

samples without treatment were recorded. After that, mucilage samples in 100 ml beakers were 

exposed to ultrasonic waves using a "Wisd" brand WUC-A 03H Model Ultrasonic Vibrator. 

The study was carried out in triplicates at room temperature (22℃) and ambient daylight. The 

temperature of distilled water in the sonication device was measured thoroughly and replaced 

with new distilled water to keep the water temperature at a constant level, the same as the room 

ambience of 22 ± 1℃. The temperature has been reported to influence the effectiveness of 

ultrasound waves on yeast cells [43, 44], and also mucilage flocculation is strongly dependent 

on water temperature [45, 46]. 

 

The mucilage structure was exposed to sonication at 40 kHz frequency for three different time 

intervals of 15, 30 and 60 minutes. A group with no acoustic treatment served as a control. After 

each time interval, samples were image captured under the light microscope at the same 

magnification mentioned above, and mucilage samples were volumetrically evaluated to 
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compare per cent ratio between water to mucilage media on the surface. At each time interval, 

any possible signs of dispersal of the aggregates were examined until an apparent dispersal of 

aggregates through image tracking was observed. 

 

By the end of the 60 minutes of sound exposure, all samples were kept at room temperature 

(22℃) for one day (24 h) and after that for another three days (96 h), namely 4 days in total for 

further evaluation of possible alteration of the proportional structure of water to mucilage 

formation (W:MF) to figure out any possible re-flocculation of aggregates after a certain period 

of storage. 

 

3. Results 

 

Mucilage structure exposed to sonication at 40 kHz frequency altered in terms of the gradual 

decrease in the thickness formed on water surface in a time-dependent manner with the increase 

of exposure time over the 60 min treatment period. The volumetric proportion of W:MF altered 

with increasing water and decreasing mucilage layer from the initial W:MF ratio of 10:90 to 

40:60, 50:50, and 60:40 after sonication for 15, 30, and 60 min, respectively. The control group 

without acoustic treatment remained similar (10:90) without alteration after 60 min of exposure 

(W:MF, 10:90) (Fig. 2). Exposure to acoustic energy showed a 30% reduction in the surface 

structure with a treatment duration of <15 min and displayed a 50% reduction in the surface 

layer after 60 min ultrasound treatment with 40 kHz frequency (Fig. 2). 

 

 
Figure 2. Time-dependent volumetric alteration of water to mucilage ratio after exposure to 

sonication at 40 kHz frequency. Control group without acoustic treatment. 

 

 

After consecutive room storage for 24 and 96 h at 22 ℃, mucilage samples did not show any 

alteration in terms of volumetric proportion of W:MF, which remained similar to those exposed 

to sonication, with proportional contribution of 40:60, 50:50, and 60:40 for the 15, 30, -and 60 

min exposure treatment groups, respectively. The only difference was seen in the control 
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without sound treatment that increased its water level by 10% over the initial, and presented a 

W:MF ratio of 30:70 by the end of both 24 (Fig. 3) or 96 h (Fig. 4) storage. Microscopic image 

captures of the mucilage structure exposed to sonication at 40 kHz frequency level for 15, 30, 

and 60 min are given in Fig. 5. 

 

 
Figure 3. Volumetric proportion of water to mucilage ratio after room-storage (22℃) for 24h 

 

 

 
Figure 4. Volumetric proportion of water to mucilage ratio after room-storage (22℃) for 96h 
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Figure 5. Microscopic image captures of mucilage structure exposed to ultrasound treatment 

(40 kHz frequency) for 15, 30, 60 min. 

 

 

The image captures of the control group without ultrasound treatment after 60 min exposure 

time were similar to the initial structure before the acoustic trial. In the beginning, mucilage 

formation showed a clustered polymeric structure. In contrast, this clumping formation turned 

into dispersed particles after 60 min of treatment, a possible sign for the dispersal of aggregates 

or degradation process of the colloidal structure. Microscopic image captures of the mucilage 

structure stored for 96 h in room ambience (22 ℃) after sonication for 15, 30, and 60 min are 

shown in Fig. 6. 

 

 
Figure 6. Microscopic image captures of mucilage structure stored in room temperature (22℃) 

for 96 h after sonication (40 kHz frequency) for 15, 30, and 60 min 

 

Room temperature storage (22℃) for 96 h did not influence the mucilage structures in all 

treatment groups of exposure durations. Also, mucilage samples in the control group without 

acoustic treatment showed the same clustered polymeric structure after 96 h storage. The 

application time was the main factor influencing mucilage structure with gradual dispersal of 

particles with increasing application time. The highest dispersal of the polymeric formation 

with scattered particles was noted after 60 min of sonic application. 
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4. Discussion 

 

The preliminary study results suggest that an ultrasonic treatment system operating at 40 kHz 

might be effective for dispersing colloidal mucilage formation at the water surface. Clear 

evidence was found that the dispersal of mucilage structure via sonication is time-dependent, 

and based on the acoustic trial, it was determined that 60 minutes of exposure duration could 

be enough for nearly 50% destruction of the structure. 

 

After a comprehensive literature search, we concluded that no published reports are available 

on the use of acoustic energy on mucilage dispersal. Therefore, the findings in this study were 

compared with reports focused on the effects of acoustics on several other biofouling organisms 

and microbial cell properties of bacteria and plankton. The effectiveness of acoustic energy has 

been investigated on the mortality rates of several organisms suspended in water. In an earlier 

investigation using ultrasound of three different frequencies (19.5, 28, and 50 kHz) [47], 19.5 

kHz frequency was reported as most effective for the destruction of barnacle settlements with 

50% mortality, a ratio that was achieved in the challenge with mucilage formation after 60 min 

treatment in this study with a higher frequency level of 40 kHz. Similarly, another study 

reported 23 kHz as the most effective frequency on barnacle settlement inhibition with resonant 

ultrasound frequencies of 23, 63, and 102 kHz [48]. Microbial inactivation [30], and detrimental 

impacts on bacterial growth through ultrasonic treatment (> 20 kHz) were reported earlier [31, 

32], and removal of biofouling organisms was succeeded with 20 kHz frequency [37]. 

Settlement inhibition of biofouling organisms exposed to 17-30 kHz frequency [36], or 23 kHz 

frequency [38, 48] has been reported, underlining enhanced settlement inhibition with 

increasing acoustic exposure time [49], supporting our findings for the time-dependent increase 

of mucilage dispersal in this study. No biofouling of barnacles, worms, or mussels was observed 

when ultrasound of 24 kHz was used [26]. In a comprehensive investigation [21], it was 

reported that sonication between 20 and 42 kHz can be effectively used as a destructive measure 

in biofouling control of mussel infestation based on earlier reports [39, 40]. Induced mortality 

rate in algae (35%), or in cysts (55%), larvae (100%) and adult brine shrimp (85%) after 

exposure to sonication at 1.4 kHz for 20 min was reported earlier [50]. Destructive impacts of 

ultrasound on survival rate were also reported in earlier investigations [51, 52]. Further, high-

power ultrasonic pulses between 28 kHz and 200 kHz were studied, and researchers underlined 

that higher frequency resulted in higher mortality in barnacle larvae [51]. Another study 

indicated that 20 kHz pulverized barnacle larvae within 45 sec [52]. Sonication at 19 kHz was 

investigated on mortality rates of bacteria, phytoplankton such as dinoflagellate, diatom, 

cyanobacterium, which are reported as the main reason for mucilage formation [1, 6-9] and 

zooplankton such as brine shrimp, cladoceran, and rotifers in ballast water treatment [53]. The 

authors reported that ultrasonic treatment efficiency is time-dependent and can show variations 

with the size of the organisms. Further, it was concluded that an ultrasonic treatment alone for 

ballast water operating at 19–20 kHz could be efficient to destroy planktonic organisms with 

sizes over 100 μm. However, smaller sized planktonic organisms such as phytoplankton and 

bacteria may need additional treatment methods accompanied by advanced oxidation 

techniques [53]. This finding shows a correlation between sonication efficiency and the size of 

the target organism. 

 

Considering an unbalanced equilibrium between degradation and aggregation reactions of 

organic matter through prokaryotic bacteria by enzymatic activities in anoxic conditions, 

altogether forming the mucilage structure [10, 15-17], oxidation techniques can be coupled with 

ultrasonic treatment to reduce treatment time and efficiency of ultrasound on mucilage dispersal 

as suggested earlier [53]. 
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Mucilage is formed due to an altered mechanism from the aggregation of organic matter if the 

degradation process is slower than polymerization and assembly [10]. In the present study, the 

exo-polymeric structure of mucilage flocs at water surface changed into rather scattered forms 

after acoustic treatment of sonication at 40 kHz frequency for 60 min. This could be attributed 

to the dispersal and separation of large molecules combined with aggregates of small molecules 

forming the exo-polymeric structure of mucilage [54]. However, further investigations are 

necessary to clarify the structural change of exo-polymeric flocculation better. Room 

temperature storage (22℃) for four days (96 h) did not cause any further alteration in the 

mucilage structure with the same dispersal characteristic of the samples before storage, showing 

that mucilage exposed to sonication did not re-flocculate after storage in ambient conditions. 

 

Ultrasound applications have been used to inactivate and prevent the proliferation of bacterial 

cells in foods [55-57], to prevent bacterial growth on various surfaces [30-32] or reduce the 

effects of planktonic bacteria such as Cyanobacteria, Escherichia coli in water environment 

[58-59]. Further, it has been stated that irreversible lethal effects can be created on both 

Escherichia coli and Staphylococcus aureus bacteria through a frequency of 20 kHz exposure 

for 20 min [60] Liao et al., 2018). Another study underlined that ultrasonic waves (20 kHz) 

alone could not destroy the yeast’s cells, but the damage on cells was sensitive to temperature 

increase [43]. The resistance of S. cerevisiae cells to ultrasound (20 kHz) at 35, 45 and 55℃ in 

Sabouraud broth was investigated [44], where the authors observed no structural differences 

among sonicated cells and heat-treated cells. However, the sonication at 45℃ showed cell 

damage with leakage of intracellular contents. This indicates that the effectiveness of ultrasound 

in combination with heat treatment within a specific temperature range, could be stronger than 

ultrasound or heat treatment alone [30]. The expansion of the exo-polymeric structures 

comprised by the combination of high molecular compounds (polysaccharides, proteins, lipo-

polysaccharides, glycolipids, lipids, peptides and nucleic acids) [61-63] can change according 

to the availability of nutrients [64], and temperature conditions [45, 46]. The development of 

biofouling might depend on a variety of environmental factors such as salinity, temperature, 

conductivity, pH, dissolved oxygen, organic material content, hydrodynamic conditions, 

currents, light, depth, and distance from the shore, or a combination of all these factors [65]. 

Therefore, temperature range and other water quality parameters need considerations in future 

investigations on acoustic treatment in the challenge with mucilage formation. 

 

Further, the disruptive effect of ultrasound with a particular frequency depends on types of 

microorganisms and is likely to be species-specific, with combined influences of environmental 

conditions. In an investigation on the effects of ultrasonic waves on Chlamydomonas concordia 

and Dunaliella salina at frequencies of 20, 585, 864 and 1146 kHz with different acoustic 

powers, a reduction in algal numbers depending on both ultrasonic frequency and power was 

reported along with strong relation to the mechanical properties of the cells [66]. Ultrasonic 

treatment resulted in lethal damage to Enterobacter aerogenes and Bacillus subtilis, while 

Staphylococcus spp. was not remarkably affected when treated with ultrasound at 20 kHz 

frequency [67]. Further, the authors stated that the resistance to the ultrasonic treatment may 

depend on the cell wall properties of the bacteria and that microorganisms with "thick" or "thin" 

cell walls may be more resistant to ultrasounds [67]. From this point of view, it can be 

underlined that ultrasonic frequency may influence different microorganisms in different ways 

depending on their physical and biological properties. Additionally, higher sensitivity of cells 

with more complex structures to ultrasonic sounds than cells with relatively small structures 

was reported earlier [68, 69]. The impacts of ultrasonic treatment on bacteria may also differ 

according to the intensity and length of sound frequency exposure [32, 63, 70]. Even though 

several published reports have remarkable information about the effectiveness of ultrasonic 
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sound frequency on the deactivation of bacteria, the relation between the inactivity impacts of 

sounds Physico-chemical structure of bacteria has not been clearly assessed [32], and still needs 

further investigation. 

 

As a result, our findings in the present study indicate that the effect of ultrasound on mucilage 

dispersal is time-dependent and an ultrasound wave with 40 kHz frequency for 60 minutes of 

application could be enough for about 50% dispersal of the complex matrix of aggregates 

coupled with bacteria proliferation towards branched molecules of the tree-like mucilage 

formation. 

 

5. Conclusion 

 

Based on the findings of the preliminary study, it was evident that ultrasound wave treatment 

with 40 kHz frequency affected mucilage aggregation with dispersal of aggregates forming the 

mucilage structure. This is the first attempt to investigate the destructive effectiveness of 

acoustic energy on mucilage formation related to exposure duration. Information regarding the 

effectiveness of acoustic energy on the dispersal of aggregates forming the mucilage may 

provide useful implications as a rapid response in the challenge with mucilage formation in 

nearshore marine ecosystems. Investigations in more detail are encouraged regarding changes 

of the characteristics of exo-polymeric substances in the mucilage flocculation for a wider 

understanding of mechanisms involved in mucilage disruption, especially the inactivation 

process of biological and enzymatic features of microorganisms exposed to acoustic energy. 

Additionally, introducing acoustic energy in the aquatic environment represents anthropogenic 

noise, a source of underwater sound pollution that potentially might cause unwanted side-

effects on marine life. Therefore, further research on acoustic energy with frequency ranges 

effective to mucilage but harmless to non-target aquatic species without detrimental side effects 

is still an open area for further investigations. 
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