Fundamental Journal of Mathematics and Applications, 5 (2) (2022) 67-80

Research Article



# **Fundamental Journal of Mathematics and Applications**



Journal Homepage: www.dergipark.org.tr/en/pub/fujma ISSN: 2645-8845 doi: https://dx.doi.org/10.33401/fujma.1021120

# Two New Versions of the Pasting Lemma via Soft Mixed Structure

#### Nihal Taş

Balikesir University, Department of Mathematics, 10145 Balikesir, Turkey

#### **Article Info**

# **Keywords:** $(\tau_1, \tau_2)$ -g-closed soft, $(\tau_1, \tau_2)$ -g-pr-closed soft, Pasting lemma **2010** AMS: 54C10, 06D72, 54C05,

54A40, 54A05

Received: 9 November 2021 Accepted: 22 February 2022 Available online: 28 March 2022

#### Abstract

In this paper, we present two new generalizations of the pasting lemma using soft mixed structure. To do this, we introduce the notions of a  $(\tau_1, \tau_2)$ -g-closed soft set and a  $(\tau_1, \tau_2)$ -g-g-closed soft set. We establish the notions of mixed g-soft continuity and mixed g-g-soft continuity between two soft topological spaces  $(X, \tau_1, \Delta_1), (X, \tau_2, \Delta_1)$  and a soft topological space  $(X, \tau, \Delta_2)$ . Finally we prove two new versions of the pasting lemma using the mixed g-soft continuous mapping and the mixed g-g-g-soft continuous mapping.

#### 1. Introduction and motivation

"Soft set theory" was introduced as a general mathematical tool for dealing with encountered difficulties and problems in medical science, social science, engineering, economics etc. [1]. Many researchers have been studying some topological concepts with basic properties and some generalizations of a soft topological space via different approaches (for example, see [2]-[15]). Also some applications of the soft set theory were obtained to other sciences such as medical science, food science, insurance, investment etc. (see [16]-[26] for some examples). Recently, different decision making applications have been studied (for example, see [27]-[30]).

"Mixed structure has" been studied on various topological spaces such as a soft topological space, a generalized topological space etc. Using the mixed structure, some topological notions have been generalized with a new approach. For example, some mixed sets and mixed continuities were defined on a generalized topological space (resp. on a soft topological space) (see [31]-[37]).

"Pasting lemma" is one of the most important notions on a topological space for continuous functions. Especially, it has a significant place in algebraic topology. Recent years, some new forms of the pasting lemma have been introduced by many mathematicians (for example, see [15], [38]-[42] and the references therein).

Motivated by the above studies, we present two new version of the pasting lemma using mixed structure on a soft topological space. For this purpose, we introduce the notions of  $(\tau_1, \tau_2)$ -g-closed soft set, a  $(\tau_1, \tau_2)$ -g-r-closed soft set, mixed soft pre closure and mixed soft pre interior. We prove some topological properties of these new notions. Also we give some counter examples for necessary relationships. We define the notions of mixed g-soft continuity and mixed g-r-soft continuity between two soft topological spaces  $(X, \tau_1, \Delta_1), (X, \tau_2, \Delta_1)$  and a soft topological space  $(X, \tau, \Delta_2)$ . Finally, we establish two new versions of the pasting lemma for mixed g-soft continuous functions and mixed g-r-soft continuous functions on a soft topological space.



#### 2. Preliminaries

In this section, we recall some basic concepts related to soft set theory. Throughout this paper, we assume that X is an initial universal set,  $\Delta$  is a nonempty set of parameters and  $\Delta_1, \Delta_2 \subseteq \Delta$ .

**Definition 2.1.** [1] Let  $\phi: \Delta_1 \to P(X)$  be a mapping. Then a pair  $(\phi, \Delta_1)$  is called a soft set over X.  $SS(X)_{\Delta}$  denotes the family of all soft sets on X.

**Definition 2.2.** [7] Let  $(\phi, \Delta_1)$  be a soft set over X.

- (1)  $(\phi, \Delta_1)$  is called a null soft set if  $\phi(e) = \emptyset$  for all  $e \in \Delta_1$ . It is denoted by  $\widetilde{\emptyset}$ .
- (2)  $(\phi, \Delta_1)$  is called an absolute soft set if  $\phi(e) = X$  for all  $e \in \Delta_1$ . It is denoted by  $\widetilde{X}$ .

**Definition 2.3.** [7] Let  $(\phi, \Delta_1) \in SS(X)_{\Delta_1}$  and  $(\phi, \Delta_2) \in SS(X)_{\Delta_2}$ .

(1)  $(\phi, \Delta_1)$  is called a soft subset of  $(\phi, \Delta_2)$  if  $\Delta_1 \subseteq \Delta_2$  and  $\phi(e) \subseteq \phi(e)$  for all  $e \in \Delta_1$ . It is denoted by

$$(\phi, \Delta_1)\widetilde{\subseteq}(\phi, \Delta_2)$$
.

(2)  $(\phi, \Delta_1)$  is called soft equal to  $(\phi, \Delta_2)$  if  $(\phi, \Delta_1) \subseteq (\phi, \Delta_2)$  and  $(\phi, \Delta_2) \subseteq (\phi, \Delta_1)$ . It is denoted by

$$(\phi, \Delta_1) = (\phi, \Delta_2).$$

**Definition 2.4.** [10] Let  $(\phi, \Delta_1)$ ,  $(\phi, \Delta_1) \in SS(X)_{\Delta_1}$ .

(1) The complement of  $(\phi, \Delta_1)$  is defined as

$$(\phi, \Delta_1)^c = (\phi^c, \Delta_1),$$

where  $\phi^c(e) = (\phi(e))^c = X - \phi(e)$  for all  $e \in \Delta_1$ .

(2) The difference of  $(\phi, \Delta_1)$  and  $(\phi, \Delta_1)$  is defined as

$$(\phi, \Delta_1) - (\phi, \Delta_1) = (\phi - \phi, \Delta_1),$$

where  $(\phi - \varphi)(e) = \phi(e) - \varphi(e)$  for all  $e \in \Delta_1$ .

**Definition 2.5.** [14] Let J be an arbitrary index set and  $\{(\phi_i, \Delta)\}_{i \in J}$  be a subfamily of  $SS(X)_{\Delta}$ .

(1) The union of these soft sets is the soft set  $(\phi, \Delta)$ , where

$$\varphi(e) = \bigcup_{i \in I} \phi_i(e),$$

for each  $e \in \Delta$ . It is denoted by  $\widetilde{\bigcup}_{i \in J} (\phi_i, \Delta) = (\varphi, \Delta)$ .

(2) The intersection of these soft sets is the soft set  $(\theta, \Delta)$ , where

$$\theta(e) = \bigcap_{i \in J} \phi_i(e),$$

for each  $e \in \Delta$ . It is denoted by  $\bigcap_{i \in I} (\phi_i, \Delta) = (\theta, \Delta)$ .

**Definition 2.6.** [10] Let  $(\phi, \Delta_1) \in SS(X)_{\Delta_1}$  and  $x \in X$ . The point x is called in the soft set  $(\phi, \Delta_1)$  if  $x \in \phi(e)$  for all  $e \in \Delta_1$ . It is denoted by  $x \in (\phi, \Delta_1)$ .

**Definition 2.7.** [10] Let  $(\phi, \Delta) \in SS(X)_{\Delta}$  and Y a nonempty subset of X. The sub soft set of  $(\phi, \Delta)$  over Y, denoted by  $({}^{Y}\phi, \Delta)$ , is defined by

$$^{Y}\phi(e)=Y\cap\phi(e),$$

for all  $e \in \Delta$ . In other words,  $({}^{Y}\phi, \Delta) = \widetilde{Y} \cap (\phi, \Delta)$ .

**Definition 2.8.** [10] Let  $\tau$  be the collection of soft sets over X. Then  $\tau$  is called a soft topology on X if the following conditions hold:

- $(t_1) \ \emptyset, \widetilde{X} \in \tau.$
- (t<sub>2</sub>) The intersection of any two soft sets in  $\tau$  belongs to  $\tau$ .
- (t<sub>3</sub>) The union of any number of soft sets in  $\tau$  belongs to  $\tau$ .

The triple  $(X, \tau, \Delta)$  is called a soft topological space over X.

**Definition 2.9.** [10] The members of  $\tau$  are said to be  $\tau$ -soft open sets or soft open sets in X and also a soft set over X is called soft closed in X if its complement belongs to  $\tau$ .

 $OS(X, \tau, \Delta)$  or OS(X) denotes the set of all soft open sets over X and  $CS(X, \tau, \Delta)$  or CS(X) denotes the set of all soft closed sets.

**Definition 2.10.** [10] Let  $(X, \tau, \Delta)$  be a soft topological space over X and Y a nonempty subset of X. Then

$$au_Y = \{({}^Y\phi,\Delta): (\phi,\Delta) \in au\}$$

is called the soft relative topology on Y and  $(Y, \tau_Y, \Delta)$  is called a soft subspace of  $(X, \tau, \Delta)$ .

**Theorem 2.11.** [10] Let  $(Y, \tau_Y, \Delta)$  be a soft subspace of a soft topological space  $(X, \tau, \Delta)$  and  $(\phi, \Delta)$  be a soft set over X. Then  $(1) (\phi, \Delta)$  is soft open in Y if and only if  $(\phi, \Delta) = \widetilde{Y} \cap (\phi, \Delta)$  for some  $(\phi, \Delta) \in \tau$ .

(2)  $(\phi, \Delta)$  is soft closed in Y if and only if  $(\phi, \Delta) = \widetilde{Y} \cap (\phi, \Delta)$  for some soft closed set  $(\phi, \Delta)$  in X.

**Theorem 2.12.** [10] Let  $(Y, \tau_Y, \Delta)$  be a soft subspace of a soft topological space  $(X, \tau, \Delta)$  and  $(\phi, \Delta)$  be a soft set over X. If  $\widetilde{Y} \in \tau$  then  $(\phi, \Delta) \in \tau$ .

**Definition 2.13.** [10] Let  $(X, \tau, \Delta)$  be a soft topological space and  $(\phi, \Delta) \in SS(X)_{\Delta}$ . The soft closure of  $(\phi, \Delta)$  is the intersection of all soft closed super sets of  $(\phi, \Delta)$ . It is denoted by  $cl(\phi, \Delta)$  or  $\tau - cl(\phi, \Delta)$ .

**Definition 2.14.** [14] Let  $(X, \tau, \Delta)$  be a soft topological space and  $(\phi, \Delta) \in SS(X)_{\Delta}$ . The soft interior of  $(\phi, \Delta)$  is the union of all open soft subsets of  $(\phi, \Delta)$ . It is denoted by  $int(\phi, \Delta)$  or  $\tau - int(\phi, \Delta)$ .

**Theorem 2.15.** [43] Let  $(X, \tau, \Delta)$  be a soft topological space and  $(\phi, \Delta), (\phi, \Delta) \in SS(X)_{\Delta}$ . Then

- (1)  $cl\widetilde{\emptyset} = \widetilde{\emptyset}$ ,  $cl\widetilde{X} = \widetilde{X}$ ,  $int\widetilde{\emptyset} = \widetilde{\emptyset}$  and  $int\widetilde{X} = \widetilde{X}$ .
- (2)  $(\phi, \Delta) \subseteq cl(\phi, \Delta)$  and  $int(\phi, \Delta) \subseteq (\phi, \Delta)$ .
- (3)  $cl(cl(\phi, \Delta)) = cl(\phi, \Delta)$  and  $int(int(\phi, \Delta)) = int(\phi, \Delta)$ .
- (4)  $(\phi, \Delta)$  is a closed soft set if and only if  $(\phi, \Delta) = cl(\phi, \Delta)$ .
- (5)  $(\phi, \Delta)$  is a soft open set if and only if  $(\phi, \Delta) = int(\phi, \Delta)$ .
- (6)  $(\phi, \Delta) \subseteq (\phi, \Delta)$  implies both  $cl(\phi, \Delta) \subseteq cl(\phi, \Delta)$  and  $int(\phi, \Delta) \subseteq int(\phi, \Delta)$ .
- (7)  $cl((\phi, \Delta)\widetilde{\cup}(\varphi, \Delta)) = cl(\phi, \Delta)\widetilde{\cup}cl(\varphi, \Delta)$  and  $int((\phi, \Delta)\widetilde{\cap}(\varphi, \Delta)) = int(\phi, \Delta)\widetilde{\cap}int(\varphi, \Delta)$ .
- (8)  $cl((\phi, \Delta) \widetilde{\cap} (\phi, \Delta)) \subseteq cl(\phi, \Delta) \widetilde{\cap} cl(\phi, \Delta)$  and  $int((\phi, \Delta) \widetilde{\cup} (\phi, \Delta)) \supseteq int(\phi, \Delta) \widetilde{\cup} int(\phi, \Delta)$ .

**Definition 2.16.** [14, 44] Let  $SS(X)_{\Delta_1}$ ,  $SS(Y)_{\Delta_2}$  be two families of soft sets,  $u: X \to Y$  and  $p: \Delta_1 \to \Delta_2$  mappings. Then the mapping  $f_{pu}: SS(X)_{\Delta_1} \to SS(Y)_{\Delta_2}$  is defined as:

(1) Let  $(\phi, \Delta_1) \in SS(X)_{\Delta_1}$ . The image of  $(\phi, \Delta_1)$  under  $f_{pu}$ , written as  $f_{pu}(\phi, \Delta_1) = (f_{pu}(\phi), p(\Delta_1))$ , is a soft set in  $SS(Y)_{\Delta_2}$  such that

$$f_{pu}(\phi)(y) = \begin{cases} \bigcup_{x \in p^{-1}(y) \cap \Delta_1} u(\phi(x)) & \text{if} \quad p^{-1}(y) \cap \Delta_1 \neq \emptyset \\ \emptyset & \text{otherwise} \end{cases},$$

*for all*  $y \in \Delta_2$ .

(2) Let  $(\varphi, \Delta_2) \in SS(Y)_{\Delta_2}$ . The inverse image of  $(\varphi, \Delta_2)$  under  $f_{pu}$ , written as  $f_{pu}^{-1}(\varphi, \Delta_2) = (f_{pu}^{-1}(\varphi), p^{-1}(\Delta_2))$ , is a soft set in  $SS(X)_{\Delta_1}$  such that

$$f_{pu}^{-1}(\varphi)(x) = \left\{ \begin{array}{cc} u^{-1}(\varphi(p(x))) & if & p(x) \in \Delta_2 \\ \emptyset & otherwise \end{array} \right.,$$

*for all*  $x \in \Delta_1$ .

**Definition 2.17.** [15] Let  $f_{pu}: SS(X)_{\Delta_1} \to SS(Y)_{\Delta_2}$  be a soft mapping and  $Z \subseteq X$ . Then the restriction of  $f_{pu}$  to  $SS(Z)_{\Delta_1}$  is the soft mapping  $f_{pu} \Big|_{SS(Z)_{\Delta_1}}$  from  $SS(Z)_{\Delta_1}$  to  $SS(Y)_{\Delta_2}$  which defined by the functions  $p: \Delta_1 \to \Delta_2$  and  $u|_Z: Z \to Y$  where  $u|_Z$  is the restriction of u to Z.

**Definition 2.18.** [36] Let  $\tau_1$ ,  $\tau_2$  be two soft topologies over X and  $(\phi, \Delta) \in SS(X)_{\Delta}$ . Then  $(\phi, \Delta)$  is said to be

- (1)  $(\tau_1, \tau_2)$ -semi open soft if  $(\phi, \Delta) \subseteq \tau_2 cl(\tau_1 int(\phi, \Delta))$ ,
- (2)  $(\tau_1, \tau_2)$ -pre open soft if  $(\phi, \Delta) \subseteq \tau_1 int(\tau_2 cl(\phi, \Delta))$ ,
- (3)  $(\tau_1, \tau_2)$ - $\alpha$ -open soft if  $(\phi, \Delta) \stackrel{\sim}{\subseteq} \tau_1 int(\tau_2 cl(\tau_1 int(\phi, \Delta)))$ ,
- (4)  $(\tau_1, \tau_2)$ - $\beta$ -open soft if  $(\phi, \Delta) \subseteq \tau_2 cl(\tau_1 int(\tau_2 cl(\phi, \Delta)))$ ,
- (5)  $(\tau_1, \tau_2)$ -regular open soft if  $(\phi, \Delta) = \tau_1 int(\tau_2 cl(\phi, \Delta))$ .

The complement of a  $(\tau_1, \tau_2)$ -semi open soft set  $((\tau_1, \tau_2)$ -pre open soft set,  $(\tau_1, \tau_2)$ - $\alpha$ -open soft set,  $(\tau_1, \tau_2)$ - $\beta$ -open soft set,  $(\tau_1, \tau_2)$ -regular open soft set) is called a  $(\tau_1, \tau_2)$ -semi closed soft set  $((\tau_1, \tau_2)$ -pre closed soft set,  $(\tau_1, \tau_2)$ - $\alpha$ -closed soft set,  $(\tau_1, \tau_2)$ - $\beta$ -closed soft set,  $(\tau_1, \tau_2)$ -regular closed soft set).

#### 3. Main results

In this section, we present two new versions of the pasting lemma on a soft topological space.

#### 3.1. $(\tau_1, \tau_2)$ -g-closed soft sets and a pasting lemma

In this subsection we introduce the notion of a  $(\tau_1, \tau_2)$ -g-closed soft set and investigate some properties of this new notion to obtain a new pasting lemma on a soft topological space.

**Definition 3.1.** Let  $\tau_1$ ,  $\tau_2$  be two soft topologies over X and  $(\phi, \Delta) \in SS(X)_{\Delta}$ . Then  $(\phi, \Delta)$  is called a  $(\tau_1, \tau_2)$ -generalized closed soft if  $\tau_2 - cl(\phi, \Delta) \subseteq (\phi, \Delta)$  whenever  $(\phi, \Delta) \subseteq (\phi, \Delta)$  and  $(\phi, \Delta)$  is  $\tau_1$ -soft open. It is denoted by  $(\tau_1, \tau_2)$ -g-closed soft. The complement of a  $(\tau_1, \tau_2)$ -g-closed soft set is  $(\tau_1, \tau_2)$ -g-open soft.

**Example 3.2.** Let  $X = \{a, b, c\}$ ,  $\Delta = \{e_1, e_2\}$ ,  $\tau_1 = \{\widetilde{\emptyset}, \widetilde{X}, (\phi, \zeta)\}$  and  $\tau_2 = \{\widetilde{\emptyset}, \widetilde{X}\}$  where  $(\phi, \zeta)$  is a soft set over X defined as

$$(\zeta, \Delta) = \{(e_1, \{a\}), (e_2, \{b\})\}.$$

Then the soft set  $(\phi, \Delta) = \{(e_1, \{a, b\}), (e_2, \{a, c\})\}\$  is a  $(\tau_1, \tau_2)$ -g-closed soft set. Indeed, if we take  $(\phi, \Delta) = \widetilde{X} \in \tau_1$  then we have

$$\tau_2 - cl(\phi, \Delta) \widetilde{\subseteq} (\phi, \Delta)$$

and

$$(\phi, \Delta) \widetilde{\subseteq} (\varphi, \Delta).$$

**Theorem 3.3.** Let  $\tau_1$ ,  $\tau_2$  be two soft topologies over X such that  $\tau_2 \subset \tau_1$ . If  $(\varphi, \Delta) \subseteq (\varphi, \Delta) \subseteq \widetilde{X}$ ,  $(\varphi, \Delta)$  is a  $(\tau_1, \tau_2)$ -g-closed soft set relative to  $(\varphi, \Delta)$  and  $(\varphi, \Delta)$  is a  $(\tau_1, \tau_2)$ -g-closed soft set in X, then  $(\varphi, \Delta)$  is  $(\tau_1, \tau_2)$ -g-closed soft relative to  $\widetilde{X}$ .

*Proof.* Let  $(\varphi, \Delta) \subseteq (\theta, \Delta)$  and  $(\theta, \Delta)$  is  $\tau_1$ -soft open. Then, using the hypothesis  $(\varphi, \Delta) \subseteq (\varphi, \Delta) \subseteq \widetilde{X}$ , we have

$$(\varphi, \Delta) \widetilde{\subseteq} (\phi, \Delta) \widetilde{\cap} (\theta, \Delta)$$

and

$$\tau_{2_{(\phi,\Delta)}} - cl(\varphi,\Delta)\widetilde{\subseteq}(\phi,\Delta)\widetilde{\cap}(\theta,\Delta).$$

It follows that

$$(\phi, \Delta)\widetilde{\cap} (\tau_2 - cl(\varphi, \Delta)) \widetilde{\subseteq} (\phi, \Delta)\widetilde{\cap} (\theta, \Delta)$$

and

$$(\phi,\Delta)\widetilde{\subseteq}(\theta,\Delta)\widetilde{\cup}(\tau_2-cl(\varphi,\Delta))^c$$
.

Since  $(\phi, \Delta)$  is a  $(\tau_1, \tau_2)$ -g-closed soft set and  $\tau_2 \subset \tau_1$ , then we have

$$\tau_2 - cl(\phi, \Delta) \widetilde{\subseteq} (\theta, \Delta) \widetilde{\cup} (\tau_2 - cl(\phi, \Delta))^c$$
.

Therefore, we obtain

$$\tau_2 - cl(\varphi, \Delta) \widetilde{\subseteq} \tau_2 - cl(\varphi, \Delta) \widetilde{\subseteq} (\theta, \Delta) \widetilde{\cup} (\tau_2 - cl(\varphi, \Delta))^c$$

and so

$$\tau_2 - cl(\boldsymbol{\varphi}, \Delta) \widetilde{\subseteq} (\boldsymbol{\theta}, \Delta).$$

Consequently,  $(\varphi, \Delta)$  is  $(\tau_1, \tau_2)$ -g-closed soft relative to X.

In the following theorem, we see that the union of two  $(\tau_1, \tau_2)$ -g-closed soft sets is a  $(\tau_1, \tau_2)$ -g-closed soft set.

**Theorem 3.4.** Let  $\tau_1$ ,  $\tau_2$  be two soft topologies over X and  $(\phi, \Delta), (\phi, \Delta) \in SS(X)_{\Delta}$ . If  $(\phi, \Delta)$  and  $(\phi, \Delta)$  are two  $(\tau_1, \tau_2)$ -g-closed soft sets then  $(\phi, \Delta) \widetilde{\cup} (\phi, \Delta)$  is  $(\tau_1, \tau_2)$ -g-closed soft.

*Proof.* If  $(\phi, \Delta) \widetilde{\cup} (\phi, \Delta) \widetilde{\subset} (\theta, \Delta)$  and  $(\theta, \Delta)$  is a  $\tau_1$ -soft open set, then using the hypothesis, we get

$$\tau_2 - cl \left[ (\phi, \Delta) \widetilde{\cup} (\phi, \Delta) \right] = \tau_2 - cl(\phi, \Delta) \widetilde{\cup} \tau_2 - cl(\phi, \Delta) \widetilde{\subseteq} (\theta, \Delta).$$

Hence  $(\phi, \Delta) \widetilde{\cup} (\phi, \Delta)$  is  $(\tau_1, \tau_2)$ -g-closed soft.

The intersection of two  $(\tau_1, \tau_2)$ -g-closed soft sets is generally not a  $(\tau_1, \tau_2)$ -g-closed soft set as seen in the following example.

**Example 3.5.** Let  $X = \{a, b, c\}$ ,  $\Delta = \{e_1, e_2\}$ ,  $\tau_1 = \{\widetilde{\emptyset}, \widetilde{X}, (\phi, \Delta)\}$  and  $\tau_2 = \{\widetilde{\emptyset}, \widetilde{X}\}$  where  $(\phi, \Delta)$  is a soft set over X defined as

$$(\phi, \Delta) = \{(e_1, \{a\}), (e_2, \{a\})\}.$$

Then the soft sets  $(\phi, \Delta) = \{(e_1, \{a, b\}), (e_2, \{a, c\})\}$  and  $(\theta, \Delta) = \{(e_1, \{a, c\}), (e_2, \{a, b\})\}$  are two  $(\tau_1, \tau_2)$ -g-closed soft sets. We get

$$(\boldsymbol{\varphi}, \boldsymbol{\Delta}) \widetilde{\cap} (\boldsymbol{\theta}, \boldsymbol{\Delta}) = \{ (e_1, \{a\}), (e_2, \{a\}) \}$$

and so  $(\varphi, \Delta) \widetilde{\cap} (\theta, \Delta)$  is not a  $(\tau_1, \tau_2)$ -g-closed soft set.

**Proposition 3.6.** Let  $\tau_1$ ,  $\tau_2$  be two soft topologies over X such that  $\tau_2 \subset \tau_1$ . Let  $(\phi, \Delta)$  be a  $(\tau_1, \tau_2)$ -g-closed soft set and  $(\phi, \Delta)$  a  $\tau_2$ -soft closed set. Then  $(\phi, \Delta) \cap (\phi, \Delta)$  is a  $(\tau_1, \tau_2)$ -g-closed soft set.

*Proof.* Since  $(\varphi, \Delta)$  is  $\tau_2$ -soft closed, then  $(\varphi, \Delta) \widetilde{\cap} (\varphi, \Delta)$  is a  $\tau_2$ -soft closed set in  $(\varphi, \Delta)$  and so it is  $(\tau_1, \tau_2)$ -g-closed soft. From Theorem 3.3,  $(\varphi, \Delta) \widetilde{\cap} (\varphi, \Delta)$  is a  $(\tau_1, \tau_2)$ -g-closed soft set.

**Theorem 3.7.** Let  $(\phi, \Delta) \subseteq \widetilde{Y} \subseteq \widetilde{X}$  and  $(\phi, \Delta)$  be a  $(\tau_1, \tau_2)$ -g-closed soft set in X. Then  $(\phi, \Delta)$  is  $(\tau_1, \tau_2)$ -g-closed soft relative to (Y, E).

*Proof.* Let  $(\phi, \Delta) \subseteq \widetilde{Y} \cap (\phi, \Delta)$  and  $(\phi, \Delta)$  be a  $\tau_1$ -soft open set in X. Then  $(\phi, \Delta) \subseteq (\phi, \Delta)$  and so by the hypothesis, we get

$$\tau_2 - cl(\phi, \Delta) \widetilde{\subseteq} (\phi, \Delta).$$

It follows that  $\widetilde{Y} \cap [\tau_2 - cl(\phi, \Delta)] \subseteq \widetilde{Y} \cap (\phi, \Delta)$ . Consequently,  $(\phi, \Delta)$  is  $(\tau_1, \tau_2)$ -g-closed soft relative to (Y, E).

**Theorem 3.8.** Let  $\tau_1$ ,  $\tau_2$  be two soft topologies over X such that  $\tau_2 \subset \tau_1$ . If a soft set  $(\phi, \Delta)$  is  $(\tau_1, \tau_2)$ -g-closed soft then  $[\tau_2 - cl(\phi, \Delta)] - (\phi, \Delta)$  contains no nonempty  $\tau_2$ -soft closed set.

*Proof.* Let  $(\varphi, \Delta)$  be a  $\tau_2$ -soft closed set of  $[\tau_2 - cl(\varphi, \Delta)] - (\varphi, \Delta)$ . So we get  $(\varphi, \Delta) \subseteq (\varphi, \Delta)^c$ . Since  $(\varphi, \Delta)$  is  $(\tau_1, \tau_2)$ -g-closed soft, we have

$$\tau_2 - cl(\phi, \Delta) \widetilde{\subseteq} (\phi, \Delta)^c$$

or

$$(\boldsymbol{\varphi}, \boldsymbol{\Delta}) \widetilde{\subseteq} [\tau_2 - cl(\boldsymbol{\varphi}, \boldsymbol{\Delta})]^c$$
.

Thus we obtain

$$(\varphi, \Delta) \subseteq [\tau_2 - cl(\varphi, \Delta)] \cap [\tau_2 - cl(\varphi, \Delta)]^c = \widetilde{\emptyset},$$

that is,  $(\varphi, \Delta)$  is a null soft set.

As a consequence of Theorem 3.8, we give the following corollary.

**Corollary 3.9.** Let  $\tau_1$ ,  $\tau_2$  be two soft topologies over X such that  $\tau_2 \subset \tau_1$ . A  $(\tau_1, \tau_2)$ -g-closed soft set  $(\phi, \Delta)$  is  $\tau_2$ -soft closed if and only if  $[\tau_2 - cl(\phi, \Delta)] - (\phi, \Delta)$  is  $\tau_2$ -soft closed.

*Proof.* If  $(\phi, \Delta)$  is  $\tau_2$ -soft closed, then we have  $[\tau_2 - cl(\phi, \Delta)] - (\phi, \Delta) = \widetilde{\emptyset}$ . Conversely, assume that  $[\tau_2 - cl(\phi, \Delta)] - (\phi, \Delta)$  is  $\tau_2$ -soft closed. But  $(\phi, \Delta)$  is  $(\tau_1, \tau_2)$ -g-closed soft and  $[\tau_2 - cl(\phi, \Delta)] - (\phi, \Delta)$  is a  $\tau_2$ -soft closed subset of itself. From Theorem 3.8, we have  $[\tau_2 - cl(\phi, \Delta)] - (\phi, \Delta) = \widetilde{\emptyset}$  and so  $\tau_2 - cl(\phi, \Delta) = (\phi, \Delta)$ .

We introduce the notion of mixed *g*-soft continuity as follows:

**Definition 3.10.** Let X,Y be two initial universe sets,  $\Delta_1,\Delta_2\subseteq\Delta$  two sets of parameters,  $\tau_1$ ,  $\tau_2$  two soft topologies over X and  $\tau$  a soft topology over Y. Assume that  $u:X\to Y$ ,  $p:\Delta_1\to\Delta_2$  are two mappings and  $f_{pu}:SS(X)_{\Delta_1}\to SS(Y)_{\Delta_2}$  is a function. Then  $f_{pu}$  is called mixed g-soft continuous (briefly,  $(\tau_1\tau_2,\tau)$ -g-soft g-soft g-s

Now we present a new version of the pasting lemma in the following theorem.

**Theorem 3.11.** (Pasting lemma for  $(\tau_1, \tau_2)$ -g-closed soft sets) Let  $\widetilde{X} = \widetilde{A} \cup \widetilde{B}$  be a soft topological space with two soft topologies  $\tau_1$ ,  $\tau_2$  and Y a soft topological space with a soft topology  $\tau$ . Let  $f_{p_1u_1}: SS(A)_{\Delta_1} \to SS(Y)_{\Delta_2}$  and  $f_{p_2u_2}: SS(B)_{\Delta_1} \to SS(Y)_{\Delta_2}$  be two mixed g-soft continuous mappings where  $p_1 = p_2: \Delta_1 \to \Delta_2$ ,  $u_1: A \to Y$  and  $u_2: B \to Y$  are functions. Assume that  $\widetilde{A}$ ,  $\widetilde{B}$  are two  $(\tau_1, \tau_2)$ -g-closed soft sets and  $\tau_2 \subset \tau_1$ . If  $u_1(x) = u_2(x)$  for every  $x \in A \cap B$ , then  $f_{p_1u_1}$  and  $f_{p_2u_2}$  combine to give a mixed g-soft continuous mapping  $f_{pu}: SS(X)_{\Delta_1} \to SS(Y)_{\Delta_2}$  defined by the functions  $p = p_1 = p_2$  and  $p_2u_3 = p_3$  and  $p_2u_4 = p_3$  and  $p_2u_4 = p_4$  and  $p_2u_5 = p_4$  and  $p_2u_5 = p_4$  and  $p_2u_5 = p_5$  and  $p_3u_5 = p_5$  and

*Proof.* Let  $(\varphi, \Delta_2)$  be a  $\tau$ -soft closed set in Y. Then we can easily seen that

$$f_{pu}^{-1}(\pmb{\varphi}, \pmb{\Delta}_2) = f_{p_1u_1}^{-1}(\pmb{\varphi}, \pmb{\Delta}_2) \widetilde{\cup} f_{p_2u_2}^{-1}(\pmb{\varphi}, \pmb{\Delta}_2).$$

From the mixed g-soft continuity of  $f_{p_1u_1}$ , then  $f_{p_1u_1}^{-1}(\varphi, \Delta_2)$  is a  $(\tau_1, \tau_2)$ -g-closed soft set in A. Since  $\widetilde{A}$  is  $(\tau_1, \tau_2)$ -g-closed soft, by Theorem 3.3,  $f_{p_1u_1}^{-1}(\varphi, \Delta_2)$  is a  $(\tau_1, \tau_2)$ -g-closed soft set relative to  $\widetilde{X}$ . Similarly,  $f_{p_2u_2}^{-1}(\varphi, \Delta_2)$  is a  $(\tau_1, \tau_2)$ -g-closed soft set relative to  $\widetilde{X}$ . Also using Theorem 3.4, we get that  $f_{pu}^{-1}(\varphi, \Delta_2)$  is  $(\tau_1, \tau_2)$ -g-closed soft in X. Therefore,  $f_{pu}$  is a mixed g-soft continuous mapping.

#### 3.2. $(\tau_1, \tau_2)$ -gpr-closed soft sets and a pasting lemma

In this subsection, we define the notion of a  $(\tau_1, \tau_2)$ -gpr-closed soft set. To do this, we introduce the notion of a mixed soft pre closure and a mixed soft pre interior. We investigate some basic properties of these new notions.

**Definition 3.12.** Let X be a soft topological space with two soft topologies  $\tau_1$ ,  $\tau_2$  and  $(\phi, \Delta) \in SS(X)_{\Delta}$ .

(1) The mixed soft pre closure of  $(\phi, \Delta)$  is defined by

$$\tau_1 \tau_2 - pcl(\phi, \Delta) = \widetilde{\cap} \left\{ (\phi, \Delta) : (\phi, \Delta) \widetilde{\subseteq} (\phi, \Delta) \text{ and } (\phi, \Delta) \text{ is } (\tau_1, \tau_2) \text{-pre closed soft} \right\}.$$

(2) The mixed soft pre interior of  $(\phi, \Delta)$  is defined by

$$au_1 au_2 - pint(\phi, \Delta) = \widetilde{\cup}\left\{(\phi, \Delta) : (\phi, \Delta)\widetilde{\subseteq}(\phi, \Delta) \text{ and } (\phi, \Delta) \text{ is } (\tau_1, \tau_2)\text{-pre open soft}\right\}.$$

We give some properties of  $(\tau_1, \tau_2)$ -pre open soft sets to obtain some basic theorems related to mixed soft pre closure and mixed soft pre interior.

**Theorem 3.13.** Arbitrary union of  $(\tau_1, \tau_2)$ -pre open soft sets is a  $(\tau_1, \tau_2)$ -pre open soft set.

*Proof.* Let  $\mathscr{A} = \{(\phi, \Delta)_i : i \in I\}$  be a collection of  $(\tau_1, \tau_2)$ -pre open soft sets. Then we have

$$(\phi, \Delta)_i \widetilde{\subseteq} \tau_1 - int(\tau_2 - cl(\phi, \Delta)_i),$$

for each  $(\phi, \Delta)_i \in \mathscr{A}$ . Therefore, we get

$$\widetilde{\cup}(\phi,\Delta)_{i}\widetilde{\subseteq}\widetilde{\cup}\left[\tau_{1}-int(\tau_{2}-cl(\phi,\Delta)_{i})\right]\widetilde{\subseteq}\tau_{1}-int(\widetilde{\cup}\left[\tau_{2}-cl(\phi,\Delta)_{i}\right])\widetilde{\subseteq}\tau_{1}-int\left(\tau_{2}-cl\left(\widetilde{\cup}(\phi,\Delta)_{i}\right)\right).$$

Consequently,  $\widetilde{\cup}(\phi, \Delta)_i$  is a  $(\tau_1, \tau_2)$ -pre open soft set.

As a result of Theorem 3.13, we give the following corollary.

**Corollary 3.14.** Arbitrary intersection of  $(\tau_1, \tau_2)$ -pre closed soft sets is a  $(\tau_1, \tau_2)$ -pre closed soft set.

Finite intersection of  $(\tau_1, \tau_2)$ -pre open soft sets is not always a  $(\tau_1, \tau_2)$ -pre open soft set as seen in the following example.

**Example 3.15.** Let  $X = \{a, b, c\}$ ,  $\Delta = \{e_1, e_2\}$ ,  $\tau_1 = \{\widetilde{\emptyset}, \widetilde{X}, (\phi_1, \Delta), (\phi_2, \Delta)\}$  and  $\tau_2 = \{\widetilde{\emptyset}, \widetilde{X}, (\varphi, \Delta)\}$  where  $(\phi_1, \Delta)$ ,  $(\phi_2, \Delta)$  and  $(\varphi, \Delta)$  are soft sets over X defined as

$$(\phi_1, \Delta) = \{(e_1, \{a\}), (e_2, \{b, c\})\},\$$

$$(\phi_2, \Delta) = \{(e_1, \{b, c\}), (e_2, \{a\})\}\$$

and

$$(\varphi, \Delta) = \{(e_1, X), (e_2, \{a, b\})\}.$$

Then the soft sets  $(\theta, \Delta) = \{(e_1, \{a\}), (e_2, \{a, c\})\}$  and  $(\psi, \Delta) = \{(e_1, \{b\}), (e_2, \{b, c\})\}$  are two  $(\tau_1, \tau_2)$ -pre open soft sets. We get

$$(\theta, \Delta)\widetilde{\cap}(\psi, \Delta) = \{(e_1, \emptyset), (e_2, \{c\})\}\$$

and so  $(\theta, \Delta) \widetilde{\cap} (\psi, \Delta)$  is not a  $(\tau_1, \tau_2)$ -pre open soft set.

Now we prove the following theorems.

**Theorem 3.16.** Let X be a soft topological space with two soft topologies  $\tau_1$ ,  $\tau_2$  and  $(\phi, \Delta) \in SS(X)_{\Delta}$ . Then the followings hold:

- (1)  $(\phi, \Delta)$  is  $(\tau_1, \tau_2)$ -pre closed soft if and only if  $(\phi, \Delta) = \tau_1 \tau_2 pcl(\phi, \Delta)$ .
- (2)  $(\phi, \Delta)$  is  $(\tau_1, \tau_2)$ -pre open soft if and only if  $(\phi, \Delta) = \tau_1 \tau_2 pint(\phi, \Delta)$ .
- (3)  $\tau_1 \tau_2 pcl \emptyset = \emptyset$  and  $\tau_1 \tau_2 pcl X = X$ .
- (4)  $\tau_1 \tau_2 pint\widetilde{\emptyset} = \widetilde{\emptyset}$  and  $\tau_1 \tau_2 pint\widetilde{X} = \widetilde{X}$ .
- $(5)\ \tau_1\tau_2-pcl\left[\tau_1\tau_2-pcl(\phi,\Delta)\right]=\tau_1\tau_2-pcl(\phi,\Delta).$
- (6)  $\tau_1 \tau_2 pint[\tau_1 \tau_2 pint(\phi, \Delta)] = \tau_1 \tau_2 pint(\phi, \Delta)$ .
- (7)  $[\tau_1 \tau_2 pcl(\phi, \Delta)]^c = \tau_1 \tau_2 pint(\phi^c, \Delta).$
- (8)  $[\tau_1 \tau_2 pint(\phi, \Delta)]^c = \tau_1 \tau_2 pcl(\phi^c, \Delta).$

*Proof.* (1) Let  $(\phi, \Delta)$  be a  $(\tau_1, \tau_2)$ -pre closed soft set. Since  $(\phi, \Delta)$  is the smallest  $(\tau_1, \tau_2)$ -pre closed soft set containing itself, using Definition 3.12 (1), we have  $(\phi, \Delta) = \tau_1 \tau_2 - pcl(\phi, \Delta)$ . The converse statement of the proof is clear from Corollary 3.14. (2) Let  $(\phi, \Delta)$  be a  $(\tau_1, \tau_2)$ -pre open soft set. Since  $(\phi, \Delta)$  is the largest  $(\tau_1, \tau_2)$ -pre open soft set contained  $(\phi, \Delta)$ , using Definition 3.12 (2), we have  $(\phi, \Delta) = \tau_1 \tau_2 - pint(\phi, \Delta)$ . The converse part of the proof can be easily from Theorem 3.13.

- (3) Since  $\widetilde{\emptyset}$  and  $\widetilde{X}$  are  $(\tau_1, \tau_2)$ -pre closed soft sets, then using (1), we get  $\tau_1 \tau_2 pcl\widetilde{\emptyset} = \widetilde{\emptyset}$  and  $\tau_1 \tau_2 pcl\widetilde{X} = \widetilde{X}$ .
- (4) Since  $\widetilde{\emptyset}$  and  $\widetilde{X}$  are  $(\tau_1, \tau_2)$ -pre open soft sets, then using (2), we get  $\tau_1 \tau_2 pint\widetilde{\emptyset} = \widetilde{\emptyset}$  and  $\tau_1 \tau_2 pint\widetilde{X} = \widetilde{X}$ .
- (5) Using (1), we obtain

$$\tau_1 \tau_2 - pcl \left[ \tau_1 \tau_2 - pcl(\phi, \Delta) \right] = \tau_1 \tau_2 - pcl(\phi, \Delta),$$

since  $\tau_1 \tau_2 - pcl(\phi, \Delta)$  is  $(\tau_1, \tau_2)$ -pre closed soft.

(6) Using (2), we get

$$\tau_1 \tau_2 - pint \left[ \tau_1 \tau_2 - pint(\phi, \Delta) \right] = \tau_1 \tau_2 - pint(\phi, \Delta),$$

since  $\tau_1 \tau_2 - pint(\phi, \Delta)$  is  $(\tau_1, \tau_2)$ -pre open soft.

(7) Using Definition 2.4 (1) and Definition 3.12, we get

$$\begin{aligned} & \left[\tau_1 \tau_2 - pcl(\phi, \Delta)\right]^c \\ &= \left[ \bigcap_{c} \left\{ (\phi, \Delta) : (\phi, \Delta) \subseteq (\phi, \Delta) \text{ and } (\phi, \Delta) \text{ is } (\tau_1, \tau_2) \text{-pre closed soft} \right\} \right]^c \\ &= \bigcup_{c} \left\{ (\phi^c, \Delta) : (\phi^c, \Delta) \subseteq (\phi^c, \Delta) \text{ and } (\phi^c, \Delta) \text{ is } (\tau_1, \tau_2) \text{-pre open soft} \right\} \\ &= \tau_1 \tau_2 - pint(\phi^c, \Delta). \end{aligned}$$

(8) By the similar arguments used in the proof of (7), it can be easily proved.

**Theorem 3.17.** Let X be a soft topological space with two soft topologies  $\tau_1$ ,  $\tau_2$  and  $(\phi, \Delta), (\phi, \Delta) \in SS(X)_{\Delta}$ . Then the followings hold:

- (1) If  $(\phi, \Delta) \subseteq (\phi, \Delta)$  then  $\tau_1 \tau_2 pint(\phi, \Delta) \subseteq \tau_1 \tau_2 pint(\phi, \Delta)$ .
- (2) If  $(\phi, \Delta) \subseteq (\phi, \Delta)$  then  $\tau_1 \tau_2 pcl(\phi, \Delta) \subseteq \tau_1 \tau_2 pcl(\phi, \Delta)$ .
- $(3) \ \tau_1 \tau_2 pcl \left[ (\phi, \Delta) \widetilde{\cup} (\phi, \Delta) \right] = \tau_1 \tau_2 pcl (\phi, \Delta) \widetilde{\cup} \tau_1 \tau_2 pcl (\phi, \Delta).$
- $(4) \ \tau_1 \tau_2 pint \left[ (\phi, \Delta) \widetilde{\cap} (\phi, \Delta) \right] = \tau_1 \tau_2 pint (\phi, \Delta) \widetilde{\cap} \tau_1 \tau_2 pint (\phi, \Delta).$
- $(5)\ \tau_1\tau_2-\mathit{pcl}\left[(\phi,\Delta)\widetilde\cap(\phi,\Delta)\right]\widetilde\subseteq\tau_1\tau_2-\mathit{pcl}(\phi,\Delta)\widetilde\cap\tau_1\tau_2-\mathit{pcl}(\phi,\Delta).$
- (6)  $\tau_1 \tau_2 pint \left[ (\phi, \Delta) \widetilde{\cup} (\phi, \Delta) \right] \widetilde{\supseteq} \tau_1 \tau_2 pint (\phi, \Delta) \widetilde{\cup} \tau_1 \tau_2 pint (\phi, \Delta).$

*Proof.* (1) Using the hypothesis, we have

$$\tau_1 \tau_2 - pint(\phi, \Delta) \widetilde{\subset} (\phi, \Delta) \widetilde{\subset} (\phi, \Delta) \Longrightarrow \tau_1 \tau_2 - pint(\phi, \Delta) \widetilde{\subset} (\phi, \Delta).$$

Since  $\tau_1 \tau_2 - pint(\phi, \Delta)$  is the largest  $(\tau_1, \tau_2)$ -pre open soft set contained in  $(\phi, \Delta)$ . Therefore, we get

$$\tau_1 \tau_2 - pint(\phi, \Delta) \widetilde{\subseteq} \tau_1 \tau_2 - pint(\phi, \Delta).$$

(2) Since  $(\phi, \Delta) \subseteq \tau_1 \tau_2 - pcl(\phi, \Delta)$  and  $(\phi, \Delta) \subseteq \tau_1 \tau_2 - pcl(\phi, \Delta)$ , we have

$$(\phi, \Delta) \widetilde{\subseteq} (\phi, \Delta) \widetilde{\subseteq} \tau_1 \tau_2 - pcl(\phi, \Delta) \Longrightarrow (\phi, \Delta) \widetilde{\subseteq} \tau_1 \tau_2 - pcl(\phi, \Delta).$$

Because  $\tau_1 \tau_2 - pcl(\phi, \Delta)$  is the smallest  $(\tau_1, \tau_2)$ -pre closed soft set containing  $(\phi, \Delta)$ , then we obtain

$$\tau_1 \tau_2 - pcl(\phi, \Delta) \widetilde{\subseteq} \tau_1 \tau_2 - pcl(\phi, \Delta).$$

(3) We have

$$(\phi, \Delta) \widetilde{\subseteq} (\phi, \Delta) \widetilde{\cup} (\phi, \Delta)$$
 and  $(\phi, \Delta) \widetilde{\subseteq} (\phi, \Delta) \widetilde{\cup} (\phi, \Delta)$ .

By the condition (2), we get

$$\tau_1 \tau_2 - pcl(\phi, \Delta) \widetilde{\subseteq} \tau_1 \tau_2 - pcl[(\phi, \Delta) \widetilde{\cup} (\phi, \Delta)],$$

$$\tau_1\tau_2 - \mathit{pcl}(\phi, \Delta)\widetilde{\subseteq}\tau_1\tau_2 - \mathit{pcl}\left[(\phi, \Delta)\widetilde{\cup}(\phi, \Delta)\right]$$

and so

$$\tau_{1}\tau_{2} - pcl(\phi, \Delta)\widetilde{\cup}\tau_{1}\tau_{2} - pcl(\phi, \Delta)\widetilde{\subseteq}\tau_{1}\tau_{2} - pcl\left[(\phi, \Delta)\widetilde{\cup}(\phi, \Delta)\right]. \tag{3.1}$$

Conversely, we have

$$(\phi, \Delta) \widetilde{\subset} \tau_1 \tau_2 - pcl(\phi, \Delta), (\phi, \Delta) \widetilde{\subset} \tau_1 \tau_2 - pcl(\phi, \Delta)$$

and so

$$(\phi, \Delta)\widetilde{\cup}(\phi, \Delta)\widetilde{\subseteq}\tau_1\tau_2 - pcl(\phi, \Delta)\widetilde{\cup}\tau_1\tau_2 - pcl(\phi, \Delta),$$

that is,  $\tau_1 \tau_2 - pcl(\phi, \Delta) \widetilde{\cup} \tau_1 \tau_2 - pcl(\phi, \Delta)$  is a  $(\tau_1, \tau_2)$ -pre closed soft set containing  $(\phi, \Delta) \widetilde{\cup} (\phi, \Delta)$ . Since  $\tau_1 \tau_2 - pcl\left[(\phi, \Delta) \widetilde{\cup} (\phi, \Delta)\right]$  is the smallest  $(\tau_1, \tau_2)$ -pre closed soft set containing  $(\phi, \Delta) \widetilde{\cup} (\phi, \Delta)$ , we obtain

$$\tau_1 \tau_2 - pcl \left[ (\phi, \Delta) \widetilde{\cup} (\phi, \Delta) \right] \widetilde{\subseteq} \tau_1 \tau_2 - pcl(\phi, \Delta) \widetilde{\cup} \tau_1 \tau_2 - pcl(\phi, \Delta). \tag{3.2}$$

From the inequalities (3.1) and (3.2), we get

$$\tau_1\tau_2 - pcl\left[(\phi, \Delta)\widetilde{\cup}(\phi, \Delta)\right] = \tau_1\tau_2 - pcl(\phi, \Delta)\widetilde{\cup}\tau_1\tau_2 - pcl(\phi, \Delta).$$

(4) By the similar arguments used in the proof of (3), we prove

$$\tau_1\tau_2 - pint\left[(\phi, \Delta)\widetilde{\cap}(\phi, \Delta)\right] = \tau_1\tau_2 - pint(\phi, \Delta)\widetilde{\cap}\tau_1\tau_2 - pint(\phi, \Delta).$$

(5) Since  $(\phi, \Delta) \widetilde{\cap} (\phi, \Delta) \widetilde{\subseteq} (\phi, \Delta)$  and  $(\phi, \Delta) \widetilde{\cap} (\phi, \Delta) \widetilde{\subseteq} (\phi, \Delta)$ , we get

$$\tau_1 \tau_2 - pcl \left[ (\phi, \Delta) \widetilde{\cap} (\phi, \Delta) \right] \widetilde{\subseteq} \tau_1 \tau_2 - pcl(\phi, \Delta),$$

$$\tau_1 \tau_2 - pcl \left[ (\phi, \Delta) \widetilde{\cap} (\phi, \Delta) \right] \widetilde{\subseteq} \tau_1 \tau_2 - pcl(\phi, \Delta)$$

and so

$$\tau_1\tau_2 - \mathit{pcl}\left[(\phi,\Delta)\widetilde{\cap}(\phi,\Delta)\right] \widetilde{\subseteq} \tau_1\tau_2 - \mathit{pcl}(\phi,\Delta)\widetilde{\cap}\tau_1\tau_2 - \mathit{pcl}(\phi,\Delta).$$

(6) By the similar arguments used in the proof of (5), we obtain

$$\tau_1\tau_2 - \textit{pint}\left[(\phi, \Delta)\widetilde{\cup}(\phi, \Delta)\right] \widetilde{\supseteq} \tau_1\tau_2 - \textit{pint}(\phi, \Delta)\widetilde{\cup}\tau_1\tau_2 - \textit{pint}(\phi, \Delta).$$

**Theorem 3.18.** Let X be a soft topological space with two soft topologies  $\tau_1$ ,  $\tau_2$  and  $(\phi, \Delta) \in SS(X)_{\Delta}$ . Then the followings hold:

(1)  $\tau_1 \tau_2 - pcl(\phi, \Delta) = (\phi, \Delta)\widetilde{\cup} \tau_1 - cl(\tau_2 - int(\phi, \Delta)).$ 

(2) 
$$\tau_1 \tau_2 - pint(\phi, \Delta) = (\phi, \Delta) \widetilde{\cap} \tau_1 - int(\tau_2 - cl(\phi, \Delta)).$$

Proof. (1) We have

$$\begin{split} \tau_1 - \mathit{cl} \left[ \tau_2 - \mathit{int} \left[ (\phi, \Delta) \widetilde{\cup} \tau_1 - \mathit{cl} (\tau_2 - \mathit{int} (\phi, \Delta)) \right] \right] \\ \widetilde{\subseteq} \tau_1 - \mathit{cl} \left[ \tau_2 - \mathit{int} (\phi, \Delta) \widetilde{\cup} \tau_1 - \mathit{cl} (\tau_2 - \mathit{int} (\phi, \Delta)) \right] \\ = \tau_1 - \mathit{cl} (\tau_2 - \mathit{int} (\phi, \Delta)) \widetilde{\subseteq} (\phi, \Delta) \widetilde{\cup} \tau_1 - \mathit{cl} (\tau_2 - \mathit{int} (\phi, \Delta)). \end{split}$$

Therefore,  $(\phi, \Delta) \widetilde{\cup} \tau_1 - cl(\tau_2 - int(\phi, \Delta))$  is a  $(\tau_1, \tau_2)$ -pre closed soft set whence

$$\tau_1 \tau_2 - pcl(\phi, \Delta) \widetilde{\subseteq} (\phi, \Delta) \widetilde{\cup} \tau_1 - cl(\tau_2 - int(\phi, \Delta)). \tag{3.3}$$

Conversely, since  $\tau_1 \tau_2 - pcl(\phi, \Delta)$  is  $(\tau_1, \tau_2)$ -pre closed soft, we get

$$\tau_1 - cl(\tau_2 - int(\phi, \Delta)) \widetilde{\subseteq} \tau_1 - cl(\tau_2 - int(\tau_1 \tau_2 - pcl(\phi, \Delta)))$$
  
  $\widetilde{\subset} \tau_1 \tau_2 - pcl(\phi, \Delta)$ 

and so

$$(\phi, \Delta)\widetilde{\cup}\tau_1 - cl(\tau_2 - int(\phi, \Delta))\widetilde{\subseteq}\tau_1\tau_2 - pcl(\phi, \Delta). \tag{3.4}$$

By the inequalities (3.3) and (3.4), we obtain

$$\tau_1 \tau_2 - pcl(\phi, \Delta) = (\phi, \Delta)\widetilde{\cup}\tau_1 - cl(\tau_2 - int(\phi, \Delta)).$$

(2) It is a consequence of (1).

**Proposition 3.19.** Let  $\tau_1$ ,  $\tau_2$  be two soft topologies over X and  $(\phi, \Delta) \in SS(X)_{\Delta}$ . If  $(\phi, \Delta) \subseteq \widetilde{Y} \subseteq \widetilde{X}$  and  $\widetilde{Y} \in \tau_2$  then we have

$$\tau_1 \tau_2 - pcl_Y(\phi, \Delta) = \tau_1 \tau_2 - pcl_X(\phi, \Delta) \widetilde{\cap} \widetilde{Y}.$$

*Proof.* From Theorem 3.18, we get

$$\begin{array}{lll} \tau_{1}\tau_{2}-pcl_{Y}(\phi,\Delta) & = & (\phi,\Delta)\widetilde{\cup}\left[\tau_{1}-cl_{Y}\left(\tau_{2}-int_{Y}(\phi,\Delta)\right)\right] \\ & = & (\phi,\Delta)\widetilde{\cup}\left[\tau_{1}-cl_{Y}\left(\tau_{2}-int(\phi,\Delta)\right)\right] \\ & = & (\phi,\Delta)\widetilde{\cup}\left[\tau_{1}-cl\left(\tau_{2}-int(\phi,\Delta)\widetilde{\cap}\widetilde{Y}\right)\right] \\ & = & \left[(\phi,\Delta)\widetilde{\cup}\tau_{1}-cl\left(\tau_{2}-int(\phi,\Delta)\right)\right]\widetilde{\cap}\left[(\phi,\Delta)\widetilde{\cup}\widetilde{Y}\right] \\ & = & \tau_{1}\tau_{2}-pcl_{X}(\phi,\Delta)\widetilde{\cap}\widetilde{Y}. \end{array}$$

**Proposition 3.20.** Let  $\tau_1$ ,  $\tau_2$  be two soft topologies over X and  $(\phi, \Delta) \in SS(X)_{\Delta}$ . If  $\widetilde{Y} \in \tau_2$  and  $\widetilde{Y}$  is a  $(\tau_1, \tau_2)$ -pre closed soft set then we have

$$\tau_1 \tau_2 - pcl_Y(\phi, \Delta) = \tau_1 \tau_2 - pcl_X(\phi, \Delta).$$

*Proof.* From Proposition 3.19, we have

$$\tau_1 \tau_2 - pcl_Y(\phi, \Delta) = \tau_1 \tau_2 - pcl_X(\phi, \Delta) \widetilde{\cap} \widetilde{Y}.$$

Since  $\widetilde{Y}$  is a  $(\tau_1, \tau_2)$ -pre closed soft set, we get

$$\tau_1 \tau_2 - pcl_X(\phi, \Delta) \widetilde{\subseteq} \widetilde{Y}$$
.

Consequently, we obtain

$$\tau_1 \tau_2 - pcl_Y(\phi, \Delta) = \tau_1 \tau_2 - pcl_X(\phi, \Delta).$$

We introduce the notion of a  $(\tau_1, \tau_2)$ -gpr-closed soft set.

**Definition 3.21.** Let  $\tau_1$ ,  $\tau_2$  be two soft topologies over X and  $(\phi, \Delta) \in SS(X)_{\Delta}$ . Then  $(\phi, \Delta)$  is called a  $(\tau_1, \tau_2)$ -generalized pre regular closed soft if  $\tau_1 \tau_2 - pcl(\phi, \Delta) \subseteq (\phi, \Delta)$  whenever  $(\phi, \Delta) \subseteq (\phi, \Delta)$  and  $(\phi, \Delta)$  is  $(\tau_1, \tau_2)$ -regular open soft. It is denoted by  $(\tau_1, \tau_2)$ -gpr-closed soft. The complement of a  $(\tau_1, \tau_2)$ -gpr-closed soft set is  $(\tau_1, \tau_2)$ -gpr-open soft.

**Example 3.22.** Let  $X = \{a, b, c, d\}$ ,  $\Delta = \{e_1, e_2\}$ ,  $\tau_1 = \{\widetilde{\emptyset}, \widetilde{X}, (\phi_1, \Delta), (\phi_2, \Delta)\}$  and  $\tau_2 = \{\widetilde{\emptyset}, \widetilde{X}, (\phi_2, \Delta)\}$  where  $(\phi_1, \Delta)$  and  $(\phi_2, \Delta)$  are two soft sets over X defined as

$$(\phi_1, \Delta) = \{(e_1, \{a, b\}), (e_2, \{c, d\})\}\$$

and

$$(\phi_2, \Delta) = \{(e_1, \{c, d\}), (e_2, \{a, b\})\}.$$

Then the soft set  $(\varphi, \Delta) = \{(e_1, \{a\}), (e_2, \{c\})\}\$  is a  $(\tau_1, \tau_2)$ -gpr-closed soft set.

Now we give the following implications:

$$( au_1, au_2)$$
-regular closed soft  $\qquad \qquad \downarrow$   $( au_1, au_2)$ -pre closed soft  $\qquad \qquad \downarrow$   $( au_1, au_2)$ - $gpr$ -closed soft

The inverse implications of these are not always true as seen in the following example.

**Example 3.23.** Let  $X = \{a, b, c\}$ ,  $\Delta = \{e\}$ ,  $\tau_1 = \{\widetilde{\emptyset}, \widetilde{X}, (\phi_1, \Delta), (\phi_2, \Delta), (\phi_3, \Delta)\}$  and  $\tau_2 = \{\widetilde{\emptyset}, \widetilde{X}, (\phi_3, \Delta)\}$  where  $(\phi_1, \Delta)$ ,  $(\phi_2, \Delta)$  and  $(\phi_3, \Delta)$  are soft sets over X defined as

$$(\phi_1, \Delta) = \{(e, \{b\})\}, (\phi_2, \Delta) = \{(e, \{c\})\}$$

and

$$(\phi_3, \Delta) = \{(e, \{b, c\})\}.$$

Then the soft set  $(\varphi_1, \Delta) = \{(e, \{b, c\})\}$  is a  $(\tau_1, \tau_2)$ -gpr-closed soft set, but it is not  $(\tau_1, \tau_2)$ -pre closed soft. Also the soft set  $(\varphi_2, \Delta) = \{(e, \{a\})\}$  is a  $(\tau_1, \tau_2)$ -pre closed soft set, but it is not  $(\tau_1, \tau_2)$ -regular closed soft.

Now we prove some necessary properties and theorems related to the notion of a  $(\tau_1, \tau_2)$ -gpr-open soft set.

**Theorem 3.24.** Let X be a soft topological space with two soft topologies  $\tau_1$ ,  $\tau_2$ .  $(\phi, \Delta) \in SS(X)_E$  is  $(\tau_1, \tau_2)$ -gpr-open soft if and only if  $(\phi, \Delta) \subseteq \tau_1 \tau_2 - pint(\phi, \Delta)$  whenever  $(\phi, \Delta)$  is  $(\tau_1, \tau_2)$ -regular closed soft and  $(\phi, \Delta) \subseteq (\phi, \Delta)$ .

*Proof.* Let  $(\phi, \Delta)$  be a  $(\tau_1, \tau_2)$ -gpr-open soft set,  $(\phi, \Delta)$  be a  $(\tau_1, \tau_2)$ -regular closed soft set and  $(\phi, \Delta) \subseteq (\phi, \Delta)$ . Then we have  $\widetilde{X} - (\phi, \Delta) \subseteq \widetilde{X} - (\phi, \Delta)$  where  $\widetilde{X} - (\phi, \Delta)$  is  $(\tau_1, \tau_2)$ -regular open soft. Since  $\widetilde{X} - (\phi, \Delta)$  is  $(\tau_1, \tau_2)$ -gpr-closed soft, then we get  $\tau_1 \tau_2 - pcl(\widetilde{X} - (\phi, \Delta)) \subseteq \widetilde{X} - (\phi, \Delta)$ . Hence we obtain

$$\widetilde{X} - \tau_1 \tau_2 - pint(\phi, \Delta) \widetilde{\subseteq} \widetilde{X} - (\phi, \Delta)$$

and so  $(\varphi, \Delta) \subseteq \tau_1 \tau_2 - pint(\varphi, \Delta)$ . Conversely, we suppose that  $(\varphi, \Delta)$  is  $(\tau_1, \tau_2)$ -regular closed soft and  $(\varphi, \Delta) \subseteq (\varphi, \Delta)$  implies  $(\varphi, \Delta) \subseteq \tau_1 \tau_2 - pint(\varphi, \Delta)$ . Let  $\widetilde{X} - (\varphi, \Delta) \subseteq (\theta, \Delta)$  where  $(\varphi, \Delta)$  is  $(\tau_1, \tau_2)$ -regular open soft. Then we have  $\widetilde{X} - (\varphi, \Delta) \subseteq (\varphi, \Delta)$  where  $\widetilde{X} - (\varphi, \Delta) = (\varphi, \Delta)$  is  $(\tau_1, \tau_2)$ -regular closed soft. By the hypothesis, we get  $\widetilde{X} - (\varphi, \Delta) \subseteq \tau_1 \tau_2 - pint(\varphi, \Delta)$ , that is,  $\widetilde{X} - \subseteq \tau_1 \tau_2 - pint(\varphi, \Delta)$ . Hence we obtain

$$\tau_1 \tau_2 - pcl(\widetilde{X} - (\phi, \Delta)) \subseteq (\theta, \Delta)$$

and so  $\widetilde{X} - (\phi, \Delta)$  is  $(\tau_1, \tau_2)$ -gpr-closed soft, that is,  $(\phi, \Delta)$  is  $(\tau_1, \tau_2)$ -gpr-open soft.

**Theorem 3.25.** Let X be a soft topological space with two soft topologies  $\tau_1$ ,  $\tau_2$ . If  $(\phi, \Delta)$  is  $(\tau_1, \tau_2)$ -gpr-closed soft and  $(\phi, \Delta) \subseteq (\phi, \Delta) \subseteq (\tau_1, \tau_2)$ -gpr-closed soft.

 $\begin{array}{l} \textit{Proof.} \ \, \text{Let} \ (\phi, \Delta) \widetilde{\subseteq} (\theta, \Delta) \ \text{where} \ (\theta, \Delta) \ \text{is} \ (\tau_1, \tau_2) \text{-regular open soft.} \ \text{Then} \ (\phi, \Delta) \widetilde{\subseteq} (\phi, \Delta) \ \text{implies} \ (\phi, \Delta) \widetilde{\subseteq} (\theta, \Delta). \ \text{Since} \ (\phi, \Delta) \ \text{is} \ (\tau_1, \tau_2) \text{-} \textit{gpr} \text{-} \text{closed soft, we get} \ \tau_1 \tau_2 - \textit{pcl} (\phi, \Delta) \widetilde{\subseteq} (\theta, \Delta). \ \text{Also} \ (\phi, \Delta) \widetilde{\subseteq} \tau_1 \tau_2 - \textit{pcl} (\phi, \Delta) \ \text{implies} \\ \end{array}$ 

$$\tau_1 \tau_2 - pcl(\varphi, \Delta) \widetilde{\subset} \tau_1 \tau_2 - pcl(\varphi, \Delta).$$

Thus we obtain

$$\tau_1 \tau_2 - pcl(\boldsymbol{\varphi}, \Delta) \widetilde{\subseteq} (\boldsymbol{\theta}, \Delta)$$

and so  $(\varphi, \Delta)$  is  $(\tau_1, \tau_2)$ -gpr-closed soft.

**Theorem 3.26.** Let X be a soft topological space with two soft topologies  $\tau_1$ ,  $\tau_2$ . If  $(\phi, \Delta)$  is  $(\tau_1, \tau_2)$ -gpr-open soft and  $\tau_1 \tau_2 - pint(\phi, \Delta) \widetilde{\subseteq} (\phi, \Delta) \widetilde{\subseteq} (\phi, \Delta)$ , then  $(\phi, \Delta)$  is  $(\tau_1, \tau_2)$ -gpr-open soft.

*Proof.*  $\tau_1 \tau_2 - pint(\phi, \Delta) \widetilde{\subseteq} (\phi, \Delta) \widetilde{\subseteq} (\phi, \Delta)$  implies

$$\widetilde{X} - (\phi, \Delta) \subseteq \widetilde{X} - (\phi, \Delta) \subseteq \widetilde{X} - [\tau_1 \tau_2 - pint(\phi, \Delta)],$$

that is,

$$\widetilde{X} - (\phi, \Delta) \subseteq \widetilde{X} - (\phi, \Delta) \subseteq \tau_1 \tau_2 - pcl(\widetilde{X} - (\phi, \Delta)).$$

Since  $\widetilde{X} - (\phi, \Delta)$  is a  $(\tau_1, \tau_2)$ -gpr-closed soft set, from Theorem 3.25,  $\widetilde{X} - (\phi, \Delta)$  is  $(\tau_1, \tau_2)$ -gpr-closed soft and so  $(\phi, \Delta)$  is  $(\tau_1, \tau_2)$ -gpr-open soft.

The union and the intersection of two  $(\tau_1, \tau_2)$ -gpr-closed soft sets can not be always  $(\tau_1, \tau_2)$ -gpr-closed soft as seen in the following examples, respectively.

**Example 3.27.** Let  $X = \{a, b, c, d, e\}$ ,  $\Delta = \{e'\}$ ,  $\tau_1 = \tau_2 = \{\widetilde{\emptyset}, \widetilde{X}, (\phi_1, \Delta), (\phi_2, \Delta), (\phi_3, \Delta)\}$  where  $(\phi_1, \Delta)$ ,  $(\phi_2, \Delta)$  and  $(\phi_3, \Delta)$  are soft sets over X defined as

$$(\phi_1, \Delta) = \{(e', \{a, c\})\}, (\phi_2, \Delta) = \{(e', \{b, d\})\}$$

and

$$(\phi_3, \Delta) = \{(e', \{a, b, c, d\})\}.$$

Then the soft set  $(\varphi, \Delta) = \{(e', \{a\})\}$  and  $(\theta, \Delta) = \{(e', \{c\})\}$  are two  $(\tau_1, \tau_2)$ -gpr-closed soft set, but  $(\varphi, \Delta)\widetilde{\cup}(\theta, \Delta) = \{(e', \{a, c\})\}$  is not  $(\tau_1, \tau_2)$ -gpr-closed soft.

**Example 3.28.** Let  $X = \{a, b, c\}$ ,  $\Delta = \{e'\}$ ,  $\tau_1 = \tau_2 = \{\widetilde{\emptyset}, \widetilde{X}, (\phi_1, \Delta), (\phi_2, \Delta), (\phi_3, \Delta)\}$  where  $(\phi_1, \Delta)$ ,  $(\phi_2, \Delta)$  and  $(\phi_3, \Delta)$  are soft sets over X defined as

$$(\phi_1, \Delta) = \{(e', \{b\})\}, (\phi_2, \Delta) = \{(e', \{c\})\}$$

and

$$(\phi_3, \Delta) = \{(e', \{b, c\})\}.$$

Then the soft set  $(\varphi, \Delta) = \{(e', \{b, c\})\}$  and  $(\theta, \Delta) = \{(e', \{a, b\})\}$  are two  $(\tau_1, \tau_2)$ -gpr-closed soft set, but  $(\varphi, \Delta) \cap (\theta, \Delta) = \{(e', \{b\})\}$  is not  $(\tau_1, \tau_2)$ -gpr-closed soft.

**Proposition 3.29.** *Let* X *be a soft topological space with two soft topologies*  $\tau_1$ ,  $\tau_2$  *and*  $(\phi, \Delta)$ ,  $(\phi, \Delta) \in SS(X)_{\Delta}$ . *If*  $(\phi, \Delta)$  *is*  $(\tau_1, \tau_2)$ -gpr-open soft and  $\tau_1 \tau_2$  - pint  $(\phi, \Delta) \subseteq (\phi, \Delta)$  then  $(\phi, \Delta) \cap (\phi, \Delta)$  is  $(\tau_1, \tau_2)$ -gpr-open soft.

*Proof.* Since  $(\varphi, \Delta)$  is  $(\tau_1, \tau_2)$ -gpr-open soft and  $\tau_1 \tau_2 - pint(\varphi, \Delta) \subseteq (\varphi, \Delta)$  then we have

$$\tau_1 \tau_2 - pint(\varphi, \Delta) \widetilde{\subseteq} (\varphi, \Delta) \widetilde{\cap} (\varphi, \Delta) \widetilde{\subseteq} (\varphi, \Delta).$$

From Theorem 3.26,  $(\phi, \Delta) \cap (\phi, \Delta)$  is  $(\tau_1, \tau_2)$ -*gpr*-open soft.

The class of all  $(\tau_1, \tau_2)$ -pre-open soft sets is denoted by  $PO(X, \tau_1, \tau_2)$ .

**Proposition 3.30.** Let X be a soft topological space with two soft topologies  $\tau_1$ ,  $\tau_2$ ,  $(\phi, \Delta)$ ,  $(\phi, \Delta) \in SS(X)_{\Delta}$  and  $PO(X, \tau_1, \tau_2)$  closed under finite intersections. If  $(\phi, \Delta)$  and  $(\phi, \Delta)$  are two  $(\tau_1, \tau_2)$ -gpr-open soft sets, then  $(\phi, \Delta) \cap (\phi, \Delta)$  is  $(\tau_1, \tau_2)$ -gpr-open soft.

Proof. Let us consider

$$\widetilde{X} - \left[ (\phi, \Delta) \widetilde{\cap} (\varphi, \Delta) \right] = \left[ \widetilde{X} - (\phi, \Delta) \right] \widetilde{\cup} \left[ \widetilde{X} - (\varphi, \Delta) \right] \widetilde{\subseteq} (\theta, \Delta),$$

where  $(\theta, \Delta)$  is  $(\tau_1, \tau_2)$ -regular open soft. Then we have  $\widetilde{X} - (\phi, \Delta) \subseteq (\theta, \Delta)$  and  $\widetilde{X} - (\phi, \Delta) \subseteq (\theta, \Delta)$ . Since  $(\phi, \Delta)$  and  $(\phi, \Delta)$  are two  $(\tau_1, \tau_2)$ -gpr-open soft sets, we have

$$\tau_1 \tau_2 - pcl\left(\widetilde{X} - (\phi, \Delta)\right) \widetilde{\subseteq} (\theta, \Delta)$$

and

$$\tau_1 \tau_2 - pcl\left(\widetilde{X} - (\boldsymbol{\varphi}, \Delta)\right) \widetilde{\subseteq} (\boldsymbol{\theta}, \Delta).$$

By the hypothesis, we find

$$\begin{split} &\tau_1\tau_2 - pcl\left[\left(\widetilde{X} - (\phi, \Delta)\right)\widetilde{\cup}\left(\widetilde{X} - (\phi, \Delta)\right)\right] \\ &\widetilde{\subseteq}\tau_1\tau_2 - pcl\left(\widetilde{X} - (\phi, \Delta)\right)\widetilde{\cup}\tau_1\tau_2 - pcl\left(\widetilde{X} - (\phi, \Delta)\right)\widetilde{\subseteq}(\theta, \Delta), \end{split}$$

that is,

$$\tau_1 \tau_2 - pcl \left[ \widetilde{X} - \left( (\phi, \Delta) \widetilde{\cap} (\phi, \Delta) \right) \right] \widetilde{\subseteq} (\theta, \Delta).$$

Consequently,  $(\phi, \Delta) \cap (\phi, \Delta)$  is  $(\tau_1, \tau_2)$ -gpr-open soft.

The following lemma will be used in the proof of a proposition related to a  $(\tau_1, \tau_2)$ -gpr-closed soft set in a soft subspace.

**Lemma 3.31.** Let  $\widetilde{Y} \subseteq \widetilde{X}$ , X be a soft topological space with two soft topologies  $\tau_1$ ,  $\tau_2$  and  $(\phi, \Delta) \in SS(X)_{\Delta}$ . If  $\widetilde{Y}$  is a  $\tau_2$ -soft open set and  $\tau_2 \subset \tau_1$ , then  $(\phi, \Delta) \cap \widetilde{Y}$  is a  $(\tau_1, \tau_2)$ -regular open soft set relative to  $\widetilde{Y}$  for some  $(\phi, \Delta)$  which is a  $(\tau_1, \tau_2)$ -regular open soft set relative to  $\widetilde{X}$ .

*Proof.* Let  $(\phi, \Delta)$  be a  $(\tau_1, \tau_2)$ -regular open soft set and  $(\phi, \Delta) = (\phi, \Delta) \widetilde{\cap} \widetilde{Y}$ . Then we have

$$\begin{array}{lcl} \tau_{1}-int\left(\tau_{2}-cl\left((\phi,\Delta)\widetilde{\cap}\widetilde{Y}\right)\right) & = & \tau_{1}-int\left(\tau_{2}-cl\left(\phi,\Delta\right)\widetilde{\cap}\widetilde{Y}\right) \\ & = & \tau_{1}-int\left(\tau_{2}-cl\left(\phi,\Delta\right)\right)\widetilde{\cap}\widetilde{Y} \\ & = & (\phi,\Delta)\widetilde{\cap}\widetilde{Y}=(\phi,\Delta). \end{array}$$

Hence  $(\varphi, \Delta)$  is a  $(\tau_1, \tau_2)$ -regular open soft set relative to  $\widetilde{Y}$ .

**Proposition 3.32.** Let X be a soft topological space with two soft topologies  $\tau_1$ ,  $\tau_2$  such that  $\tau_2 \subset \tau_1$  and  $(\phi, \Delta) \subseteq \widetilde{Y} \subseteq \widetilde{X}$ . Then the followings hold:

(1) If  $\widetilde{Y}$  is a  $\tau_2$ -soft open set and  $(\phi, \Delta)$  is a  $(\tau_1, \tau_2)$ -gpr-closed soft set in X then  $(\phi, \Delta)$  is a  $(\tau_1, \tau_2)$ -gpr-closed soft set in Y. (2) If  $\widetilde{Y}$  is a  $\tau_2$ -soft open set and a  $(\tau_1, \tau_2)$ -pre closed soft set in X and  $(\phi, \Delta)$  is a  $(\tau_1, \tau_2)$ -gpr-closed soft set in Y then  $(\phi, \Delta)$  is a  $(\tau_1, \tau_2)$ -gpr-closed soft set in X.

*Proof.* (1) Let  $(\phi, \Delta)$  be a  $(\tau_1, \tau_2)$ -gpr-closed soft set in X and  $(\phi, \Delta) \subseteq (\phi, \Delta)$  where  $(\phi, \Delta)$  is a  $(\tau_1, \tau_2)$ -regular open soft set in Y. By Lemma 3.31, we have  $(\phi, \Delta) = (\theta, \Delta) \cap \widetilde{Y}$  where  $(\theta, \Delta)$  is a  $(\tau_1, \tau_2)$ -regular open soft set in X, that is,  $(\phi, \Delta) \subseteq (\theta, \Delta)$ . Since  $(\phi, \Delta)$  is a  $(\tau_1, \tau_2)$ -gpr-closed soft set in X then we get

$$\tau_1 \tau_2 - pcl(\phi, \Delta) \widetilde{\subseteq} (\theta, \Delta),$$

which implies

$$\tau_1 \tau_2 - pcl_X(\phi, \Delta) \widetilde{\cap} \widetilde{Y} \widetilde{\subseteq} (\theta, \Delta) \widetilde{\cap} \widetilde{Y}.$$

By Lemma 3.20, we have

$$\tau_1 \tau_2 - pcl_Y(\phi, \Delta) \widetilde{\subseteq} (\phi, \Delta).$$

Therefore,  $(\phi, \Delta)$  is a  $(\tau_1, \tau_2)$ -gpr-closed soft set in Y.

(2) Let  $(\phi, \Delta)$  be a  $(\tau_1, \tau_2)$ -gpr-closed soft set in Y. Then  $(\phi, \Delta) \subseteq (\phi, \Delta)$  where  $(\phi, \Delta)$  is a  $(\tau_1, \tau_2)$ -regular open soft set in X. Hence we get

$$(\phi, \Delta) = (\phi, \Delta) \widetilde{\cap} \widetilde{Y} \widetilde{\subseteq} (\phi, \Delta) \widetilde{\cap} \widetilde{Y},$$

where  $(\varphi, \Delta) \cap \widetilde{Y}$  is  $(\tau_1, \tau_2)$ -regular open soft in Y by Lemma 3.31. Using the hypothesis, we get

$$\tau_1 \tau_2 - pcl_Y(\phi, \Delta) \widetilde{\subset} (\phi, \Delta) \widetilde{\cap} \widetilde{Y}.$$

By Lemma 3.20, we obtain

$$\tau_1 \tau_2 - pcl_X(\phi, \Delta) \widetilde{\subset} (\phi, \Delta) \widetilde{\cap} \widetilde{Y} \widetilde{\subset} (\phi, \Delta),$$

that is,  $(\phi, \Delta)$  is a  $(\tau_1, \tau_2)$ -gpr-closed soft set in X.

We introduce the notion of mixed gpr-soft continuity as follows:

**Definition 3.33.** Let X,Y be two initial universe sets,  $\Delta_1,\Delta_2\subseteq\Delta$  two sets of parameters,  $\tau_1$ ,  $\tau_2$  two soft topologies over X and  $\tau$  a soft topology over Y. Assume that  $u:X\to Y$ ,  $p:\Delta_1\to\Delta_2$  are two mappings and  $f_{pu}:SS(X)_{\Delta_1}\to SS(Y)_{\Delta_2}$  is a function. Then  $f_{pu}$  is called mixed gpr-soft continuous (briefly,  $(\tau_1\tau_2,\tau)$ -gpr-soft cts) if  $f_{pu}^{-1}(\phi,\Delta_2)$  is a  $(\tau_1,\tau_2)$ -gpr-closed soft set for every  $\tau$ -soft closed set  $(\phi,\Delta_2)$  in Y.

Using the concept of mixed gpr-soft continuity, we present a new version of the pasting lemma in the following theorem.

**Theorem 3.34.** (Pasting lemma for  $(\tau_1, \tau_2)$ -gpr-closed soft sets) Let  $\widetilde{X} = \widetilde{A} \cup \widetilde{B}$  be a soft topological space with two soft topologies  $\tau_1$ ,  $\tau_2$ , Y a soft topological space with a soft topology  $\tau$  and the family of all  $(\tau_1, \tau_2)$ -gpr-open soft sets closed under finite intersections. Let  $f_{p_1u_1}: SS(A)_{\Delta_1} \to SS(Y)_{\Delta_2}$  and  $f_{p_2u_2}: SS(B)_{\Delta_1} \to SS(Y)_{\Delta_2}$  be two mixed gpr-soft continuous mappings where  $p_1 = p_2: \Delta_1 \to \Delta_2$ ,  $u_1: A \to Y$  and  $u_2: B \to Y$  are functions. Suppose that  $\widetilde{A}$ ,  $\widetilde{B}$  are  $\tau_2$ -soft open and  $(\tau_1, \tau_2)$ -pre closed soft and  $\tau_2 \subset \tau_1$ . If  $u_1(x) = u_2(x)$  for every  $x \in A \cap B$ , then  $f_{p_1u_1}$  and  $f_{p_2u_2}$  combine to give a mixed gpr-soft continuous mapping  $f_{pu}: SS(X)_{\Delta_1} \to SS(Y)_{\Delta_2}$  defined by the functions  $p = p_1 = p_2$  and  $u(x) = u_1(x)$  if  $x \in A$  and  $u(x) = u_2(x)$  if  $x \in B$ .

*Proof.* Let  $(\varphi, \Delta_2)$  be a  $\tau$ -soft closed set in Y. Then we can easily seen that

$$f_{pu}^{-1}(\boldsymbol{\varphi}, \Delta_2) = f_{p_1 u_1}^{-1}(\boldsymbol{\varphi}, \Delta_2) \widetilde{\cup} f_{p_2 u_2}^{-1}(\boldsymbol{\varphi}, \Delta_2).$$

Since  $f_{p_1u_1}$  is mixed gpr-soft continuous then  $f_{p_1u_1}^{-1}(\varphi, \Delta_2)$  is a  $(\tau_1, \tau_2)$ -gpr-closed soft set in A. Since  $\widetilde{A}$  is  $\tau_2$ -soft open and  $(\tau_1, \tau_2)$ -pre closed soft, then  $f_{p_1u_1}^{-1}(\varphi, \Delta_2)$  is a  $(\tau_1, \tau_2)$ -gpr-closed soft set in  $\widetilde{X}$  by Proposition 3.32 (2). Similarly,  $f_{p_2u_2}^{-1}(\varphi, \Delta_2)$  is a  $(\tau_1, \tau_2)$ -gpr-closed soft set in  $\widetilde{X}$ . Also we get that  $f_{pu}^{-1}(\varphi, \Delta_2)$  is  $(\tau_1, \tau_2)$ -gpr-closed soft in X from the hypothesis. Therefore,  $f_{pu}$  is a mixed gpr-soft continuous mapping.

# 4. Conclusion and future work

In this paper, two new versions of the pasting lemma for mixed g-soft continuous functions and mixed gpr-soft continuous functions are presented on a soft topological space. As a future work, some applications of these pasting lemmas can be investigated to analytic continuation on a complex plane.

## Acknowledgements

The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

# **Funding**

There is no funding for this work.

# Availability of data and materials

Not applicable.

## **Competing interests**

The authors declare that they have no competing interests.

#### **Author's contributions**

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

#### References

- D. Molodtsov, Soft set theory first results, Comput. Math. Appl., 37 (1999), 19-31.
   M. I. Ali, F. Feng, X. Liu, W. K. Min, M. Shabir, On some new operations in soft set theory, Comput. Math. Appl., 57 (2009), 1547-1553.
- [3] İ. Demir, O. B. Özbakır, İ. Yıldız, A contribution to the study of soft proximity spaces, Filomat, 31 (2017), 2023-2034.
- [4] A. Ç. Güler, G. Kale, Regularity and normality on soft ideal topological spaces, Ann. Fuzzy Math. Inform., 9 (2015), 373-383.
- [5] Ç. Gündüz, T. Y. Öztürk, S. Bayramov, Separation axioms on neutrosophic soft topological spaces, Turk. J. Math., 43 (2019), 498-510.
  [6] A. Kandil, O. A. E. Tantawy, S. A. El-Sheikh, A. M. ABD El-Latif, γ operation and decompositions of some forms of soft continuity in soft topological spaces, Ann. Fuzzy Math. Inform., 7 (2014), 181-196.
  [7] P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Comput. Math. Appl., 45 (2003), 555-562.
- [8] S. K. Nazmul, S. K. Samanta, Neighbourhood properties of soft topological spaces, Ann. Fuzzy Math. Inform., 6 (2013), 1-15.
- [9] A. Özkan, On near soft sets, Turk. J. Math., 43 (2019), 1005-1017.
- [10] M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl., **61** (2011), 1786-1799. [11] J. Thomas, S. J. John, On soft generalized topological spaces, J. New Results Sci., **4** (2014), 1-15.
- [12] E. D. Yıldırım, A. Ç. Güler, O. B. Özbakir, On soft Ĩ-Baire spaces. Ann. Fuzzy Math. Inform., 10 (2015), 109-121.
- [13] E. D. Yıldırım, O. B. Özbakir, On soft I-scattered spaces, An. Univ. Oradea, Fasc. Mat., 23 (2016), 137-146.
- [14] İ. Zorlutuna, M. Akdağ, W. K. Min, S. Atmaca, Remarks on soft topological spaces, Ann. Fuzzy Math. Inform., 3 (2012), 171-185.
- [15] İ Zorlutuna, H. Çakır, On continuity of soft mappings, Appl. Math. Inf. Sci., 9 (2015), 403-409.
  [16] J. C. R. Alcantud, S. C. Rambaud, M. J. M. Torrecillas, Valuation fuzzy soft sets: a flexible fuzzy soft set based decision making procedure for the valuation of assets, Symmetry, 9 (2017), 253.
- [17] İ. Demir, N-soft mappings with application in medical diagnosis, Math. Methods Appl. Sci., 44(8) (2021), 7343-7358.
- [18] R. İrkin, N. Y. Özgür, N. Taş, Optimization of lactic acid bacteria viability using fuzzy soft set modelling, Int. J. Optim. Control, Theor. Appl. (IJOCTA), 8 (2018), 266-275.
- [19] Dr. A. Kalaichelvi, P. H. Malini, Application of fuzzy soft sets to investment decision making problem, Int. J. Math. Sci. Appl., 1 (2011), 1583-1586. [20] F. Karaca, N. Taş, Decision making problem for life and non-life insurances, J. BAUN Inst. Sci. Technol., 20 (2018), 572-588.
- [21] N. Y. Özgür, N. Taş, A note on "application of fuzzy soft sets to investment decision making problem", J. New Theory, 7 (2015), 1-10.
- [22] N. Taş, N. Y. Özgür, P. Demir, An application of soft set and fuzzy soft set theories to stock management, Süleyman Demirel University J. Nat. Appl.
- [23] M. Ali, H. Khan, L. H. Son, F. Smarandache, W. B. Vasantha Kandasamy, New soft set based class of linear algebraic codes, Symmetry, 10 (2018), 510.
- [24] P. Mani, K. Muthusamy, S. Jafari, F. Smarandache, U. Ramalingam, Decision-making via neutrosophic support soft topological spaces, Symmetry, 10
- [25] G. Ali, M. Akram, A. N. A. Koam, J. C. R. Alcantud, *Parameter reductions of bipolar fuzzy soft sets with their decision-making algorithms*, Symmetry, 11 (2019), 949.
- [26] T. H. Şimşekler, Fuzzy soft topological spaces and the related category FST, Turk. J. Math., 43 (2019), 871-878.
  [27] M. Riaz, K. Naeem, M. Aslam, D. Afzal, F. A. Ahmed Almahdi, S. Shaukat Jamal, Multi-criteria group decision making with Pythagorean fuzzy soft [28] M. Riaz, S. Taecin, M. Asian, D. Aizai, F. A. Anmed Almandi, S. Shaukat Jamal, Multi-criteria group decision making with Pythagorean fuzzy soft topology, J. Intell. Fuzzy Syst. (Preprint), (2020), 1-18.
  [28] M. Riaz, S. T. Tehrim, On bipolar fuzzy soft topology with decision-making, Soft Comput., 24(24) (2020), 18259-18272.
  [29] M. Riaz, K. Naeem, Measurable soft mappings, J. Math., Punjab Univ., 48(2) (2020).
  [30] M. Riaz, N. Çağman, I. Zareef, M. Aslam, N-soft topology and its applications to multi-criteria group decision making, J. Intell. Fuzzy Syst., 36(6) (2019), 6521-6536.
  [31] A. Asikais, N. Trae Survey, J. L. Carlotte, M. Aslam, N-soft topology and its applications to multi-criteria group decision making, J. Intell. Fuzzy Syst., 36(6) (2019), 6521-6536.

- [31] A. Açıkgöz, N. Taş, Some new mixed soft sets, MSAEN, 2 (2014), 105-118.
  [32] A. Açıkgöz, N. A. Taş, T. Noiri, A decomposition of some types of mixed soft continuity in soft topological spaces, Filomat, 30 2016, 379-385.
- [33] Á. Császár, Mixed constructions for generalized topologies, Acta Math. Hung., 122 (2009), 153-159.
- W. K. Min, Mixed  $\theta$ -continuity on generalized topological spaces, Math. Comput. Modelling, **54** (2011), 2597-2601.
- [35] W. K. Min, Mixed weak continuity on generalized topological spaces, Acta Math. Hung., 132 (2011), 339-347.
- [36] N. A. Taş, A. Açıkgöz, Some mixed soft operations and extremally soft disconnectedness via two soft topologies, Appl. Math. 5 (2014), 490-500.
- [37] N. A. Taş, O. B. Özbakır, On some mixed types of continuity on generalized neighborhood systems, J. Adv. Stud. Topol., 5 (2014), 32-43.

- [38] M. Anitha, R. Selvi, P. Thangavelu, Pasting lemmas for g-continuous functions, Missouri J. Math. Sci., 21 (2009), 28-33.
  [39] K. Balachandran, P. Sundaram, H. Maki, On generalized continuous maps in topological spaces, Mem. Fac. Sci., Kochi Univ., Ser. A 12 (1991), 5-13.
  [40] Y. Gnanambal, K. Balachandran, On gpr-continuous functions in topological spaces, Indian J. Pure Appl. Math., 30 (1999), 581-593.
  [41] K. Kannan, K. C. Rao, Pasting lemmas for some continuous functions, Thai J. Math., 12 (2014), 245-249.
  [42] D. Vidhya, R. Parimelazhagan, g\*b-continuous maps and pasting lemma in topological spaces, Int. J. Math. Anal., 6 (2012), 2307-2315.
  [43] S. Hussain, B. Ahmad, Some properties of soft topological space, Comput. Math. Appl., 62 (2011), 4058-4067.
  [44] A. Kharal, B. Ahmad, Mappings on soft classes, New Math. Nat. Comput., 7(03) (2011), 471-481.