
DEÜ FMD 23(69), 903-911, 2021

903

1 Dokuz Eylül University, Graduate School of Natural and Applied Sciences, Department of Computer Engineering, İzmir,
TURKEY
2 Dokuz Eylül University, Faculty of Engineering, Department of Computer Engineering, İzmir, TURKEY

3 Burdur Mehmet Akif Ersoy University, Faculty of Engineering and Architecture, Department of Computer Engineering,

Burdur, TURKEY

Corresponding Author / Sorumlu Yazar *: mbatar@cs.deu.edu.tr

Geliş Tarihi / Received: 07.03.2021

Kabul Tarihi / Accepted: 16.04.2021

Araştırma Makalesi/Research Article

DOI:10.21205/deufmd.2021236918

Atıf şekli/ How to cite: BATAR M., BIRANT K.U., ISIK A.H.(2021). Software Risk Assessment and Management with Rules Based on Fuzzy

Approach. DEUFMD 23(69), 903-911.

Abstract

Up to now, several software risk parameters have been determined in order to assess and manage

software development projects: Productivity, Engagement, Attention to Quality, Code Based

Knowledge and Management, Adherence to Coding Guidelines and Techniques, Learning and Skills,

Personal Responsibility and etc. However, there isn’t any universally accepted methodology to apply

software risk assessment and management. There are three main reasons of this situation: Firstly,

each part of software creation is unique. There is no compelling reason to assemble two times the

same parts of software as it might be duplicated by copying it. This makes it truly difficult to make a

formal and thorough correlation between two parts of software. Secondly, the current technology is

something that changes at a truly fast phase. So, each time a methodology in respect to a certain wave

of technology is dependable enough, it is for the most part as of recently old. Thirdly, there is a gigantic

zone for innovativeness in discovering the diverse answers for a unique issue. Because of these

reasons, the technique “Fuzzy Approach” has a very convenient and proper process for defining

software risks due to their nature that has no certainty – uncertainty – structure and principle. Also,

software risks are defined as the probability and the severity of damages that are caused by occurring

of bad or undesirable events in a system. Thus, the system suffers from strategic, financial,

operational, structural or integrity loss and damage. So, there is need to apply and carry out an

efficient “Software Risk Assessment and Management” in order to determine and recognize software

risks on time before causing problems and troubles into software projects for providing successfully

accomplishment in software development process. In this paper, usability and efficiency of “Fuzzy

Approached” linguistic and logical rules based on “Fuzzy Logic” in “Software Risk Assessment and

Management” have been shown and expressed in detail.

Keywords: Software Risk Assessment, Software Risk Management, Fuzzy Approach, Fuzzy Logic

Software Risk Assessment and Management with Rules
Based on Fuzzy Approach

Bulanık Yaklaşımlı Kurallar ile Yazılım Risk
Değerlendirmesi ve Yönetimi
Mustafa Batar 1* , Kökten Ulaş Birant 2 , Ali Hakan Işık 3

http://web.deu.edu.tr/fmd/index.htm
https://orcid.org/0000-0002-8231-6628
https://orcid.org/0000-0002-5107-6406
https://orcid.org/0000-0003-3561-9375

DEÜ FMD 23(69), 903-911, 2021

904

Öz

Günümüze kadar, yazılım geliştirme projelerini değerlendirmek ve yönetmek için çeşitli yazılım risk

parametreleri belirlenmiştir: üretkenlik, taahhüt, kaliteye önem verme, koda dayalı bilgi, beceri ve

değerlendirme, kodlamanın genel yapısına ve kurallarına uygunluk, öğrenme becerisi, kişisel

sorumluluk bilinci, vb. Ancak, yazılım risk değerlendirmesi ve yönetimini uygulamak amacıyla

dünyaca herkes tarafından kabul görmüş herhangi bir yöntem maalesef yoktur. Bu can alıcı durumun

üç ana sebebi vardır: Birinci sebep, geliştirilen her bir yazılım parçası kendi içerisinde tektir. Fakat

aynı yazılım parçasını geliştirmek ve ilerletmek için onu sil baştan yaratmaya gerek yoktur; elimizde

var olan hali hazırdaki yazılım parçasını kopyalayarak, üzerinde oynama yaparak, değiştirerek bu

durum çözülebilmektedir. Bu da, birbirine benzer iki yazılım parçası arasında hem nitelik hem de

nicelik bakımından tam doğru bir karşılaştırmanın yapılamamasına neden olmaktadır. İkinci sebep,

günümüz teknolojisi sürekli değişen, gelişen ve kendini yenileyen bir süreç içerisindedir. Bunun doğal

bir sonucu olarak, yazılım projelerinin risk değerlendirmesi ve yönetiminin kullandığı bir teknoloji ya

da teknoloji esaslı yazılım risk parametreleri dizisi çok geçmeden önemini kaybetmiş ve eskimiş

duruma gelmektedir. Bunun neticesinde, bu yöntem ve parametreler işe yaramaz duruma

gelmektedir. Üçüncü sebep, verilen aynı problemi çözmek için birden çok, birbirinden tamamen farklı

çeşitli yöntemler geliştirilip özgünlük, kendine has olma, yaratıcılık kavramları had safhaya

çıkarılabilmektedir. Bu da elle tutulur, somut verilerin yazılım risk parametrelerinin oldukça çeşitli

olduğunu bizlere göstermektedir. Bu nedenlerden dolayı, “belirsizlik” kavramını içeren “Bulanık

Yaklaşım” tekniği, – doğası gereği “belirsiz” yapıda olan – yazılım risk parametrelerini tanımlamak ve

belirlemek için oldukça uygun bir sürece sahiptir. Ayrıca yazılım riskleri, bir sistemde kötü veya

istenmeyen olayların meydana gelmesiyle ortaya çıkan kusurların olma ihtimali ve şiddeti olarak

tanımlanır. Yazılım risklerinden dolayı, sistem stratejik, finansal, işlevsel (operational), yapısal veya

bütünlük kaybı yaşayabilmektedir. Bu kayıpların bertaraf edilebilmesi ve yazılım geliştirme

sürecinde gerçek bir başarı sağlanabilmesi için yazılım riskleri – hasara neden olmadan – zamanında

belirlenmeli ve etkin bir “Yazılım Risk Değerlendirmesi ve Yönetimi” uygulanıp yürütülmelidir. Bu

makalede, “Bulanık Mantık” yöntemine dayalı “Bulanık Yaklaşımlı” dilbilimsel ve mantıksal kuralların

“Yazılım Risk Değerlendirmesi ve Yönetimi” alanında kullanılabilirliği ve etkinliği ayrıntılı olarak

gösterilmiştir.

Anahtar kelimeler: Yazılım Risk Değerlendirmesi, Yazılım Risk Yönetimi, Bulanık Yaklaşım, Bulanık Mantık

1. Risk

Risk is the likelihood of not reaching a targeted
result, and also it is the probability of any event
that would prevent an organization from
achieving its strategic, financial and operational
objectives. In addition, risk has basic two factors:
the possibility of occurrence – the likelihood of
not achieving a particular result or the likelihood
of an undesired occurrence –, size of loss – the
effects of the consequences that would arise if
the risks were realized [1].

There are three main risk categories. Internal
risks about the company: risks related to

production management’s effectiveness, risks
related to financial management activity, risks
related to the effectiveness of marketing
management, risks related to in-house logistics,
risks related to quality management’s
effectiveness, risks related to the effectiveness of
human resources management, general risks
about management. Risks about supply chain
network: the risk that the suppliers cannot
supply the input of production at the desired
amount, risk of not delivering on time to
suppliers, the risk that suppliers cannot achieve
the desired quality standards, the risk that
suppliers and distribution companies are not

DEÜ FMD 23(69), 903-911, 2021

905

able to provide the cost, risks of vendors and
distribution companies with critical
prescriptions for the company cannot keep up
with the fast technological advances, risk of non-
strategic cooperation with suppliers and
distribution companies that have critical
prescription for the company, the risk that
distribution companies cannot reach products
on time, risk of damage to the products or
decrease in product quality during distribution,
risks arising from the fact that an effective
information network has not been established
with suppliers and distribution companies,
especially those with strategic priorities, or that
this information network cannot be used
effectively, risks that may arise from fulfilling the
company’s basic logistics functions either
partially or completely through outsourcing.
External risks: risks arising from economic
uncertainties, risks of political instability, risks
arising from technological developments, risks
of changing legal conditions, risks created by
changes in socio-economic status, risks created
by increased competition and changing
competition conditions, the risk of a large change
in customer expectations, natural disaster risk,
the risk of terrorism [2].

Risks come on the whole sizes and shapes;
hazard experts for the most part perceive three
significant sorts. Market risk is the danger that
costs will move in a manner that has contrary
outcomes of an organization; credit risk is the
danger that a client, a counterparty or a provider
will neglect to meet its commitments; and
operational risk is the danger that individuals,
cycles or frameworks will come up short or that
an outer occasion (seismic tremor, fire, and so
on) will contrarily affect the organization [3].

2. Software Risks

Building and keeping up software can be a
hazardous business. Most undertakings rely
upon programming – so additional cost, delays
or the failure to acknowledge objectives – can
have genuine results. Bigger dangers that can
undermine long haul ventures require prompt
consideration, and that implies putting the
accentuation on danger (top 10) [4]:

Estimation and planning – The one of a kind sort
of individual programming ventures makes
issues for designers and administrators in
assessing and booking improvement time.

Continuously, screen existing activities so
utilization of exercises learnt later on.

Sudden development in necessities – As a task
advances, gives that are not distinguished before
can make a very late obstacle to fulfilling time
constraints. Attempt to plan for an impressive
future from the get-go in extend and envision the
most pessimistic scenario or heaviest-use
situation.

Employee turnover – Every task has various
designers taking a shot at it. At the point when an
engineer leaves, the individual may take basic
data with that person. This can postpone and
now and then crash a whole venture. Guarantee
to have assets where colleagues can work
together and share information.

Breakdown of detail – During the underlying
periods of mix and coding, prerequisites may
strife. Besides, designers may locate that even
the detail is indistinct or deficient.

Productivity issues – On undertakings including
long courses of events, engineers will in general
take things simple in any case. Accordingly, in
some cases, they lose huge opportunity to finish
the task. Set a practical timetable, and stick to it.

Compromising on plans – In request to stall out
into the following “genuine” assignments,
engineers will in general surge the plan cycle.
This is a misuse of programming hours as
planning is the most basic piece of programming
advancement.

Gold plating – Developers now and then prefer to
flaunt their abilities by adding superfluous
highlights. For example, an engineer may add
Flash to a fundamental login module to make it
look “jazzy”. Once more, this is a misuse of
programming hours.

Procedural dangers – Day-to-day operational
exercises may hamper because of ill-advised
cycle usage, clashing needs or an absence of
lucidity in obligations.

Technical dangers – Sometimes programming
improvement firms lessen the usefulness of the
product to make up for invades relating to high
financial plans and planning. There is
consistently a contention between
accomplishing most extreme usefulness of the
product and pinnacle execution. To make up for
inordinate spending plan and timetable

DEÜ FMD 23(69), 903-911, 2021

906

overwhelms, organizations in some cases
decrease the usefulness of the product.

Unavoidable dangers – These remember changes
for government strategy, the out of date quality
of programming or different dangers that can’t
be controlled or assessed. As the field of
programming improvement turns out to be an
ever increasing number of complex, the dangers
related with it have escalated. It is essential that
improvement firms around vital intending to
relieve such dangers.

Software development projects on execution
give data to help activities, the board
examination and dynamic inside an association.
In any case, these are defenseless from cost and
time overwhelm alongside under-
accomplishment with quality. Furthermore, high
level of bugs during beginning time of
preliminary and business use aren’t
phenomenal. Despite the fact that
administrators guarantee that they deal with the
software failures and issues effectively, yet there
are confirmations of absence of software
management (project and risk management)
even by driving software developers. Software
development projects experience the ill effects of
market hazard, monetary danger and specialized
danger. The software developers and engineers
should have great responses to the
accompanying inquiries to make progress:
Regardless of whether the created programming
satisfies the clients’ interest/necessity? What
amount of rivalry it is probably going to
confront? Regardless of whether profits by the
product outperform the expense of
advancement? Is the task in fact doable? Will
equipment, programming, and organizations
work appropriately? Will the innovation be
accessible so as to meet undertaking
destinations? Is there any opportunity of the
innovation getting out of date previously use?
Will security framework work for the duration of
its life? There are instances of prominent IT
project disappointment in the literature [5].

3. Related Works about Software Risks

In his study, Gallivan have shown the
relationship between the job and the
professional profession about software risk
assessment and management: satisfaction and
difficulty, the actual (active) performance,
technical knowledge of the profession, analytical
thinking skills, verbal skills, work habits, new

ideas and creativity to open and revealed various
special points [6]. (18 significant software risks
have been determined.)

Sawyer and Guinan have shown several points to
work as a software development team to
determine and recognize software risks. These
issues have been team support, team loyalty,
team vision, team personalities, team meeting,
team members and team leader. In addition, they
have tried to find answers to some questions
about software risk assessment and
management. These questions; software
development method, code retention, code
library, working time and related to software
development documentation [7]. (44 significant
software risks have been determined.)

Hall, Wilson, Rainer and Jagielska have tried to
find answers to a few questions about a few
issues about software development risks. These
questions have been related to software team,
software project, business life, work and
personality [8]. (26 significant software risks
have been determined.)

In applying software risk assessment and
management, Baggelaar has emphasized the
importance of several points in his master thesis.
These important points have been abstraction,
testability, coupling, modularity, templates, test
coverage, error handling and exceptional case
use. In addition, software developers have tried
to find out the effect of code and comment line
numbers in software development process [9].
(22 significant software risks have been
determined.)

Lee, Joshi and Kim have analyzed and evaluated
software risk assessment and management in
terms of personality and work habits [10]. (12
significant software risks have been
determined.)

Thing has been interested in and focused on the
issues of personality, working style, workload
and software development process in software
risk assessment and management [11]. (14
significant software risks have been
determined.)

Zhang, Wang and Xiao first have asked a few
questions for their work and received some
answers about software risks. These questions
have been number of lines of code, number of
comment lines, number of classes, number of
samples, class relation, number of method

DEÜ FMD 23(69), 903-911, 2021

907

(methods), degree of heritability depth and
software development issues related to the
difficulty [12]. (13 significant software risks
have been determined.)

Calikli and Bener have provided a general
overview of the software risk assessment and
management. In their work, they have showed
the effect of software developers’ level of
education and some points and issues in the field
of software development (satisfaction level,
confidence level, work experience, etc.) on
software risk assessment and management [13].
(4 significant software risks have been
determined.)

Chilton, Hardgrave and Armstrong have put
forward several points for software risks. These
points have been work-life, working habits,
personality, age and gender [14]. (22 significant
software risks have been determined.)

Ramler, Klammer and Natschläger have tried to
research and find answers to some questions
about software quality in software risk
assessment and management [15]. (3 significant
software risks have been determined.)

Wang and Zhang have highlighted a number of
important issues in the software risk assessment
and management. These points have been work-
life, work experience, workload, education level
and gender [16]. (14 significant software risks
have been determined.)

In their study, Baljepally, Nerur and Mahapatra
tried to find answers of many questions related
to personality traits in recognizing software
risks [17]. (8 significant software risks have been
determined.)

Duarte, Faria and Raza have tried to find out the
effects of various issues in software risk
assessment and management. These issues have
been timing error, size error, segmentation
error, missing parts, unrelated parts, number of
errors and the number of unit tests [18]. (10
significant software risks have been
determined.)

Ehrlich and Cataldo have discussed some aspects
of software development in order to determine
software risks. These issues have been team
leader, team coordination, company
management, company employees and private
life [19]. (10 significant software risks have been
determined.)

Kelly and Haddad have tried to find out the
extent to how “error” has an impact into
software risk assessment and management [20].
(3 significant software risks have been
determined.)

Schröter, Aranda, Damian and Kwan have tried
to answer various questions in the minds about
software development risks. These questions
have been related to the number of constructs,
code changes, method (method) number, fixed
code parts, work-life, work quality, team leader,
software project documents and software
development tool [21]. (22 significant software
risks have been determined.)

Westermann has emphasized the importance of
certain points in the software development
process. Reliable code writing has been
investigated about the impact of software
project outputs and work style on recognizing
software risks [22]. (7 significant software risks
have been determined.)

Calikli and Bener have shown some important
points in software risk assessment and
management. These points; software project
development plan and software team
psychology [23]. (4 significant software risks
have been determined.)

4. Software Risk Assessment and

Management

Software risk assessment is to depict the overall
strategy where: One perceives threats and
danger factors that can cause hurt (hazard
recognizing evidence). One separates and
evaluates the peril about that risk (risk
assessment and danger appraisal). One chooses
fitting ways to deal with discard the risk, or
control the danger when the hazard can’t be shed
(risk control) [24].

Software risk assessment is a cautious look at the
workplace to perceive those things, conditions,
structures, etc. that may cause to hurt,
particularly to people. Afterwards ID is made,
one explores and evaluates how likely and
genuine the risk is. Right when this affirmation is
made, one can immediately, pick what measures
should be set up to effectively deal with or cope
with the underhandedness from happening [24].

The CSA Standard Z1002 “Word related
prosperity and security – Hazard ID and end and
danger assessment and control” uses the going

DEÜ FMD 23(69), 903-911, 2021

908

with terms: Hazard evaluation – the overall
method of risk recognizing evidence, chance
assessment, and peril appraisal. Danger
recognizing confirmation – the route toward
finding, posting, and depicting threats. Peril
examination – a system for valuing the
possibility of threats and choosing the
component of risk. Risk evaluation – the route
toward taking a gander at a normal peril against
given danger measures to choose the
tremendousness of the risk. Peril control –
exercises executing danger evaluation decisions
[24].

Software risk management is one of the most
significant occupations for a venture supervisor.
You can think about a hazard as something that
you would lean toward not to have occur.
Dangers may compromise the task, the product
that is being created, or the association. Hazard
the board includes envisioning dangers that may
influence the undertaking plan or the nature of
the product being created, and afterward making
a move to maintain a strategic distance from
these dangers. Dangers can be arranged by kind
of hazard (specialized, hierarchical, and so
forth.). A reciprocal arrangement is to
characterize risks as per what these dangers
influence [25]:

Venture dangers influence the undertaking
calendar or assets. A case of a task hazard is the
loss of an accomplished framework designer.
Finding a supplanting engineer with proper
aptitudes and experience may take quite a while;
thus, it will take more time to build up the
product structure than initially arranged.

Item risks impact the product’s design,
development, execution or quality. A case of an
item chance is the disappointment of a bought
segment to proceed true to form. It will impact
the framework’s general implementation and
execution so that is more slow than anticipated.

Business dangers influence the association
getting or creating the product. For example, a
contender presenting another item is a business
hazard. The presentation of a serious item may
imply that the suppositions made about deals of
existing programming items might be unduly
idealistic.

In addition, software risk assessment and
management process (the steps) has been
showed and illustrated in Figure 1 in the
following.

Figure 1. Software risk management process

5. Fuzzy Approach

“Fuzzy Logic” is communicated as a methodology
dependent on “levels of exactness” instead of the
“valid or bogus” state which is the Boolean
methodology. During 1960s, Dr. Lotfi Zadeh
applied the fuzzy logic mentality firstly in his
classes in University of California at Berkeley.
Fluffy hypothesis can be utilized for as a methods
for speaking to dubiousness in building
nonlinear associations with heuristic data. The
hypothesis essentially works with the rationale
that rather than an articulation being 0 or 1, its
worth may have an esteem that can differ in this
range [26].

The participation work is a graphical portrayal
used to speak with the impact of each
contribution of the “Fuzzy Approach” in the info
field. The info field is commonly characterized as
a widespread set that can communicate all the
circumstances that can happen in a framework.
Fluffy rationale standardizes the info
articulations to a weight, at that point
characterizes the connections between the
contributions to effectively display the
framework, coming about in a yield esteem. The
characterized rules are characterized as the
weighting component to decide the impacts of
information and yield articulations on fluffy
rationale yield sets of the end-product. Making,
reviewing and joining capacities produces a
fluffy rationale yield that turns out effectively for
the framework. All info and yield articulations in
fluffy rationale have distinctive participation
capacities. The guidelines contain a bunch of
characterized decides that are performed
utilizing ALSO or AND numerical administrators.
Fluffy rationale changes over characterized
input articulations into phonetic qualities and
fluffy sets. Fluffy rationale has various strategies
which are named as Takagi-Sugeno technique
and Mamdani strategy. The Tagaki-Sugeno
technique proposed by Takagi and Sugeno is the
fluffy rationale strategy used to determine fluffy

DEÜ FMD 23(69), 903-911, 2021

909

rationale information and yield articulations in
nonlinear frameworks. In the Takagi-Sugeno
model, the information on hand, yield
articulations are characterized by IF-THEN
standards and rules. As indicated by the
principles, the yield can be determined with the
assistance of a basic recipe. Then again, in
Mamdani fluffy rationale technique, numerous
rules must be characterized to conform to the
fuzzification of participation capacities [27].

“Fuzzy Approach” attempts to model the general
working rationale of the PC such that individuals
can comprehend inside the system of rationale.
A PC’s rationale block gets outright contribution
from the client and gives the yields TRUE or
FALSE, which is equal to YES or NO outcomes. As
per the fluffy rationale approach the client's
choice expresses that there are various
conceivable outcomes between YES
furthermore, NO. Utilizing fluffy rationale
strategy, it is meant to demonstrate unsure
circumstances, inappropriately characterized or
complex frameworks [28].

The architecture of “Fuzzy Approach” based on
“Fuzzy Logic” comprises of three principle parts
as appeared in the accompanying figure. Initially,
it changes over framework contributions to the
fluffy sets gave in the fuzzification module. The
standards area depicts the circumstances that
decide the yields of the framework's fluffy
rationale approach. These circumstances show
which articulation should be yield against the
changing info articulations of the framework. At
long last, the defuzzification module changes
over the fluffy set produced by the surmising
motor to a net worth. Along these lines, the
framework yields give diverse yield esteems as
indicated by the guidelines [29]. Furthermore,
Figure 2 in the following has figured out and
illustrated fuzzy logic steps and its working
mechanism/principle.

Figure 2. Fuzzy logic process

6. Software Risk Rules Based on Fuzzy

Approach

The relation of developed methods to software
development method: Using some methods or
models which have been designed and
implemented before by software developers
during software development process shows
that there is the property of “Reusability” in
software risk assessment and management. This
property is the main factor of applying a
software development method in software
progress since a development method provides
software developers to use analyzed, tried and
practiced methods and models which make their
works easy. That means the property of
“Reusability” decrease the cost of the software
project in terms of working force and completion
time. So, risk in software development process
will decrease.

The relation of user requirements to developed
methods: A software development project makes
the customers’ works easy with the contribution
of software developers who work methodically
based on the software development process. In
addition, they can master the user needs more
than others, and design and develop a software
project which meets the user requirements and
the project outputs almost completely. So, risk in
software development process will decrease.

The relation of “Exception Handling” to “Error
Handling”: Applying the property of “Exception
Handling” in software developement directs
software developers to use the property “Error
Handling”. Also, the property “Exception
Handling” is the main condition of the property
“Error Handling”. That means if a software
developer would like to do error handling
operation while programming, s/he has to do
exception handling operation before that. So,
risk in software development process will
decrease.

The relation of software quality to reusability: It
can be indicated that paying attention to the
quality in the software project by software
developers directs them to use the property
“Reusability” in software development.
Moreover, the software developers who pay
attention to the quality while designing and
implementing a program, can also apply the
property of “Reusability” features easily at the
same time since software quality depends on a
software development method and this

DEÜ FMD 23(69), 903-911, 2021

910

development process bring to reuse designed
and developed methods and models with it. So,
risk in software development process will
decrease.

The relation of reliable code writing to practical
program: In order to ensure reliable operation of
the product that will be produced during the
software development process and to give the
desired results, it requires the reliable writing of
the program of the software, which means that
the codes of the program are developed
according to the reliable structure. Furthermore,
if a software can be executed, this may be
understood and used. So, risk in software
development process will decrease.

The relation of developed methods to software
quality: It can be shown that using models which
have been determined before in software
development directs software developers’
companies to guarantee the quality of the
software. In addition, the models and methods
which have been designed and developed before
is accepted as a main factor of software quality
since these models and methods are required
from software development methods which
have an aim of rising the quality in software
products. So, risk in software development
process will decrease.

7. Conclusion

There are four fundamental motivations to
apply, actualize and determine “Software Risk
Assessment and Management” in software
development process as indicated by Boehm
[30,31]: To stay away from overwhelms in
arranging and in financial plan, and to guarantee
that the software projects run impeccably, and
also to ensure that software companies are able
to create their products in the direction of their
necessities. To forestall duplication of inner or
outer software structure or coding which is
caused by inadequate or muddled necessities
that are about half of software projects’ costs.
Not to do software risk assessment and analysis
in the zones that have (practically) no danger. To
design and develop a product arrangement
about software projects that the client needs so
as to empower the venders to get the consumer
loyalty and the ideal benefits.

As a result of the analysis and the research about
software risk assessment and management; six
main software risk rules based on “Fuzzy
Approach” – is suitable with uncertainty like in

the risks’ nature – have been figured out: the
relation of developed methods to software
development method, the relation of user
requirements to developed methods, the relation
of “Exception Handling” to “Error Handling”, the
relation of software quality to reusability, the
relation of reliable code writing to practical
program, the relation of developed methods to
software quality. If one pays attention these 6
rules (relations based on “Fuzzy Logic”), risk in
software development process will decrease.
According to the results of this evaluation of
software risk rules based on “Fuzzy Approach”,
“manpower”, “time” and “price” that are the main
resources of software development process will
be used more effectively. Thus, the benefits of
“Fuzzy Logic” in “Software Risk Assessment and
Management” will be seen more clearly and
tangible.

References

[1] Smith, M. 1989. The people risks, Computer Law &
Security Review, vol. 4, p. 2-6. DOI: 10.1016/0267-
3649(89)90002-2

[2] Renn, O. 2004. Perception of risks, Toxicology
Letters, vol. 149, p. 405-413. DOI:
10.1016/j.toxlet.2003.12.051

[3] Lezzoni, L. K. 1997. The risks of risk adjustment,
JAMA Journal of the American Medical Association,
vol. 278, p. 1600-1607. DOI:
10.1001/jama.278.19.1600

[4] Arnuphaptrairong, T. 2011. Top ten lists of software
project risks: Evidence from the literature survey.
International MultiConference of Engineers and
Computer Scientists, 16-18 March, Hong Kong, 1-6.

[5] Dey, P. K., Kinch, J., Ogunlana, S. O. 2007. Managing
risk in software development projects: A case study,
Industrial Management & Data Systems, vol. 107, p.
284-303. DOI: 10.1108/02635570710723859

[6] Gallivan, M. J. 1998. The influence of system
developers’ creative style on their attitudes toward
and assimilation of a software process innovation.
Thirty-First Hawaii International Conference on
System Sciences, 6-9 January, Kohala Coast, 435-444.

[7] Sawyer, S., Guinan P. J. 1998. Software development:
Processes and performance, IBM Systems Journal,
vol. 37, p. 552-569. DOI: 10.1147/sj.374.0552

[8] Hall, T., Wilson, D., Rainer, A., Jagielska, D. 2007. The
neglected technical skill? ACM SIGMIS CPR
Conference on Computer Personnel Research: The
Global Information Technology Workforce, 19-21
April, St. Louis Missouri, 196-202.

[9] Baggelaar, H. 2008. Evaluating programmer
performance visualizing the impact of programmers
on project goals. M.Sc. Thesis, University of
Amsterdam.

[10] Lee, K., Joshi, K., Kim, Y. 2008. Person-job fit as a
moderator of the relationship between emotional
intelligence and job performance. ACM SIGMIS CPR
Conference on Computer Personnel Doctoral

DEÜ FMD 23(69), 903-911, 2021

911

Consortium and Research, 3-5 April, Charlottesville
VA, 70-75.

[11] Thing, C. 2008. The application of the function point
analysis in software developers’ performance
evaluation. 4th International Conference on Wireless
Communications, Networking and Mobile
Computing, 12-17 October, China, 1-4.

[12] Zhang, S., Wang, Y., Xiao, J. 2008. Mining individual
performance indicators in collaborative
development using software repositories. 15th Asia-
Pacific Software Engineering Conference, 3-5
December, China, 247-254.

[13] Calikli, G., Bener, A. 2010. Empirical analyses of the
factors affecting confirmation bias and the effects of
confirmation bias on software developer/tester
performance. 6th International Conference on
Predictive Models in Software Engineering, 12-13
September, Romania, no. 10.

[14] Chilton, M. A., Hardgrave, B. C., Armstrong, D. J. 2010.
Performance and strain levels of it workers engaged
in rapidly changing environments: A person-job fit
perspective, ACM SIGMIS Database, vol. 41, p. 8-35.
DOI: 10.1145/1719051.1719053

[15] Ramler, R., Klammer, C., Natschläger, T. 2010. The
usual suspects: A case study on delivered defects per
developer. ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement,
16-17 September, Italy, no. 48.

[16] Wang, Y., Zhang, M. 2010. Penalty policies in
professional software development practice: A
multi-method field study. 32nd ACM/IEEE
International Conference on Software Engineering, 1
May, Cape Town South Africa, 39-47.

[17] Balijepally, V., Nerur, S., Mahapatra, R. 2012. Effect of
task mental models on software developer’s
performance: An experimental investigation. 45th
Hawaii International Conference on System Science,
4-7 January, Hawaii, 5442-5451.

[18] Duarte, C. B., Faria, J. P., Raza, M. 2012. PSP PAIR:
Automated personal software process performance
analysis and improvement recommendation. Eighth
International Conference on the Quality of
Information and Communications Technology, 3-6
September, Portugal, 131-136.

[19] Ehrlich, K., Cataldo, M. 2012. All-for-one and one-for-
all?: A multi-level analysis of communication
patterns and individual performance in
geographically distributed software development.
ACM 2012 Conference on Computer Supported
Cooperative Work, 11-15 February, Washington,
945-954.

[20] Kelly, B., Haddad, H. M. 2012. Metric techniques for
maintenance programmers in a maintenance ticket
environment, Journal of Computing Sciences in
Colleges, vol. 28, p. 170-178. DOI:
10.5555/2382887.2382915

[21] Schröter, A., Aranda, J., Damian, D., Kwan, I. 2012. To
talk or not to talk: Factors that influence
communication around changesets. ACM 2012
Conference on Computer Supported Cooperative
Work, 11-15 February, Washington, 1317-1326.

[22] Westermann, D. 2012. A generic methodology to
derive domain-specific performance feedback for
developers. 34th International Conference on
Software Engineering, 2-9 June, Zurich, 1527-1530.

[23] Calikli, G., Bener, A. 2013. An algorithmic approach to
missing data problem in modeling human aspects in
software development. 9th International Conference
on Predictive Models in Software Engineering, 9
October, Baltimore Maryland, no. 10.

[24] Kumar, C., Yadav, D. K. 2015. A probabilistic software
risk assessment and estimation model for software
projects, Procedia Computer Science, vol. 54, p. 353-
361. DOI: 10.1016/j.procs.2015.06.041

[25] Lyytinen, K., Mathiassen, L., Ropponen, J. 1996. A
framework for software risk management, Journal of
Information Technology, vol. 11, p. 275-285.
DOI:10.1057/jit.1996.2

[26] Ross, T. J. 2016. Fuzzy Logic with Engineering
Applications. 4th edition. John Wiley & Sons Inc.,
United Kingdom, 580p.

[27] Hájek, P. 1998. Metamathematics of Fuzzy Logic.
TREN, vol. 4, Kluwer Academic Publishers, Springer,
Dordrecht, 299p.

[28] Carlsson, C., Fuller, R. 2003. A fuzzy approach to real
option valuation, Fuzzy Sets and Systems, vol. 139 p.
297-312. DOI: 10.1016/S0165-0114(02)00591-2

[29] Shen, Q., Chouchoulas, A. 2002. A rough-fuzzy
approach for generating classification rules, Pattern
Recognition, vol. 35, p. 2425-2438. DOI:
10.1016/S0031-3203(01)00229-1

[30] Boehm, B. W. 1989. Software Risk Management. IEEE
Press, New York, 455p.

[31] Boehm, B. W. 1991. Software risk management:
principles and practices, IEEE Software, vol. 8, p. 32-
41. DOI: 10.1109/52.62930

