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Abstract

Recently, Sb-metric spaces have been introduced as the generalizations of metric and S-metric spaces. In this paper, we generalize the
classical Banach contraction principle using the theory of a complete Sb-metric space. Also, we give an application to linear equation systems
using the Sb-metric generated by a metric.
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1. Introduction and mathematical preliminaries

Metric spaces and fixed point theorems are very important in many areas of mathematics. Some generalizations of metric spaces and fixed
points of various contractive mappings have been studied extensively. Bakhtin introduced b-metric spaces as a generalization of metric spaces
[5]. Mustafa and Sims defined the concept of a generalized metric space which is called a G-metric space [17]. Sedghi, Shobe and Aliouche
gave the notion of an S-metric space and proved some fixed-point theorems for a self-mapping on a complete S-metric space [23]. Aghajani,
Abbas and Roshan presented a new type of metric which is called Gb-metric and studied some properties of this metric [1]. Since then, many
authors obtained several fixed-point results in the various generalized metric spaces (see [2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 15, 18, 19, 20, 24, 25]
for more details). Also, some applications of fixed point theory were studied on various metric spaces. Several applications of the Banach
contraction principle were given in many areas such as integral equations, linear equations, differential equations etc. For example, the
present authors investigated some applications on S-metric spaces (see [21] and [22]).
Recently, the concept of an Sb-metric space, as a generalization of metric spaces and S-metric spaces, has been introduced in [26] and a
common fixed point theorem for four mappings has been studied on a complete Sb-metric space. The notion of an Sb-metric was generalized
to the notion of an Ab-metric in [29]. When n = 3, the notion of “an Sb-metric” coincides with the notion of “an Ab-metric”. Some fixed
point theorems were given under different contraction and expansion type conditions (see [29] for more details). After then, some fixed-point
results have been studied with various approaches (see [13, 14, 16, 27, 30] for some examples).
In this paper, we consider a complete Sb-metric space and prove two generalizations of the classical Banach fixed point result. In Section 2,
we recall some known definitions. In Section 3, we deal with the notion of an Sb-metric and investigate some properties of Sb-metric spaces.
We study some relationships between an Sb-metric and some other metrics. In Section 4, we prove the Banach contraction principle on a
complete Sb-metric space and give a new fixed point theorem as a generalization of the Banach contraction principle with a counterexample.
In Section 5, we present an application to linear equations on an Sb-metric space (X ,S1).
Now we recall the following definitions.

Definition 1.1. [5] Let X be a nonempty set, b≥ 1 a given real number and d : X×X → [0,∞) a function satisfying the following conditions
for all x,y,z ∈ X :
(b1) d(x,y) = 0 if and only if x = y.
(b2) d(x,y) = d(y,x).
(b3) d(x,z)≤ b[d(x,y)+d(y,z)].
Then the function d is called a b-metric on X and the pair (X ,d) is called a b-metric space.

Definition 1.2. [17] Let X be a nonempty set and G : X×X×X → [0,∞) a function satisfying the following conditions:
(G1) G(x,y,z) = 0 if x = y = z.
(G2) 0 < G(x,x,y) for all x,y ∈ X with x 6= y.
(G3) G(x,x,y)≤ G(x,y,z) for all x,y,z ∈ X with y 6= z.
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(G4) G(x,y,z) = G(x,z,y) = G(y,z,x) = · · · .
(G5) G(x,y,z)≤ G(x,a,a)+G(a,y,z) for all x,y,z,a ∈ X.
Then the function G is called a generalized metric or a G-metric on X and the pair (X ,G) is called a G-metric space.

Definition 1.3. [1] Let X be a nonempty set, b≥ 1 a given real number and Gb : X ×X ×X → [0,∞) a function satisfying the following
conditions:
(Gb1) Gb(x,y,z) = 0 if x = y = z.
(Gb2) 0 < Gb(x,x,y) for all x,y ∈ X with x 6= y.
(Gb3) Gb(x,x,y)≤ Gb(x,y,z) for all x,y,z ∈ X with y 6= z.
(Gb4) Gb(x,y,z) = Gb(x,z,y) = Gb(y,z,x) = · · · .
(Gb5) Gb(x,y,z)≤ b[Gb(x,a,a)+Gb(a,y,z)] for all x,y,z,a ∈ X.
Then the function Gb is called a generalized b-metric or a Gb-metric on X and the pair (X ,Gb) is called a Gb-metric space.

Definition 1.4. [23] Let X be a nonempty set and S : X×X×X → [0,∞) a function satisfying the following conditions for all x,y,z,a ∈ X :
(S1) S(x,y,z) = 0 if and only if x = y = z.
(S2) S(x,y,z)≤ S(x,x,a)+S(y,y,a)+S(z,z,a).
Then the function S is called an S-metric on X and the pair (X ,S) is called an S-metric space.

We use the following lemma in the next sections.

Lemma 1.5. [23] Let (X ,S) be an S-metric space. Then we have

S(x,x,y) = S(y,y,x).

2. Sb-Metric spaces

In this section, we recall the notion of an Sb-metric space and study some properties of this space.

Definition 2.1. [26] Let X be a nonempty set and b≥ 1 a given real number. A function Sb : X×X×X → [0,∞) is said to be Sb-metric if
and only if for all x,y,z,a ∈ X the following conditions are satisfied:
(Sb1) Sb(x,y,z) = 0 if and only if x = y = z,
(Sb2) Sb(x,y,z)≤ b[Sb(x,x,a)+Sb(y,y,a)+Sb(z,z,a)].
The pair (X ,Sb) is called an Sb-metric space.
We note that Sb-metric spaces are the generalizations of S-metric spaces since every S-metric is an Sb-metric with b = 1. But the converse
statement is not always true (see [26] for more details). In the following, we give another example of an Sb-metric which is not an S-metric
on X.

Example 2.2. Let X = R and the function Sb be defined as

Sb(x,y,z) =
1

16
(|x− y|+ |y− z|+ |x− z|)2.

Then the function Sb is an Sb-metric with b = 4, but it is not an S-metric. Indeed, for x = 4, y = 6, z = 8 and a = 5, we get

Sb(4,6,8) = 4, Sb(4,4,5) =
1
4

, Sb(6,6,5) =
1
4

, Sb(8,8,5) =
9
4

.

Hence we have

Sb(4,6,8) = 4≤ Sb(4,4,5)+Sb(6,6,5)+Sb(8,8,5) =
11
4

,

which is a contradiction with (S2).

Definition 2.3. Let (X ,Sb) be an Sb-metric space and b > 1. An Sb-metric Sb is called symmetric if

Sb(x,x,y) = Sb(y,y,x), (2.1)

for all x,y ∈ X.

In [28], it was given a definition of an Sb-metric with the symmetry condition “Sb(x,x,y) = Sb(y,y,x)” (see Definition 1.3 on page 132).
However, in the definition of an Sb-metric, the symmetry condition (2.1) is not necessary. In fact, for b = 1 the Sb-metric induced to an
S-metric. It is known that the symmetry condition (2.1) is automatically satisfied by an S-metric (see Lemma 1.5). So Definition 2.1 of an
Sb-metric is more general than given in [28].
We give the following examples of a symmetric Sb-metric and a non-symmetric Sb-metric, respectively.

Example 2.4. Let (X ,d) be a metric space and the function Sb : X×X×X → [0,∞) defined as

Sb(x,y,z) = [d(x,y)+d(y,z)+d(x,z)]p ,

for all x,y,z ∈ X and p > 1. Then it can be easily seen that Sb is an Sb-metric on X. Also the function Sb satisfies the symmetry condition
(2.1).
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Example 2.5. Let X = R and the function Sb : X×X×X → [0,∞) be defined as

Sb(0,0,1) = 2,
Sb(1,1,0) = 4,
Sb(x,y,z) = 0 if x = y = z,
Sb(x,y,z) = 1 otherwise,

for all x,y,z ∈ R. Then the function Sb is an Sb-metric with b≥ 2 which is not symmetric.

We define some topological concepts in the following:

Definition 2.6. Let (X ,Sb) be an Sb-metric space, x ∈ X and A,B⊂ X.

1. We define the distance between the sets A and B by

Sb(A,A,B) = inf{Sb(x,x,y) : x ∈ A,y ∈ B}.

2. We define the distance of the point x to the set A by

Sb(x,x,A) = inf{Sb(x,x,y) : y ∈ A}.

3. We define the diameter of A by

δ (A) = sup{Sb(x,x,y) : x,y ∈ A}.

Now we recall the definition of an open ball and a closed ball on Sb-metric spaces, respectively.

Definition 2.7. [26] Let (X ,Sb) be an Sb-metric space. The open ball Bb
S(x,r) and the closed ball Bb

S[x,r] with a center x and a radius r are
defined by

Bb
S(x,r) = {y ∈ X : Sb(y,y,x)< r}

and

Bb
S[x,r] = {y ∈ X : Sb(y,y,x)≤ r},

for r > 0, x ∈ X, respectively.

Example 2.8. Let us consider the Sb-metric space defined in Example 2.2 as follows:

Sb(x,y,z) =
1

16
(|x− y|+ |y− z|+ |x− z|)2,

for all x,y,z ∈ R. Then we get

Bb
S(0,2) = {y ∈ R : Sb(y,y,0)< 2}= (−2

√
2,2
√

2)

and

Bb
S[0,2] = {y ∈ R : Sb(y,y,0)≤ 2}= [−2

√
2,2
√

2].

Definition 2.9. Let (X ,Sb) be an Sb-metric space and X ′ ⊂ X.

1. If there exists an r > 0 such that Bb
S(x,r)⊂ X ′ for every x ∈ X ′ then X ′ is called an open subset of X.

2. Let τ be the set of all X ′ ⊂ X with x ∈ X ′ such that there exists an r > 0 satisfying Bb
S(x,r)⊂ X ′. Then τ is called the topology induced

by the Sb-metric.
3. X ′ is called Sb-bounded if there exists an r > 0 such that Sb(x,x,y) < r for all x,y ∈ X ′. If X ′ is Sb-bounded then we will write

δ (X ′)< ∞.

Definition 2.10. [26] Let (X ,Sb) be an Sb-metric space.

1. A sequence {xn} in X converges to x if and only if Sb(xn,xn,x)→ 0 as n→ ∞, that is, for each ε > 0 there exists n0 ∈ N such that for
all n≥ n0, Sb(xn,xn,x)< ε . It is denoted by

lim
n→∞

xn = x.

2. A sequence {xn} in X is called a Cauchy sequence if for each ε > 0 there exists n0 ∈N such that Sb(xn,xn,xm)< ε for each n,m≥ n0.
3. The Sb-metric space (X ,Sb) is said to be complete if every Cauchy sequence is convergent.

Now we investigate some relationships between Sb-metric and some other metrics. The relationship between a metric and an S-metric are
given in [11] as follows:

Lemma 2.11. [11] Let (X ,d) be a metric space. Then the following properties are satisfied:

1. Sd(x,y,z) = d(x,z)+d(y,z) for all x,y,z ∈ X is an S-metric on X.
2. xn→ x in (X ,d) if and only if xn→ x in (X ,Sd).
3. {xn} is Cauchy in (X ,d) if and only if {xn} is Cauchy in (X ,Sd).
4. (X ,d) is complete if and only if (X ,Sd) is complete.
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Since every S-metric is an Sb-metric, using Lemma 2.11, an Sb-metric generated by a metric d is defined as follows:

Sd
b(x,y,z) = b[d(x,z)+d(y,z)],

for all x,y,z ∈ X with b≥ 1. But there exists an Sb-metric which is not generated by any metric as seen in the following example.

Example 2.12. Let X = R. We consider the function S : X×X×X → [0,∞) given in [19] as follows:

S(x,y,z) = |x− z|+ |x+ z−2y| ,

for all x,y,z ∈ R. Then (X ,S) is an S-metric space. Hence (X ,S) is an Sb-metric space with b = 1. This metric is not generated by any
metric d.

In the following lemmas, we show that the relationships between a b-metric and an Sb-metric.

Lemma 2.13. Let (X ,Sb) be an Sb-metric space, Sb a symmetric Sb-metric with b≥ 1 and the function d : X×X → [0,∞) defined by

d(x,y) = Sb(x,x,y),

for all x,y ∈ X. Then d is a b-metric on X.

Proof. It can be easily seen that the conditions (b1) and (b2) are satisfied. Now we show that the condition (b3) is satisfied. Using the
inequality (Sb2), we have

d(x,y) = Sb(x,x,y)≤ b[2Sb(x,x,z)+Sb(y,y,z)]

= 2bSb(x,x,z)+bSb(y,y,z)

and

d(x,y) = Sb(y,y,x)≤ b[2Sb(y,y,z)+Sb(x,x,z)]

= 2bSb(y,y,z)+bSb(x,x,z).

Hence we obtain

d(x,y)≤ 3b
2
[d(x,z)+d(y,z)],

for all x,y ∈ X . Then d is a b-metric on X with
3b
2

.

Lemma 2.14. Let (X ,d) be a b-metric space with b≥ 1 and the function Sb : X×X×X → [0,∞) be defined by

Sb(x,y,z) = d(x,z)+d(y,z),

for all x,y,z ∈ X. Then Sb is an Sb-metric on X.

Proof. It can be easily verified that the condition (Sb1) is satisfied. We prove that the condition (Sb2) is satisfied. Using the inequality (b3)
we get

Sb(x,y,z) = d(x,z)+d(y,z)

≤ b[d(x,a)+d(a,z)]+b[d(y,a)+d(a,z)]

= bd(x,a)+2bd(a,z)+bd(y,a)

≤ 2bd(x,a)+2bd(y,a)+2bd(a,z)

= b[Sb(x,x,a)+Sb(y,y,a)+Sb(z,z,a)],

for all x,y,z ∈ X . Then Sb is an Sb-metric on X with b.

Now we give the following example to show that there exists an Sb-metric which is not generated by any b-metric.

Example 2.15. Let X = R and define the function Sb : X×X×X → [0,∞)

Sb(x,y,z) = b(|x− z|+ |x+ z−2y|) ,

for all x,y,z ∈ R, where b≥ 1. Then (R,Sb) is an Sb-metric space. Now we show that there does not exist any b-metric d which generates
this Sb-metric. Conversely, assume that there exists a b-metric d such that

Sb(x,y,z) = d(x,z)+d(y,z),

for all x,y,z ∈ R. Then we get

Sb(x,x,z) = 2d(x,z) = 2b |x− z| and d(x,z) = b |x− z|

and

Sb(y,y,z) = 2d(y,z) = 2b |y− z| and d(y,z) = b |y− z| ,

for all x,y,z ∈ R. Therefore we obtain

b(|x− z|+ |x+ z−2y|) = b |x− z|+b |y− z| ,

which is a contradiction. Consequently, the Sb-metric can not be generated by any b-metric.

Remark 2.16. Notice that the class of all S-metrics and the class of all G-metrics are distinct [6]. Since every S-metric is an Sb-metric and
every G-metric is a Gb-metric then the class of all Sb-metrics and the class of all Gb-metrics are distinct.
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3. Some fixed point results

In this section, we prove the Banach contraction principle on complete Sb-metric spaces. Then we give a generalization of this principle. We
use the following lemma.

Lemma 3.1. [26] Let (X ,Sb) be an Sb-metric space with b≥ 1, then we have

Sb(x,x,y)≤ bSb(y,y,x) and Sb(y,y,x)≤ bSb(x,x,y).

Theorem 3.2. Let (X ,Sb) be a complete Sb-metric space with b≥ 1 and T : X → X a self-mapping satisfying

Sb(T x,T x,Ty)≤ hSb(x,x,y), (3.1)

for all x,y,z ∈ X, where 0≤ h <
1
b2 . Then T has a unique fixed point x in X.

Proof. Let T satisfies the inequality (3.1) and x0 ∈ X . Then we define the sequence {xn} by xn = T nx0. Using the inequality (3.1) and
mathematical induction, we obtain

Sb(xn,xn,xn+1)≤ hnSb(x0,x0,x1). (3.2)

Since the conditions (Sb2) and (3.2) are satisfied for all n,m ∈ N with m > n, using Lemma 3.1 we get

Sb(xn,xn,xm) ≤ b[2Sb(xn,xn,xn+1)+Sb(xm,xm,xn+1)]

≤ b [2Sb(xn,xn,xn+1)+bSb(xn+1,xn+1,xm)]

≤ 2bSb(xn,xn,xn+1)+b3 [2Sb(xn+1,xn+1,xn+2)+Sb(xm,xm,xn+2)]

≤ 2bSb(xn,xn,xn+1)+b3 [2Sb(xn+1,xn+1,xn+2)+bSb(xn+2,xn+2,xm)]

≤ 2bSb(xn,xn,xn+1)+2b3Sb(xn+1,xn+1,xn+2)+b4Sb(xn+2,xn+2,xm)

· · ·
≤ 2bSb(xn,xn,xn+1)+2b3Sb(xn+1,xn+1,xn+2)+ · · ·+2b2m−2n−1Sb(xm−1,xm−1,xm)

≤
(

2bhn +2b3hn+1 + ...+2b2m−2n−1hm−1
)

Sb(x0,x0,x1)

≤ 2bhn
(

1+b2h+b4h2 + ...+b2m−2n−2hm−n−1
)

Sb(x0,x0,x1)

= 2bhn 1−b2m−2nhm−n

1−b2h
Sb(x0,x0,x1)

≤ 2bhn

1−b2h
Sb(x0,x0,x1).

Since h ∈
[

0,
1
b2

)
, where b≥ 1, taking limit for n→ ∞ then we obtain Sb(xn,xn,xm)→ 0 and so {xn} is a Cauchy sequence. Since X is

complete Sb-metric space there exists x ∈ X with lim
n→∞

xn = x.

Assume that T x 6= x. Using the inequality (3.1) we have

Sb(T x,T x,xn+1)≤ hSb(x,x,xn).

If we take limit for n→ ∞, we get a contradiction as follows:

Sb(T x,T x,x)≤ hSb(x,x,x).

Hence T x = x. Now we show that the fixed point x is unique. Suppose that T x = x, Ty = y and x 6= y. Using the inequality (3.1), we have

Sb(T x,T x,Ty) = Sb(x,x,y)≤ hSb(x,x,y).

We obtain x = y since h ∈
[

0,
1
b2

)
. Consequently, x is a unique fixed point of the self-mapping T .

Remark 3.3. If we take b = 1 in Theorem 3.2 then we obtain Theorem 1 in [20].

Corollary 3.4. Let (X ,Sb) be a complete Sb-metric space with b≥ 1, Sb symmetric and T : X → X a self-mapping satisfying the inequality

(3.1) for all x,y,z ∈ X, where 0≤ h <
1
b

. Then T has a fixed point x in X.
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Proof. In the proof of Theorem 3.2, if we use the symmetry condition (2.1) instead of Lemma 3.1, we obtain

Sb(xn,xn,xm) ≤ b[2Sb(xn,xn,xn+1)+Sb(xm,xm,xn+1)]

= b [2Sb(xn,xn,xn+1)+Sb(xn+1,xn+1,xm)]

≤ 2bSb(xn,xn,xn+1)+b2 [2Sb(xn+1,xn+1,xn+2)+Sb(xm,xm,xn+2)]

= 2bSb(xn,xn,xn+1)+2b2Sb(xn+1,xn+1,xn+2)+b2Sb(xn+2,xn+2,xm)

· · ·
= 2bSb(xn,xn,xn+1)+2b2Sb(xn+1,xn+1,xn+2)+ ...+2bm−nSb(xm−1,xm−1,xm)

≤
(

2bhn +2b2hn+1 + ...+2bm−nhm−1
)

Sb(x0,x0,x1)

≤ 2bhn
(

1+bh+b2h2 + ...+bm−n−1hm−n−1
)

Sb(x0,x0,x1)

≤ 2bhn 1−bm−nhm−n

1−bh
Sb(x0,x0,x1)

≤ 2bhn

1−hb
Sb(x0,x0,x1).

Since h ∈
[

0,
1
b

)
with b≥ 1, the rest of the proof is similar to that in the proof of Theorem 3.2.

Example 3.5. Let X = R and consider the Sb-metric defined in Example 2.2 as follows:

Sb(x,y,z) =
1

16
(|x− y|+ |y− z|+ |x− z|)2,

for all x,y,z ∈ R with b = 4. If we define the self-mapping T of R as

T x =
x
6

,

for all x ∈ R then T satisfies the condition of the Banach contraction principle. Indeed, we get

Sb(T x,T x,Ty) =
|x− y|2

144
≤ hSb(x,x,y) =

|x− y|2

72
,

for all x ∈ R and h =
1

18
. Hence T has a unique fixed point x = 0 in R.

Now we give the following theorem as a generalization of the Banach contraction principle on complete Sb-metric spaces.

Theorem 3.6. Let (X ,Sb) be a complete Sb-metric space with b≥ 1 and T a self-mapping of X satisfying the following condition:
There exist real numbers α1, α2 satisfying α1 +

(
2b2 +b

)
α2 < 1 with α1, α2 ≥ 0 such that

Sb(T x,T x,Ty) ≤ α1Sb(x,x,y)+α2 max{Sb(T x,T x,x),Sb(T x,T x,y),Sb(Ty,Ty,y),Sb(Ty,Ty,x)}, (3.3)

for all x,y ∈ X. Then T has a unique fixed point x in X.

Proof. Let x0 ∈ X and the sequence {xn} be defined as follows:

T x0 = x1, T x1 = x2, · · · , T xn = xn+1, · · · .

Assume that xn 6= xn+1 for all n. Using the condition (3.3), we get

Sb(xn,xn,xn+1) = Sb(T xn−1,T xn−1,T xn)≤ α1Sb(xn−1,xn−1,xn) (3.4)

+α2 max{Sb(xn,xn,xn−1),Sb(xn,xn,xn),

Sb(xn+1,xn+1,xn),Sb(xn+1,xn+1,xn−1)}
= α1Sb(xn−1,xn−1,xn)+α2 max{Sb(xn,xn,xn−1),

Sb(xn+1,xn+1,xn),Sb(xn+1,xn+1,xn−1)}.

By the condition (Sb2), we have

Sb(xn+1,xn+1,xn−1)≤ b[2Sb(xn+1,xn+1,xn)+Sb(xn−1,xn−1,xn)]. (3.5)

Using the conditions (3.4), (3.5) and Lemma 3.1, we obtain

Sb(xn,xn,xn+1) ≤ α1Sb(xn−1,xn−1,xn)+α2 max{Sb(xn,xn,xn−1),

Sb(xn+1,xn+1,xn),2bSb(xn+1,xn+1,xn)+bSb(xn−1,xn−1,xn)

≤ α1Sb(xn−1,xn−1,xn)+2bα2Sb(xn+1,xn+1,xn)

+bα2Sb(xn−1,xn−1,xn)

≤ α1Sb(xn−1,xn−1,xn)+2b2
α2Sb(xn,xn,xn+1)

+bα2Sb(xn−1,xn−1,xn)
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and so

(1−2b2
α2)Sb(xn,xn,xn+1)≤ (α1 +bα2)Sb(xn−1,xn−1,xn),

which implies

Sb(xn,xn,xn+1)≤
α1 +bα2

1−2b2α2
Sb(xn−1,xn−1,xn). (3.6)

Let d =
α1 +bα2

1−2b2α2
. Then d < 1 since α1 +

(
2b2 +b

)
α2 < 1. Notice that 1− 2b2α2 6= 0 since 0 ≤ α2 <

1
2b2 +b

. Now repeating this

process in the inequality (3.6), we get

Sb(xn,xn,xn+1)≤ dnSb(x0,x0,x1). (3.7)

We show that the sequence {xn} is Cauchy. Indeed, for all n,m ∈ N, m > n, using the conditions (3.7) and (Sb2), we obtain

Sb(xn,xn,xm)≤
2bdn

1−b2d
Sb(x0,x0,x1).

We have lim
n,m→∞

Sb(xn,xn,xm) = 0 by the above inequality and so {xn} is a Cauchy sequence. By the completeness hypothesis, there exists

x ∈ X such that {xn} converges to x. Suppose that T x 6= x. Then we have

Sb(xn,xn,T x) = Sb(T xn−1,T xn−1,T x)

≤ α1Sb(xn−1,xn−1,x)+α2 max{Sb(xn,xn,xn−1),

Sb(xn,xn,x),Sb(T x,T x,x),Sb(T x,T x,xn−1)}

and so taking limit for n→ ∞ and using Lemma 3.1, we get

Sb(x,x,T x)≤ α2Sb(T x,T x,x)≤ α2bSb(x,x,T x),

which implies Sb(T x,T x,x) = 0 and T x = x since 0≤ α2 <
1

2b2 +b
.

Finally we show that the fixed point x is unique. To do this, we assume that x 6= y such that T x = x and Ty = y. Using the inequality (3.3)
and Lemma 3.1, we have

Sb(T x,T x,Ty) = Sb(x,x,y)≤ α1Sb(x,x,y)+α2 max{Sb(x,x,x),Sb(x,x,y),Sb(y,y,y),Sb(y,y,x)},

which implies x = y since α1 +bα2 < 1. Then the proof is completed.

Corollary 3.7. Let (X ,Sb) be a complete Sb-metric space with b ≥ 1, Sb symmetric and T a self-mapping of X satisfying the following
condition:
There exist real numbers α1, α2 satisfying α1 +3bα2 < 1 with α1, α2 ≥ 0 such that

Sb(T x,T x,Ty) ≤ α1Sb(x,x,y)+α2 max{Sb(T x,T x,x),Sb(T x,T x,y),Sb(Ty,Ty,y),Sb(Ty,Ty,x)},

for all x,y ∈ X. Then T has a unique fixed point x in X.

Proof. The proof follows easily by using the symmetry condition (2.1) instead of Lemma 3.1 in the proof of Theorem 3.6.

Remark 3.8. We note that Theorem 3.6 is a generalization of the Banach contraction principle on Sb-metric spaces. Indeed, if we take

α1 <
1
b2 and α2 = 0 in Theorem 3.6 we obtain the Banach contraction principle.

Now we give an example of a self-mapping satisfying the conditions of Theorem 3.6 such that the condition of the Banach contraction
principle is not satisfied.

Example 3.9. We consider the S-metric space (R,S) with

S(x,y,z) = |x− z|+ |x+ z−2y| ,

for all x,y,z ∈ R given in [19] and the self-mapping T of R as

T x =
{

x+50 if |x−1|= 1
45 if |x−1| 6= 1 ,

for all x ∈ R defined in [20]. Since every S-metric space is an Sb-metric space, (R,S) is an Sb-metric space with b = 1. Then the inequality

(3.3) is satisfied for α1 = 0 and α2 =
1
5

. Then T has a unique fixed point x = 45 by Theorem 3.6. But T does not satisfy the condition of the

Banach contraction principle since for x = 1, y = 0 we get

S(T x,T x,Ty) = 10≤ hS(x,x,y) = 2h,

which is a contradiction with h < 1.
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4. An application of the Banach contraction to linear equations

In this section, we give an application of the Banach contraction principle on Sb-metric spaces to linear equations. To do this, we consider
the Sb-metric space generated by

d1(x,y) =
n

∑
i=1
|xi− yi| ,

for all x,y ∈ Rn. We note that the symmetry condition (2.1) is not necessary in the following example.

Example 4.1. Let X = Rn be an Sb-metric space with the Sb-metric defined by

S1(x,y,z) =
n

∑
i=1
|xi− zi|+

n

∑
i=1
|yi− zi| ,

for all x,y,z ∈ Rn, where b = 1. If

n

∑
i=1

∣∣ai j
∣∣≤ h < 1, (1≤ j ≤ n)

then the system of linear equations

a11x1 +a12x2 + · · ·+a1nxn = b1 (4.1)

a21x1 +a22x2 + · · ·+a2nxn = b2

...

an1x1 +an2x2 + · · ·+annxn = bn

has a unique solution. Let T be defined by

T x = Ax+b,

where x,b ∈ Rn and

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
... . . .

...
an1 an2 · · · ann

 .

Now we show that the self-mapping satisfies the contraction of the Banach contraction principle. For x,y ∈ Rn we get

S1(T x,T x,Ty) = 2
n

∑
i=1

∣∣∣∣∣ n

∑
j=1

ai j(x j− y j)

∣∣∣∣∣≤ 2
n

∑
i=1

n

∑
j=1

∣∣ai j
∣∣ ∣∣x j− y j

∣∣
= 2

n

∑
j=1

n

∑
i=1

∣∣ai j
∣∣ ∣∣x j− y j

∣∣= n

∑
j=1

2
∣∣x j− y j

∣∣ n

∑
i=1

∣∣ai j
∣∣

≤ hS1(x,x,y).

Then T satisfies the Banach contractive condition. Using Theorem 3.6, the linear equations system (4.1) has a unique solution.
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[7] Ö. Ege, Complex valued Gb-metric spaces, J. Comput. Anal. Appl. 21 (2) (2016), 363-368.
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