Research Article
BibTex RIS Cite

PİLOT ÖLÇEKLİ İÇME SUYU ARITMA TESİSİNDE HIZLI KARIŞTIRMA ÜNİTESİNİN MATEMATİKSEL MODELLENMESİ

Year 2021, Volume: 26 Issue: 2, 379 - 388, 31.08.2021
https://doi.org/10.17482/uumfd.824638

Abstract

Konvansiyonel arıtma üniteleri suda bulunan partiküler ve kolloidal maddelerin uzaklaştırılmasında yaygın olarak kullanılmaktadır. Ham sudaki organik maddenin karakteri ve konsantrasyonu, bulanıklık, pH, alkalinite ve sıcaklık gibi parametreler arıtma verimini önemli ölçüde etkilemektedir. Arıtma ünitelerinin verimini artırmak amacıyla genellikle inorganik pıhtılaştırıcılara ihtiyaç duyulmaktadır. İnorganik pıhtılaştırıcılar hızlı karıştırma ünitesine ilave edilmektedir ve suda çözündüğünde pH ile diğer parametrelere etki edebilmektedir. Konvansiyonel arıtma ünitelerinden biri olan hızlı karıştırma ünitesi, partiküler ve kolloidal maddelerin destabilize edilmesinde önemli rol oynamaktadır. Hızlı karıştırma ünitesinin verimli olması sonraki ünitelerin de verimlerini etkilemektedir. Bu çalışma kapsamında Büyükçekmece İçme Suyu Arıtma Tesisi ham suyu ile pilot ölçekli tesis işletilerek hızlı karıştırma ünitesi modellenmiştir. Ham su parametreleri kullanılarak hızlı karıştırma ünitesinin çıkış pH değerini tahmin edebilmek için korelasyon ve regresyon analizleri gerçekleştirilmiştir. İstatistiksel analiz ve modellemede Excel veri çözümleme araçları kullanılmıştır. %1,90 hata sınırı içerisinde pH değeri tahmin edilmiştir. Böylece, Türkiye’de ilk defa hızlı karıştırma ünitesi için bir matematiksel model oluşturulmuştur. Bu sonuçlar, oluşturulan modelin içme suyu arıtma tesislerinde kullanılabilir olacağını göstermektedir.

Supporting Institution

İstanbul Su ve Kanalizasyon İdaresi

Thanks

Bu çalışma, İstanbul Su ve Kanalizasyon İdaresi’nin (İSKİ) Araştırma ve Geliştirme Şube Müdürlüğü bünyesinde yürütülen “İçme Suyu Arıtma Tesis Proseslerinin Matematiksel Modellenmesi Araştırma Geliştirme Projesi” tarafından desteklenmiştir. Yazarlar, desteklerinden dolayı Proje Ekibi ’ne, Büyükçekmece Su Arıtma Şube Müdürlüğü’ne ve Temiz Su Laboratuvar Şube Müdürlüğü’ne teşekkür eder.

References

  • Bakker, M., Vreeburg, J.H.G., Palmen, L.J., Sperber, V., Bakker, G. ve Rietveld, L.C. (2013) Better water quality and higher energy efficiency by using model predictive flow control at water supply systems, Journal of Water Supply: Research and Technology—AQUA, 62(1), 1–13. doi: 10.2166/aqua.2013.063
  • Brandt, M.J., Johnson, K.M., Elphinston, A.J. ve Ratnayaka, D.D. (2017) Twort's Water Supply, 7. Basım, IWA Publishing, İngiltere. ISBN 13: 9781780406411
  • EPA, (2002). Water Treatment Manuals. Ireland Environmental Protection Agency. ISBN: 1-84095-090-0
  • Ernest, E., Onyeka, O., David, N., Blessing, O. (2017) Effects of pH, Dosage, Temperature and Mixing Speed on The Efficiency of Water Melon Seed in Removing the Turbidity and Colour of Atabong River, Awka-Ibom State, Nigeria, International Journal of Advanced Engineering, Management and Science, 3(5), doi: 10.24001/ijaems.3.5.4
  • Faust, S.D. ve Aly, O.M. (2017) Chemistry of Water Treatment, 2. Basım, CRC Press; Taylor and Francis, İngiltere. ISBN 13: 978-1575040110
  • Gagnon, C., Grandjean, B.P.A. ve Thibault, J. (1997) Modelling of coagulant dosage in a water treatment plant, Artificial Intelligence in Engineering, 11(4), 401-404. doi: 10.1016/S0954-1810(97)00010-1
  • Heddam, S., Bermad, A. Ve Dechemi, N. (2012) ANFIS-based modelling for coagulant dosage in drinking water treatment plant: a case study, Environmental Monitoring and Assessment 184, 1953–1971. doi: 10.1007/s10661-011-2091-x
  • Kumar, A. ve Dixit, C. (2017) Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids, Woodhead Publishing Elsevier Ltd, İngiltere, 43-58. doi: 10.1016/B978-0-08-100557-6.00003-1
  • Lanciné, G.D., Bamory, K., Raymond, L., Jean-Luc, S., Chrıstelle, B. ve Jean, B. (2008) Coagulation-Flocculation Treatment of a Tropical Surface Water with Alum for Dissolved Organic Matter (DOM) Removal: Influence of Alum Dose and pH Adjustment, Journal of International Environmental Application and Science, 3(4), 247-257.
  • Leeuwen Van, J., Holmes, M., Heidenreich, C., Daly, R., Fisher, I., Kastl, G., Sathasivan, A. ve Bursill, D. (2003) Modelling the Application of Inorganic Coagulants and pH Control Reagents for Removal of Organic Matter from Drinking Waters, International Congress on Modelling and Simulation, Townsville, 1835-1840. ISBN: 1 74052 098 X
  • Masoomi, B., Jaafarzadeh, N., Tabatabaie, T., Kouhgardi, E. ve Jorfi S. (2019) Effects of pre-ozonation and chemical coagulation on the removal of turbidity, color, TOC, and chlorophyll a from drinking water, Environmental Health Engineering and Management Journal, 6(1), 53–61. doi: 10.15171/EHEM.2019.06
  • Uyak, V., Yavuz, S., Toroz, İ., Özaydin, S. ve Ateş-Genceli, E. (2007) Disinfection by-products precursors removal by enhanced coagulation and PAC adsorption, Desalination, 216(1-3), 334–344. doi: 10.1016/j.desal.2006.11.026
  • van der Helm, A.W.C. ve Rietveld, L.C. (2002) Modelling of drinking water treatment processes within the Stimela environment, Water Science and Technology: Water Supply 2(1), 87–93. doi: 10.2166/ws.2002.0011
  • Vrale, L. ve Jorden, R.M. (1971) Rapid Mixing In Water Treatment, American Water Works Association, 63(1), 52-58. doi: 10.1002/j.1551-8833.1971.tb04027.x
  • Xie, J., Wang, D., van Leeuwen, J., Zhao, Y., Xing, L. ve Chow, C.W.K. (2012) pH Modeling For Maximum Dissolved Organic Matter Removal By Enhanced Coagulation, Journal of Environmental Sciences, 24(2), 276–283. doi: 10.1016/S1001-0742(11)60717-1
  • Zainal-Abideen, M., Aris, A., Yusof, F., Abdul-Majid, Z., Selamat, A. ve Omar, S.I. (2012) Optimizing the coagulation process in a drinking water treatment plant - comparison between traditional and statistical experimental design jar tests, Water Science & Technology 65(3), 496-503. doi: 10.2166/wst.2012.561

Mathematical Modeling of Rapid Mixing Unit in Pilot Scale Drinking Water Treatment Plant

Year 2021, Volume: 26 Issue: 2, 379 - 388, 31.08.2021
https://doi.org/10.17482/uumfd.824638

Abstract

Conventional treatment units are widely used for the removal of particulate and colloidal substances in water. Parameters such as character and concentration of organic matter in raw water, turbidity, pH, alkalinity and temperature significantly affect the treatment efficiency. Inorganic coagulants are usually needed to increase the efficiency of treatment units. They are added to the rapid mixing unit and can affect pH and other parameters when dissolved in water. The rapid mixing unit, one of the conventional treatment units, plays an important role in destabilizing particulate and colloidal substances. The efficiency of the rapid mixing unit also affects the efficiency of the subsequent units. Within the scope of this study, a pilot plant was operated with the raw waters of Buyukcekmece Drinking Water Treatment Plant and a rapid mixing unit was modeled in terms of pH. Correlation and regression analyses were carried out to estimate the outlet pH of the rapid mixing unit by using the raw water parameters. Excel data analysis tools were used in statistical analysis and modeling. The pH value was estimated within the 1.90% error limit. Thus, a mathematical model has been developed for the rapid mixing unit for the first time in Turkey. These results indicate that the model created will be usable in drinking water treatment plants.

References

  • Bakker, M., Vreeburg, J.H.G., Palmen, L.J., Sperber, V., Bakker, G. ve Rietveld, L.C. (2013) Better water quality and higher energy efficiency by using model predictive flow control at water supply systems, Journal of Water Supply: Research and Technology—AQUA, 62(1), 1–13. doi: 10.2166/aqua.2013.063
  • Brandt, M.J., Johnson, K.M., Elphinston, A.J. ve Ratnayaka, D.D. (2017) Twort's Water Supply, 7. Basım, IWA Publishing, İngiltere. ISBN 13: 9781780406411
  • EPA, (2002). Water Treatment Manuals. Ireland Environmental Protection Agency. ISBN: 1-84095-090-0
  • Ernest, E., Onyeka, O., David, N., Blessing, O. (2017) Effects of pH, Dosage, Temperature and Mixing Speed on The Efficiency of Water Melon Seed in Removing the Turbidity and Colour of Atabong River, Awka-Ibom State, Nigeria, International Journal of Advanced Engineering, Management and Science, 3(5), doi: 10.24001/ijaems.3.5.4
  • Faust, S.D. ve Aly, O.M. (2017) Chemistry of Water Treatment, 2. Basım, CRC Press; Taylor and Francis, İngiltere. ISBN 13: 978-1575040110
  • Gagnon, C., Grandjean, B.P.A. ve Thibault, J. (1997) Modelling of coagulant dosage in a water treatment plant, Artificial Intelligence in Engineering, 11(4), 401-404. doi: 10.1016/S0954-1810(97)00010-1
  • Heddam, S., Bermad, A. Ve Dechemi, N. (2012) ANFIS-based modelling for coagulant dosage in drinking water treatment plant: a case study, Environmental Monitoring and Assessment 184, 1953–1971. doi: 10.1007/s10661-011-2091-x
  • Kumar, A. ve Dixit, C. (2017) Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids, Woodhead Publishing Elsevier Ltd, İngiltere, 43-58. doi: 10.1016/B978-0-08-100557-6.00003-1
  • Lanciné, G.D., Bamory, K., Raymond, L., Jean-Luc, S., Chrıstelle, B. ve Jean, B. (2008) Coagulation-Flocculation Treatment of a Tropical Surface Water with Alum for Dissolved Organic Matter (DOM) Removal: Influence of Alum Dose and pH Adjustment, Journal of International Environmental Application and Science, 3(4), 247-257.
  • Leeuwen Van, J., Holmes, M., Heidenreich, C., Daly, R., Fisher, I., Kastl, G., Sathasivan, A. ve Bursill, D. (2003) Modelling the Application of Inorganic Coagulants and pH Control Reagents for Removal of Organic Matter from Drinking Waters, International Congress on Modelling and Simulation, Townsville, 1835-1840. ISBN: 1 74052 098 X
  • Masoomi, B., Jaafarzadeh, N., Tabatabaie, T., Kouhgardi, E. ve Jorfi S. (2019) Effects of pre-ozonation and chemical coagulation on the removal of turbidity, color, TOC, and chlorophyll a from drinking water, Environmental Health Engineering and Management Journal, 6(1), 53–61. doi: 10.15171/EHEM.2019.06
  • Uyak, V., Yavuz, S., Toroz, İ., Özaydin, S. ve Ateş-Genceli, E. (2007) Disinfection by-products precursors removal by enhanced coagulation and PAC adsorption, Desalination, 216(1-3), 334–344. doi: 10.1016/j.desal.2006.11.026
  • van der Helm, A.W.C. ve Rietveld, L.C. (2002) Modelling of drinking water treatment processes within the Stimela environment, Water Science and Technology: Water Supply 2(1), 87–93. doi: 10.2166/ws.2002.0011
  • Vrale, L. ve Jorden, R.M. (1971) Rapid Mixing In Water Treatment, American Water Works Association, 63(1), 52-58. doi: 10.1002/j.1551-8833.1971.tb04027.x
  • Xie, J., Wang, D., van Leeuwen, J., Zhao, Y., Xing, L. ve Chow, C.W.K. (2012) pH Modeling For Maximum Dissolved Organic Matter Removal By Enhanced Coagulation, Journal of Environmental Sciences, 24(2), 276–283. doi: 10.1016/S1001-0742(11)60717-1
  • Zainal-Abideen, M., Aris, A., Yusof, F., Abdul-Majid, Z., Selamat, A. ve Omar, S.I. (2012) Optimizing the coagulation process in a drinking water treatment plant - comparison between traditional and statistical experimental design jar tests, Water Science & Technology 65(3), 496-503. doi: 10.2166/wst.2012.561
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering
Journal Section Research Articles
Authors

Ece Sağır Kurt 0000-0001-5440-7584

Fatma Busra Buyukbuberoglu 0000-0002-9608-6835

Nigar Eyit 0000-0003-2548-792X

Onur Kiraz 0000-0002-0903-2397

Çağlar Yıldırım 0000-0003-4784-6006

Mehmet Çakmacı 0000-0003-4784-6006

Erdem Görgün 0000-0001-8086-8747

Publication Date August 31, 2021
Submission Date November 16, 2020
Acceptance Date April 26, 2021
Published in Issue Year 2021 Volume: 26 Issue: 2

Cite

APA Sağır Kurt, E., Buyukbuberoglu, F. B., Eyit, N., Kiraz, O., et al. (2021). PİLOT ÖLÇEKLİ İÇME SUYU ARITMA TESİSİNDE HIZLI KARIŞTIRMA ÜNİTESİNİN MATEMATİKSEL MODELLENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(2), 379-388. https://doi.org/10.17482/uumfd.824638
AMA Sağır Kurt E, Buyukbuberoglu FB, Eyit N, Kiraz O, Yıldırım Ç, Çakmacı M, Görgün E. PİLOT ÖLÇEKLİ İÇME SUYU ARITMA TESİSİNDE HIZLI KARIŞTIRMA ÜNİTESİNİN MATEMATİKSEL MODELLENMESİ. UUJFE. August 2021;26(2):379-388. doi:10.17482/uumfd.824638
Chicago Sağır Kurt, Ece, Fatma Busra Buyukbuberoglu, Nigar Eyit, Onur Kiraz, Çağlar Yıldırım, Mehmet Çakmacı, and Erdem Görgün. “PİLOT ÖLÇEKLİ İÇME SUYU ARITMA TESİSİNDE HIZLI KARIŞTIRMA ÜNİTESİNİN MATEMATİKSEL MODELLENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26, no. 2 (August 2021): 379-88. https://doi.org/10.17482/uumfd.824638.
EndNote Sağır Kurt E, Buyukbuberoglu FB, Eyit N, Kiraz O, Yıldırım Ç, Çakmacı M, Görgün E (August 1, 2021) PİLOT ÖLÇEKLİ İÇME SUYU ARITMA TESİSİNDE HIZLI KARIŞTIRMA ÜNİTESİNİN MATEMATİKSEL MODELLENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26 2 379–388.
IEEE E. Sağır Kurt, “PİLOT ÖLÇEKLİ İÇME SUYU ARITMA TESİSİNDE HIZLI KARIŞTIRMA ÜNİTESİNİN MATEMATİKSEL MODELLENMESİ”, UUJFE, vol. 26, no. 2, pp. 379–388, 2021, doi: 10.17482/uumfd.824638.
ISNAD Sağır Kurt, Ece et al. “PİLOT ÖLÇEKLİ İÇME SUYU ARITMA TESİSİNDE HIZLI KARIŞTIRMA ÜNİTESİNİN MATEMATİKSEL MODELLENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26/2 (August 2021), 379-388. https://doi.org/10.17482/uumfd.824638.
JAMA Sağır Kurt E, Buyukbuberoglu FB, Eyit N, Kiraz O, Yıldırım Ç, Çakmacı M, Görgün E. PİLOT ÖLÇEKLİ İÇME SUYU ARITMA TESİSİNDE HIZLI KARIŞTIRMA ÜNİTESİNİN MATEMATİKSEL MODELLENMESİ. UUJFE. 2021;26:379–388.
MLA Sağır Kurt, Ece et al. “PİLOT ÖLÇEKLİ İÇME SUYU ARITMA TESİSİNDE HIZLI KARIŞTIRMA ÜNİTESİNİN MATEMATİKSEL MODELLENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 26, no. 2, 2021, pp. 379-88, doi:10.17482/uumfd.824638.
Vancouver Sağır Kurt E, Buyukbuberoglu FB, Eyit N, Kiraz O, Yıldırım Ç, Çakmacı M, Görgün E. PİLOT ÖLÇEKLİ İÇME SUYU ARITMA TESİSİNDE HIZLI KARIŞTIRMA ÜNİTESİNİN MATEMATİKSEL MODELLENMESİ. UUJFE. 2021;26(2):379-88.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.