Research Article
BibTex RIS Cite

CuO Nanopartiküllerinin Sentezi İçin Çevre Dostu Yol

Year 2023, Volume: 6 Issue: 3, 2201 - 2212, 04.12.2023
https://doi.org/10.47495/okufbed.1293018

Abstract

Bu çalışmanın amacı, çok sayıda uygulamaya sahip olan bakır (II) oksit (CuO) nanoparçacıklarını (NP'ler) çevre dostu bir yolla sentezlemektir. Çalışmada, zerdeçal bitkisinin etanolik ekstraktının sentez için kullanılmasının, nanopartiküllerin çevre dostu üretimi için iyi bir alternatif olduğu düşünülmüştür, çünkü bu yöntemin birçok faydası vardır. Bu avantajlar arasında uygun fiyatlı olması, kolayca erişilebilir olması, ekstaksyonun kolay olması ve kontaminasyona daha az duyarlı olması yer alır. Üretilen parçacıkları incelemek için taramalı elektron mikroskobu (SEM), enerji dağılım analizi (EDX) ve transmisyon elektron mikroskobu (TEM) analizleri kullanıldı. Ayrıca, UV analizi gerçekleştirildi ve CuO NP'lerin zeta potansiyeli belirlendi.

References

  • Ateş M. Nanoparçacıkların ölçme ve inceleme teknikleri. Turkish Journal of Scientific Reviews 2018; 11(1): 63-69.
  • Bai B., Saranya S., Dheepaasri V., Muniasamy S., Alharbi NS., Selvaraj B., Undal VS., Gnanamangai, BM. Biosynthesized copper oxide nanoparticles (CuO NPs) enhance the anti-biofilm efficacy against K. pneumoniae and S. aureus. Journal of King Saud University Science 2022; 34(6): 102120.
  • Baladi M., Amiri M., Akbari JH., Mahmoudi MH., Salavati NM. Green synthesis of perovskite-type TbFeO3/CuO as a highly efficient modifier for electrochemical detection of methyldopa. Journal of Electroanalytical Chemistry, 2022; 915: 116339.
  • Bibi I., Nazar N., Ata S., Sultan M., Ali A., Abbas A., Jilani K., Kamal S., Sarim FM., Khan MI., Jalal F., Iqbal M. Green synthesis of iron oxide nanoparticles using pomegranate seeds extract and photocatalytic activity evaluation for the degradation of textile dye. Journal of Materials Research and Technology, 2019; 8(6): 6115-6124.
  • Bukhari A., Ijaz I., Gilani E., Nazir A., Zain H., Saeed R., Alarfaji SS., Hussain S., Aftab R., Naseer Y. Green synthesis of metal and metal oxide nanoparticles using different plants’ parts for antimicrobial activity and anticancer activity: A review article. Coatings 2021; 11(11): 111374.
  • Chandransekar N., Kumar KMM., Balasubramnian KS., Karrunamurthy K., Varadharajan R. Facile synthesis of iron oxide, iron-cobalt and zero valent iron nanoparticles and evaluation of their antimicrobial activity, free radicle scavenginging activity and antioxidant assay. Digest Journal of Nanomaterials and Biostructures 2013; 8(2): 765-775.
  • Chandrasekar N., Kumar KMM., Balasubramnian KS., Karunamurthy K., Varadharajan R. Facile synthesis of iron oxide, iron-cobalt and zero valent iron nanoparticles and evaluation of their anti microbial activity, free radicle scavenginging activity and antioxidant assay. Digest Journal of Nanomaterials and Biostructures 2013; 8(2): 765-775.
  • Chittigori J., Kumar A., Li L., Thota S., Kokil A., Samuelson LA., Sandman DJ., Kumar J. Synthesis of a self organizable curcumin derivative and investigation of its interaction with metals in 100% aqueous media. Tetrahedron 2014; 70(4): 991-995.
  • Cuong HN., Pansambal S., Ghotekar S., Oza R., Thanh HNT., Viet NM., Nguyen VH. New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: A review. Environmental Research 2022; 203: 111858.
  • Eltarahony M., Zaki S., Abd-El-Haleem D. Concurrent synthesis of Zero- and one-dimensional, spherical, rod-, needle-, and wire-shaped CuO nanoparticles by proteus mirabilis10B. Journal of Nanomaterials, 2018; 3: 1-14.
  • Eslami A., Modanlou Juibari N., Hosseini, SG., Abbasi M. Synthesis and Characterization of CuO nanoparticles by the chemical liquid deposition method and investigation of its catalytic effect on the thermal decomposition of ammonium perchlorate. Central European Journal of Energetic Materials 2017; 14(1): 152-168.
  • Ghidan AY., Al-Antary TM., Awwad AM. Green synthesis of copper oxide nanoparticles using Punica granatum peels extract: Effect on green peach Aphid. Environmental Nanotechnology, Monitoring & Management 2016; 6: 95-98.
  • Gupta S., Maji A., Panja D., Halder M., Kundu S. CuO NPs catalyzed synthesis of quinolines, pyridines, and pyrroles via dehydrogenative coupling strategy. Journal of Catalysis 2022; 413: 1017-1027.
  • Huang B. Super-resolution optical microscopy: multiple choices. Current Opinion in Chemical Biology 2010; 14(1): 10-14.
  • Janusz W., Sworska A., Szczypa J. Electrical double layer at the a-Fe2O3–mixed electrolyte (ethanol–aqueous) interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1999; 149: 421-426.
  • Kaningini AG., Motlhalamme T., More GK., Mohale KC., Maaza M. Antimicrobial, antioxidant, and cytotoxic properties of biosynthesized copper oxide nanoparticles (CuO-NPs) using Athrixia phylicoides DC. Heliyon 2023; 9(4): e15265.
  • Karuppannan SK., Ramalingam R., Mohamed KSB., Dowlath MJH., Darul RGI., Arunachalam KD. Characterization, antibacterial and photocatalytic evaluation of green synthesized copper oxide nanoparticles. Biocatalysis and Agricultural Biotechnology 2021; 31: 101904.
  • Khan MA., Nayan N., Shadiullah Ahmad MK., Soon CF. Surface study of CuO nanopetals by advanced nanocharacterization techniques with enhanced optical and catalytic properties. Nanomaterials (Basel) 2020; 10(7): 1298.
  • Kumar P., Nene AG., Punia S., Kumar M., Abbas Z., Thakral F., Tuli HS. Synthesis, characterization and antibacterial activity of CuO nanoparticles. International Journal of Applied Pharmaceutics 2019; 12(1): 17-20.
  • Kütük N., Çetinkaya S. Green synthesis of copper oxide nanoparticles using black, green and tarragon tea and investigation of their photocatalytic activity for methylene blue. Pamukkale University Journal of Engineering Sciences 2022; 28(7): 954-962.
  • Lassoued A., Dkhil B., Gadri A., Ammar S. Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method. Results in Physics 2017; 7: 3007-3015.
  • Le Van N., Rui Y., Cao W., Shang J., Liu S., Nguyen Quang T., Liu L. Toxicity and bio-effects of CuO nanoparticles on transgenic Ipt-cotton. Journal of Plant Interactions 2016; 11(1): 108-116.
  • Luna C., Cuan-Guerra AD., Barriga-Castro ED., Núñez NO., Mendoza-Reséndez R. Confinement and surface effects on the physical properties of rhombohedral-shape hematite (α-Fe 2 O 3 ) nanocrystals. Materials Research Bulletin 2016; 80: 44-52.
  • Luna IZ., Hilary LN., Chowdhury AMS., Gafur MA., Khan N., Khan RA. Preparation and characterization of copper oxide nanoparticles synthesized via chemical precipitation method. OALib 2015; 02(03): 1-8.
  • Meng X., Ryu J., Kim B., Ko S. Application of iron oxide as a pH-dependent indicator for improving the nutritional quality. Clinical Nutrition Research 2016; 5(3): 172-179.
  • Mohammadi SZ., Khorasani-Motlagh M., Jahani S., Yousefi M. Synthesis and characterization of α-Fe2O3 nanoparticles by microwave method. International Journal of Nanoscience Nanotechnology 2012; 8(2): 87-92.
  • Rydz J., Šišková A., Andicsová EA. Scanning electron microscopy and atomic force microscopy: topographic and dynamical surface studies of blends, composites, and hybrid functional materials for sustainable future. Advances in Materials Science and Engineering 2019; 2019: 1-16.
  • Sathiyavimal S., Vasantharaj S., Veeramani V., Saravanan M., Rajalakshmi G., Kaliannan T., Al-Misned FA., Pugazhendhi A. Green chemistry route of biosynthesized copper oxide nanoparticles using Psidium guajava leaf extract and their antibacterial activity and effective removal of industrial dyes. Journal of Environmental Chemical Engineering 2021; 9(2): 105033.
  • Selvam K., Albasher G., Alamri O., Sudhakar C., Selvankumar T., Vijayalakshmi S., Vennila L. Enhanced photocatalytic activity of novel Canthium coromandelicum leaves based copper oxide nanoparticles for the degradation of textile dyes. Environmental Research 2022; 211: 113046.
  • Siddiqui VU., Ansari A., Chauhan R., Siddiqi WA. Green synthesis of copper oxide (CuO) nanoparticles by Punica granatum peel extract. Materials Today: Proceedings 2021; 36: 751-755.
  • Sumalatha V., Ayodhya D., Balchander V. Facile synthesis of hexagonal-shaped CuO NPs from Cu(II)-Schiff base complex for enhanced visible-light-driven degradation of dyes and antimicrobial studies. Inorganica Chimica Acta 2023; 548: 121358.
  • Vidovix TB., Quesada HB., Januário EFD., Bergamasco R., Vieira AMS. Green synthesis of copper oxide nanoparticles using Punica granatum leaf extract applied to the removal of methylene blue. Materials Letters 2019; 257: 126685.
  • Wang C., Huang Z. Controlled synthesis of α-Fe2O3 nanostructures for efficient photocatalysis. Materials Letters 2016; 164: 194-197.
  • Wei S., Xing P., Tang Z., Wang Y., Dai L. Spindle-shaped cobalt-doped iron phosphide anchored on three-dimensional graphene electrocatalysis for hydrogen evolution reactions in both acidic and alkaline media. Journal of Power Sources 2023; 555: 232414.
  • Yadav S., Rani N., Saini K. Green synthesis of ZnO and CuO NPs using Ficus benghalensis leaf extract and their comparative study for electrode materials for high performance supercapacitor application. Materials Today: Proceedings 2022; 49: 2124-2130.
  • Zare M., Moradi L. Preparation of hollow mesoporous boron nitride spheres with surface decorated by CuO: A bifunctional acid-base catalyst for the green synthesis of some heterocyclic [3,3,3] propellane derivatives in water media. Applied Surface Science 2022; 582: 152454.

Environmentally Friendly Route for Synthesis of CuO Nanoparticles

Year 2023, Volume: 6 Issue: 3, 2201 - 2212, 04.12.2023
https://doi.org/10.47495/okufbed.1293018

Abstract

This study's objective is to synthesize copper (II) oxide (CuO) nanoparticles (NPs), which have numerous applications via eco-friendly route. In the study, employing curcuma herbal’s ethanolic extract in the synthesis route was thought to be a good alternative for the environmentally friendly synthesis of nanoparticles because there are many benefits associated with performing so. These advantages include being affordable, conveniently accessible, easy to extract, and less susceptible to contamination. The scanning electron microscopy (SEM), energy dispersive analysis (EDX), and transmission electron microscopy (TEM) analysis were used to examine the generated particles. Additionally, UV analysis and the determination of the zeta potential of CuO NPs were performed.

References

  • Ateş M. Nanoparçacıkların ölçme ve inceleme teknikleri. Turkish Journal of Scientific Reviews 2018; 11(1): 63-69.
  • Bai B., Saranya S., Dheepaasri V., Muniasamy S., Alharbi NS., Selvaraj B., Undal VS., Gnanamangai, BM. Biosynthesized copper oxide nanoparticles (CuO NPs) enhance the anti-biofilm efficacy against K. pneumoniae and S. aureus. Journal of King Saud University Science 2022; 34(6): 102120.
  • Baladi M., Amiri M., Akbari JH., Mahmoudi MH., Salavati NM. Green synthesis of perovskite-type TbFeO3/CuO as a highly efficient modifier for electrochemical detection of methyldopa. Journal of Electroanalytical Chemistry, 2022; 915: 116339.
  • Bibi I., Nazar N., Ata S., Sultan M., Ali A., Abbas A., Jilani K., Kamal S., Sarim FM., Khan MI., Jalal F., Iqbal M. Green synthesis of iron oxide nanoparticles using pomegranate seeds extract and photocatalytic activity evaluation for the degradation of textile dye. Journal of Materials Research and Technology, 2019; 8(6): 6115-6124.
  • Bukhari A., Ijaz I., Gilani E., Nazir A., Zain H., Saeed R., Alarfaji SS., Hussain S., Aftab R., Naseer Y. Green synthesis of metal and metal oxide nanoparticles using different plants’ parts for antimicrobial activity and anticancer activity: A review article. Coatings 2021; 11(11): 111374.
  • Chandransekar N., Kumar KMM., Balasubramnian KS., Karrunamurthy K., Varadharajan R. Facile synthesis of iron oxide, iron-cobalt and zero valent iron nanoparticles and evaluation of their antimicrobial activity, free radicle scavenginging activity and antioxidant assay. Digest Journal of Nanomaterials and Biostructures 2013; 8(2): 765-775.
  • Chandrasekar N., Kumar KMM., Balasubramnian KS., Karunamurthy K., Varadharajan R. Facile synthesis of iron oxide, iron-cobalt and zero valent iron nanoparticles and evaluation of their anti microbial activity, free radicle scavenginging activity and antioxidant assay. Digest Journal of Nanomaterials and Biostructures 2013; 8(2): 765-775.
  • Chittigori J., Kumar A., Li L., Thota S., Kokil A., Samuelson LA., Sandman DJ., Kumar J. Synthesis of a self organizable curcumin derivative and investigation of its interaction with metals in 100% aqueous media. Tetrahedron 2014; 70(4): 991-995.
  • Cuong HN., Pansambal S., Ghotekar S., Oza R., Thanh HNT., Viet NM., Nguyen VH. New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: A review. Environmental Research 2022; 203: 111858.
  • Eltarahony M., Zaki S., Abd-El-Haleem D. Concurrent synthesis of Zero- and one-dimensional, spherical, rod-, needle-, and wire-shaped CuO nanoparticles by proteus mirabilis10B. Journal of Nanomaterials, 2018; 3: 1-14.
  • Eslami A., Modanlou Juibari N., Hosseini, SG., Abbasi M. Synthesis and Characterization of CuO nanoparticles by the chemical liquid deposition method and investigation of its catalytic effect on the thermal decomposition of ammonium perchlorate. Central European Journal of Energetic Materials 2017; 14(1): 152-168.
  • Ghidan AY., Al-Antary TM., Awwad AM. Green synthesis of copper oxide nanoparticles using Punica granatum peels extract: Effect on green peach Aphid. Environmental Nanotechnology, Monitoring & Management 2016; 6: 95-98.
  • Gupta S., Maji A., Panja D., Halder M., Kundu S. CuO NPs catalyzed synthesis of quinolines, pyridines, and pyrroles via dehydrogenative coupling strategy. Journal of Catalysis 2022; 413: 1017-1027.
  • Huang B. Super-resolution optical microscopy: multiple choices. Current Opinion in Chemical Biology 2010; 14(1): 10-14.
  • Janusz W., Sworska A., Szczypa J. Electrical double layer at the a-Fe2O3–mixed electrolyte (ethanol–aqueous) interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1999; 149: 421-426.
  • Kaningini AG., Motlhalamme T., More GK., Mohale KC., Maaza M. Antimicrobial, antioxidant, and cytotoxic properties of biosynthesized copper oxide nanoparticles (CuO-NPs) using Athrixia phylicoides DC. Heliyon 2023; 9(4): e15265.
  • Karuppannan SK., Ramalingam R., Mohamed KSB., Dowlath MJH., Darul RGI., Arunachalam KD. Characterization, antibacterial and photocatalytic evaluation of green synthesized copper oxide nanoparticles. Biocatalysis and Agricultural Biotechnology 2021; 31: 101904.
  • Khan MA., Nayan N., Shadiullah Ahmad MK., Soon CF. Surface study of CuO nanopetals by advanced nanocharacterization techniques with enhanced optical and catalytic properties. Nanomaterials (Basel) 2020; 10(7): 1298.
  • Kumar P., Nene AG., Punia S., Kumar M., Abbas Z., Thakral F., Tuli HS. Synthesis, characterization and antibacterial activity of CuO nanoparticles. International Journal of Applied Pharmaceutics 2019; 12(1): 17-20.
  • Kütük N., Çetinkaya S. Green synthesis of copper oxide nanoparticles using black, green and tarragon tea and investigation of their photocatalytic activity for methylene blue. Pamukkale University Journal of Engineering Sciences 2022; 28(7): 954-962.
  • Lassoued A., Dkhil B., Gadri A., Ammar S. Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method. Results in Physics 2017; 7: 3007-3015.
  • Le Van N., Rui Y., Cao W., Shang J., Liu S., Nguyen Quang T., Liu L. Toxicity and bio-effects of CuO nanoparticles on transgenic Ipt-cotton. Journal of Plant Interactions 2016; 11(1): 108-116.
  • Luna C., Cuan-Guerra AD., Barriga-Castro ED., Núñez NO., Mendoza-Reséndez R. Confinement and surface effects on the physical properties of rhombohedral-shape hematite (α-Fe 2 O 3 ) nanocrystals. Materials Research Bulletin 2016; 80: 44-52.
  • Luna IZ., Hilary LN., Chowdhury AMS., Gafur MA., Khan N., Khan RA. Preparation and characterization of copper oxide nanoparticles synthesized via chemical precipitation method. OALib 2015; 02(03): 1-8.
  • Meng X., Ryu J., Kim B., Ko S. Application of iron oxide as a pH-dependent indicator for improving the nutritional quality. Clinical Nutrition Research 2016; 5(3): 172-179.
  • Mohammadi SZ., Khorasani-Motlagh M., Jahani S., Yousefi M. Synthesis and characterization of α-Fe2O3 nanoparticles by microwave method. International Journal of Nanoscience Nanotechnology 2012; 8(2): 87-92.
  • Rydz J., Šišková A., Andicsová EA. Scanning electron microscopy and atomic force microscopy: topographic and dynamical surface studies of blends, composites, and hybrid functional materials for sustainable future. Advances in Materials Science and Engineering 2019; 2019: 1-16.
  • Sathiyavimal S., Vasantharaj S., Veeramani V., Saravanan M., Rajalakshmi G., Kaliannan T., Al-Misned FA., Pugazhendhi A. Green chemistry route of biosynthesized copper oxide nanoparticles using Psidium guajava leaf extract and their antibacterial activity and effective removal of industrial dyes. Journal of Environmental Chemical Engineering 2021; 9(2): 105033.
  • Selvam K., Albasher G., Alamri O., Sudhakar C., Selvankumar T., Vijayalakshmi S., Vennila L. Enhanced photocatalytic activity of novel Canthium coromandelicum leaves based copper oxide nanoparticles for the degradation of textile dyes. Environmental Research 2022; 211: 113046.
  • Siddiqui VU., Ansari A., Chauhan R., Siddiqi WA. Green synthesis of copper oxide (CuO) nanoparticles by Punica granatum peel extract. Materials Today: Proceedings 2021; 36: 751-755.
  • Sumalatha V., Ayodhya D., Balchander V. Facile synthesis of hexagonal-shaped CuO NPs from Cu(II)-Schiff base complex for enhanced visible-light-driven degradation of dyes and antimicrobial studies. Inorganica Chimica Acta 2023; 548: 121358.
  • Vidovix TB., Quesada HB., Januário EFD., Bergamasco R., Vieira AMS. Green synthesis of copper oxide nanoparticles using Punica granatum leaf extract applied to the removal of methylene blue. Materials Letters 2019; 257: 126685.
  • Wang C., Huang Z. Controlled synthesis of α-Fe2O3 nanostructures for efficient photocatalysis. Materials Letters 2016; 164: 194-197.
  • Wei S., Xing P., Tang Z., Wang Y., Dai L. Spindle-shaped cobalt-doped iron phosphide anchored on three-dimensional graphene electrocatalysis for hydrogen evolution reactions in both acidic and alkaline media. Journal of Power Sources 2023; 555: 232414.
  • Yadav S., Rani N., Saini K. Green synthesis of ZnO and CuO NPs using Ficus benghalensis leaf extract and their comparative study for electrode materials for high performance supercapacitor application. Materials Today: Proceedings 2022; 49: 2124-2130.
  • Zare M., Moradi L. Preparation of hollow mesoporous boron nitride spheres with surface decorated by CuO: A bifunctional acid-base catalyst for the green synthesis of some heterocyclic [3,3,3] propellane derivatives in water media. Applied Surface Science 2022; 582: 152454.
There are 36 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section RESEARCH ARTICLES
Authors

Mehmet Erman Mert 0000-0002-0114-8707

Başak Doğru Mert 0000-0002-2270-9032

Publication Date December 4, 2023
Submission Date May 5, 2023
Acceptance Date July 23, 2023
Published in Issue Year 2023 Volume: 6 Issue: 3

Cite

APA Mert, M. E., & Doğru Mert, B. (2023). Environmentally Friendly Route for Synthesis of CuO Nanoparticles. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(3), 2201-2212. https://doi.org/10.47495/okufbed.1293018
AMA Mert ME, Doğru Mert B. Environmentally Friendly Route for Synthesis of CuO Nanoparticles. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. December 2023;6(3):2201-2212. doi:10.47495/okufbed.1293018
Chicago Mert, Mehmet Erman, and Başak Doğru Mert. “Environmentally Friendly Route for Synthesis of CuO Nanoparticles”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6, no. 3 (December 2023): 2201-12. https://doi.org/10.47495/okufbed.1293018.
EndNote Mert ME, Doğru Mert B (December 1, 2023) Environmentally Friendly Route for Synthesis of CuO Nanoparticles. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6 3 2201–2212.
IEEE M. E. Mert and B. Doğru Mert, “Environmentally Friendly Route for Synthesis of CuO Nanoparticles”, Osmaniye Korkut Ata University Journal of Natural and Applied Sciences, vol. 6, no. 3, pp. 2201–2212, 2023, doi: 10.47495/okufbed.1293018.
ISNAD Mert, Mehmet Erman - Doğru Mert, Başak. “Environmentally Friendly Route for Synthesis of CuO Nanoparticles”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6/3 (December 2023), 2201-2212. https://doi.org/10.47495/okufbed.1293018.
JAMA Mert ME, Doğru Mert B. Environmentally Friendly Route for Synthesis of CuO Nanoparticles. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. 2023;6:2201–2212.
MLA Mert, Mehmet Erman and Başak Doğru Mert. “Environmentally Friendly Route for Synthesis of CuO Nanoparticles”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 6, no. 3, 2023, pp. 2201-12, doi:10.47495/okufbed.1293018.
Vancouver Mert ME, Doğru Mert B. Environmentally Friendly Route for Synthesis of CuO Nanoparticles. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. 2023;6(3):2201-12.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.