Research Article
BibTex RIS Cite
Year 2023, Volume: 9 Issue: 2, 67 - 72, 26.12.2023
https://doi.org/10.55385/kastamonujes.1357436

Abstract

Ethical Statement

Bu makaledeki bütün bilgileri etik davranışlar ve akademik kurallar çerçevesinde hazırladığımızı beyan ederim. Makalede alınan kaynaklara doğru şekilde atıf yaptığını ve makalenin yazım kılavuzuna uygun şekilde hazırlandığını beyan ederim.

References

  • Kondoh, K. (2015). Titanium metal matrix composites by powder metallurgy (PM) routes. In Titanium powder metallurgy. Butterworth-Heinemann, 277-297.
  • Samer, N., Andrieux, J., Gardiola, B., Karnatak, N., Martin, O., Kurita, H., Chaffron, L., Gourdet, S., Lay, S., & Dezellus, O. (2015). Microstructure and mechanical properties of an Al–TiC metal matrix composite obtained by reactive synthesis. Composites Part A: Applied Science and Manufacturing, 72, 50-57.
  • Rohatgi, P. K. (1993). Metal matrix composites. Defence science journal, 43(4), 323-349.
  • Evans, A., San Marchi, C., Mortensen, A., Evans, A., San Marchi, C., & Mortensen, A. (2003). Metal matrix composites. Springer US, 9-38.
  • Kumar, B. A., Ananthaprasad, M. G., & Krishna, K. G. (2015). A review on corrosion behavior of nickel matrix composites. International Journal of Emerging Technology and Advanced Engineering, 5(10), 342-346.
  • Kumar, B. A., Ananthaprasad, M. G., & GopalaKrishna, K. (2016). A review on mechanical and tribological behaviors of nickel matrix composites. Indian Journal of Science and Technology, 9(2), 1-7.
  • Jiang, J., He, X., Du, J., Pang, X., Yang, H., & Wei, Z. (2018). In-situ fabrication of graphene-nickel matrix composites. Materials Letters, 220, 178-181.
  • Islak, S., Ulutan, M., & Buytoz, S. (2020). Microstructure and Wear Properties of Hot-Pressed NiCrBSi/TiC Composite Materials. Russian Journal of Non-Ferrous Metals, 61(5), 571-582.
  • Islak, S., Koç, V., & Gariba, A.M.M. (2022). Wear and microstructural properties of Ni-B4C/CNF composites. Science of Sintering, 54(4), 439-448.
  • Han, I. S., Seo, D. W., Kim, S. Y., Hong, K. S., Guahk, K. H., & Lee, K. S. (2008). Properties of silicon nitride for aluminum melts prepared by nitrided pressureless sintering. Journal of the European Ceramic Society, 28(5), 1057-1063.
  • ASTM B962-08. (2008). Standard test methods for density of compacted or sintered powder metallurgy (PM) products using Archimedes’ principle.
  • ASTM E92-17. (2017). Standard test methods for Vickers hardness and Knoop hardness of metallic materials. West Conshohocken (PA): ASTM International.
  • Xie, H., Jia, L., & Lu, Z. (2009). Microstructure and solidification behavior of Cu–Ni–Si alloys. Materials Characterization, 60(2), 114-118.
  • Yu, L., Shen, F., Fu, T., Zhang, Y., Cui, K., Wang, J., & Zhang, X. (2021). Microstructure and oxidation behavior of metal-modified Mo-Si-B alloys: A review. Coatings, 11(10), 1256.
  • Islak, S., & Çelik, H. (2015). Effect of sintering temperature and boron carbide content on the wear behavior of hot pressed diamond cutting segments. Science of Sintering, 47(2), 131-143.
  • Kriewah, O. A. E., & Islak, S. (2022). Synthesis of Cu-Cr-B4C-CNF hybrid composites. Kastamonu University Journal of Engineering and Sciences, 8(2), 90-97.
  • Rahimian, M., Ehsani, N., Parvin, N., & reza Baharvandi, H. (2009). The effect of particle size, sintering temperature and sintering time on the properties of Al–Al2O3 composites, made by powder metallurgy. Journal of Materials Processing Technology, 209(14), 5387-5393.
  • Min, K. H., Lee, B. H., Chang, S. Y., & Do Kim, Y. (2007). Mechanical properties of sintered 7xxx series AI/SiCp composites. Materials Letters, 61(11-12), 2544-2546.
  • Kim, H. S. (2000). On the rule of mixtures for the hardness of particle reinforced composites. Materials Science and Engineering: A, 289(1-2), 30-33.
  • Kumar, G. V., Rao, C. P., & Selvaraj, N. (2011). Mechanical and tribological behavior of particulate reinforced aluminum metal matrix composites–a review. Journal of minerals and materials characterization and engineering, 10(01), 59-91.
  • Okay, F., & Islak, S. (2022). Microstructure and mechanical properties of aluminium matrix boron carbide and carbon nanofiber reinforced hybrid composites. Science of Sintering, 54(2), 125-138.
  • Buytoz, S., Dagdelen, F., Islak, S., Kok, M., Kir, D., & Ercan, E. (2014). Effect of the TiC content on microstructure and thermal properties of Cu–TiC composites prepared by powder metallurgy. Journal of Thermal Analysis and Calorimetry, 117, 1277-1283.
  • Yang, S., Guo, Z., & Xia, M. (2018). Effect of TiB content on the properties of Al-TiB composites. Science of Sintering, 50(2), 237-244.
  • Islak, S. (2019). Mechanical and corrosion properties of AlCu matrix hybrid composite materials. Science of Sintering, 51(1), 81-92.

Microstructure and Hardness Properties of Ni-Si3N4 Composite Materials Produced by Powder Metallurgy Method

Year 2023, Volume: 9 Issue: 2, 67 - 72, 26.12.2023
https://doi.org/10.55385/kastamonujes.1357436

Abstract

In this study, the effect of the amount of Si3N4 on the microstructure and hardness properties of nickel (Ni) matrix silicon nitride (Si3N4) reinforced composite materials were investigated. Si3N4 was added to Ni at 5%, 10% and 15% by volume. The samples were produced using cold pressing and pressureless sintering technique. The sintering temperature was 1200 °C and the sintering time was 1 hour. SEM-EDS and XRD analyzes were used for the microstructure and phase formation analysis of the composites. The densities of the composites were measured according to the Archimedean principle. To determine the effect of Si3N4 on hardness properties, the microhardness of the samples was measured as Vickers. It was determined from XRD analysis that Ni, β1 (Ni3Si) and ε-Ni3Si2 phases were formed in the microstructure. As the amount of Si3N4 increased, both the experimental densities and relative densities decreased, and the amount of pores partially increased. Due to the distribution strengthening effect of Si3N4 in the Ni matrix, there was an increase in the hardness values and the highest hardness was determined as 135 HV2 with the addition of 15% Si3N4.

References

  • Kondoh, K. (2015). Titanium metal matrix composites by powder metallurgy (PM) routes. In Titanium powder metallurgy. Butterworth-Heinemann, 277-297.
  • Samer, N., Andrieux, J., Gardiola, B., Karnatak, N., Martin, O., Kurita, H., Chaffron, L., Gourdet, S., Lay, S., & Dezellus, O. (2015). Microstructure and mechanical properties of an Al–TiC metal matrix composite obtained by reactive synthesis. Composites Part A: Applied Science and Manufacturing, 72, 50-57.
  • Rohatgi, P. K. (1993). Metal matrix composites. Defence science journal, 43(4), 323-349.
  • Evans, A., San Marchi, C., Mortensen, A., Evans, A., San Marchi, C., & Mortensen, A. (2003). Metal matrix composites. Springer US, 9-38.
  • Kumar, B. A., Ananthaprasad, M. G., & Krishna, K. G. (2015). A review on corrosion behavior of nickel matrix composites. International Journal of Emerging Technology and Advanced Engineering, 5(10), 342-346.
  • Kumar, B. A., Ananthaprasad, M. G., & GopalaKrishna, K. (2016). A review on mechanical and tribological behaviors of nickel matrix composites. Indian Journal of Science and Technology, 9(2), 1-7.
  • Jiang, J., He, X., Du, J., Pang, X., Yang, H., & Wei, Z. (2018). In-situ fabrication of graphene-nickel matrix composites. Materials Letters, 220, 178-181.
  • Islak, S., Ulutan, M., & Buytoz, S. (2020). Microstructure and Wear Properties of Hot-Pressed NiCrBSi/TiC Composite Materials. Russian Journal of Non-Ferrous Metals, 61(5), 571-582.
  • Islak, S., Koç, V., & Gariba, A.M.M. (2022). Wear and microstructural properties of Ni-B4C/CNF composites. Science of Sintering, 54(4), 439-448.
  • Han, I. S., Seo, D. W., Kim, S. Y., Hong, K. S., Guahk, K. H., & Lee, K. S. (2008). Properties of silicon nitride for aluminum melts prepared by nitrided pressureless sintering. Journal of the European Ceramic Society, 28(5), 1057-1063.
  • ASTM B962-08. (2008). Standard test methods for density of compacted or sintered powder metallurgy (PM) products using Archimedes’ principle.
  • ASTM E92-17. (2017). Standard test methods for Vickers hardness and Knoop hardness of metallic materials. West Conshohocken (PA): ASTM International.
  • Xie, H., Jia, L., & Lu, Z. (2009). Microstructure and solidification behavior of Cu–Ni–Si alloys. Materials Characterization, 60(2), 114-118.
  • Yu, L., Shen, F., Fu, T., Zhang, Y., Cui, K., Wang, J., & Zhang, X. (2021). Microstructure and oxidation behavior of metal-modified Mo-Si-B alloys: A review. Coatings, 11(10), 1256.
  • Islak, S., & Çelik, H. (2015). Effect of sintering temperature and boron carbide content on the wear behavior of hot pressed diamond cutting segments. Science of Sintering, 47(2), 131-143.
  • Kriewah, O. A. E., & Islak, S. (2022). Synthesis of Cu-Cr-B4C-CNF hybrid composites. Kastamonu University Journal of Engineering and Sciences, 8(2), 90-97.
  • Rahimian, M., Ehsani, N., Parvin, N., & reza Baharvandi, H. (2009). The effect of particle size, sintering temperature and sintering time on the properties of Al–Al2O3 composites, made by powder metallurgy. Journal of Materials Processing Technology, 209(14), 5387-5393.
  • Min, K. H., Lee, B. H., Chang, S. Y., & Do Kim, Y. (2007). Mechanical properties of sintered 7xxx series AI/SiCp composites. Materials Letters, 61(11-12), 2544-2546.
  • Kim, H. S. (2000). On the rule of mixtures for the hardness of particle reinforced composites. Materials Science and Engineering: A, 289(1-2), 30-33.
  • Kumar, G. V., Rao, C. P., & Selvaraj, N. (2011). Mechanical and tribological behavior of particulate reinforced aluminum metal matrix composites–a review. Journal of minerals and materials characterization and engineering, 10(01), 59-91.
  • Okay, F., & Islak, S. (2022). Microstructure and mechanical properties of aluminium matrix boron carbide and carbon nanofiber reinforced hybrid composites. Science of Sintering, 54(2), 125-138.
  • Buytoz, S., Dagdelen, F., Islak, S., Kok, M., Kir, D., & Ercan, E. (2014). Effect of the TiC content on microstructure and thermal properties of Cu–TiC composites prepared by powder metallurgy. Journal of Thermal Analysis and Calorimetry, 117, 1277-1283.
  • Yang, S., Guo, Z., & Xia, M. (2018). Effect of TiB content on the properties of Al-TiB composites. Science of Sintering, 50(2), 237-244.
  • Islak, S. (2019). Mechanical and corrosion properties of AlCu matrix hybrid composite materials. Science of Sintering, 51(1), 81-92.
There are 24 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Research Article
Authors

Hasaneen Houssain 0000-0002-2710-4673

Serkan Islak 0000-0001-9140-6476

Uğur Çalıgülü 0000-0003-4862-7219

Publication Date December 26, 2023
Submission Date September 8, 2023
Published in Issue Year 2023 Volume: 9 Issue: 2

Cite

APA Houssain, H., Islak, S., & Çalıgülü, U. (2023). Microstructure and Hardness Properties of Ni-Si3N4 Composite Materials Produced by Powder Metallurgy Method. Kastamonu University Journal of Engineering and Sciences, 9(2), 67-72. https://doi.org/10.55385/kastamonujes.1357436
AMA Houssain H, Islak S, Çalıgülü U. Microstructure and Hardness Properties of Ni-Si3N4 Composite Materials Produced by Powder Metallurgy Method. KUJES. December 2023;9(2):67-72. doi:10.55385/kastamonujes.1357436
Chicago Houssain, Hasaneen, Serkan Islak, and Uğur Çalıgülü. “Microstructure and Hardness Properties of Ni-Si3N4 Composite Materials Produced by Powder Metallurgy Method”. Kastamonu University Journal of Engineering and Sciences 9, no. 2 (December 2023): 67-72. https://doi.org/10.55385/kastamonujes.1357436.
EndNote Houssain H, Islak S, Çalıgülü U (December 1, 2023) Microstructure and Hardness Properties of Ni-Si3N4 Composite Materials Produced by Powder Metallurgy Method. Kastamonu University Journal of Engineering and Sciences 9 2 67–72.
IEEE H. Houssain, S. Islak, and U. Çalıgülü, “Microstructure and Hardness Properties of Ni-Si3N4 Composite Materials Produced by Powder Metallurgy Method”, KUJES, vol. 9, no. 2, pp. 67–72, 2023, doi: 10.55385/kastamonujes.1357436.
ISNAD Houssain, Hasaneen et al. “Microstructure and Hardness Properties of Ni-Si3N4 Composite Materials Produced by Powder Metallurgy Method”. Kastamonu University Journal of Engineering and Sciences 9/2 (December 2023), 67-72. https://doi.org/10.55385/kastamonujes.1357436.
JAMA Houssain H, Islak S, Çalıgülü U. Microstructure and Hardness Properties of Ni-Si3N4 Composite Materials Produced by Powder Metallurgy Method. KUJES. 2023;9:67–72.
MLA Houssain, Hasaneen et al. “Microstructure and Hardness Properties of Ni-Si3N4 Composite Materials Produced by Powder Metallurgy Method”. Kastamonu University Journal of Engineering and Sciences, vol. 9, no. 2, 2023, pp. 67-72, doi:10.55385/kastamonujes.1357436.
Vancouver Houssain H, Islak S, Çalıgülü U. Microstructure and Hardness Properties of Ni-Si3N4 Composite Materials Produced by Powder Metallurgy Method. KUJES. 2023;9(2):67-72.

18397   |   18396|