Research Article
BibTex RIS Cite
Year 2022, Volume: 52 Issue: 3, 297 - 301, 30.12.2022
https://doi.org/10.26650/IstanbulJPharm.2022.1055363

Abstract

References

  • Abdel-Aziz, A. A. M., El-Azab, A. S., AlSaif, N. A., Alanazi, M. M., El-
  • Gendy, M. A., Obaidullah, A. J Al-Suwaidan, I. A. (2020). Synthe-
  • sis, anti-inflammatory, cytotoxic, and COX-1/2 inhibitory activi- ties of cyclic imides bearing 3-benzenesulfonamide, oxime, and β-phenylalanine scaffolds: A molecular docking study. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 610-621. https:// doi.org/10.1080/14756366.2020.1722120
  • Alaa, A. M., El-Azab, A. S., Attia, S. M., Al-Obaid, A. M., Al-Omar, M. A., & El-Subbagh, H. I. (2011). Synthesis and biological evaluation of some novel cyclic-imides as hypoglycaemic, anti-hyperlipid- emic agents. European Journal of Medicinal Chemistry, 46(9), 4324- 4329. https://doi.org/10.1016/j.ejmech.2011.07.002
  • Angeli, A., Pinteala, M., Maier, S. S., Toti, A., Mannelli, L. D. C., Ghe- lardini, C. Supuran, C. T. (2021). Tellurides bearing benzensul-
  • fonamide as carbonic anhydrase inhibitors with potent antitu- mor activity. Bioorganic & Medicinal Chemistry Letters, 45, 128147. https://doi.org/10.1016/j.bmcl.2021.128147
  • Apaydın, S., &Török, M. (2019). Sulfonamide derivatives as multi- target agents for complex diseases. Bioorganic & Medicinal Chemistry Letters, 29(16), 2042-2050. https://doi.org/10.1016/j. bmcl.2019.06.041
  • Azevedo-Barbosa, H., Dias, D. F., Franco, L. L., Hawkes, J. A., &Carv- alho, D. T. (2020). From antibacterial to antitumour agents: A brief review on the chemical and medicinal aspects of sulfonamides. Mini Reviews in Medicinal Chemistry, 20(19), 2052-2066. https://doi. org/10.2174/1389557520666200905125738
  • Banarouei, N., Davood, A., Shafaroodi, H., Saeedi, G., &Shafiee, A. (2019). N-arylmethylideneaminophthalimide: Design, synthesis and evaluation as analgesic and anti-inflammatory agents. Mini Reviews in Medicinal Chemistry, 19(8),679-687. https://doi.org/10.2 174/1389557518666180424101009
  • Bermingham, A., & Derrick, J. P. (2002). The folic acid biosynthe- sis pathway in bacteria: Evaluation of potential for antibacterial drug discovery.Bioessays, 24(7), 637-648. https://doi.org/10.1002/ bies.10114
  • Capasso, C., &Supuran, C. T. (2014). Sulfa and trimethoprim-like drugs–Antimetabolites acting as carbonic anhydrase, dihydrop- teroate synthase and dihydrofolate reductase inhibitors. Jour- nal of Enzyme Inhibition and Medicinal Chemistry, 29(3), 379-387. https://doi.org/10.3109/14756366.2013.787422
  • Chen, H., Wang, B., Li, P., Yan, H., Li, G., Huang, H., & Lu, Y. (2021). The optimization and characterization of functionalized sulfonamides derived from sulfaphenazole against Mycobacterium tuberculosis with reduced CYP2C9 inhibition. Bioorganic & Medicinal Chemistry Letters, 40, 127924. https://doi.org/10.1016/j.bmcl.2021.127924
  • Clinical Laboratory StandardsInstitute (CLSI). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts: Ap- proved Standard M27-A NCCLS. Wayne, Pennsylvania; 2000.
  • Clinical Laboratory Standards Institute (CLSI). Methods for Dilu- tion Antimicrobial Susceptibility Tests for Bacteria That Grow Aer- obically: Approved Standard M7-A5. Wayne, Pennsylvania; 2006.
  • Connor, E. E. (1998). Sulfonamide antibiotics. Primary Care Up- date for OB/GYNS, 5(1), 32-35. https://doi.org/10.1016/S1068- 607X(97)00121-2
  • Greenwood, D. (2010). Antibiotic Chemotherapy (Ninth Edition). In R. G. Finch, D. Greenwood, S. R. Norrby& R. J. Whitley (Eds.), His- torical introduction (pp. 2-9). London, UK: W. B. Saunders Elsevier. https://doi.org/10.1016/B978-0-7020-4064-1.00001-4
  • Güzel-Akdemir, Ö., Akdemir, A., Isik, S., Vullo, D., &Supuran, C. T. (2013). o-Benzenedisulfonimido–sulfonamides are potent inhibi- tors of the tumor-associated carbonic anhydrase isoforms CA IX and CA XII. Bioorganic & Medicinal Chemistry, 21(6), 1386-1391. https://doi.org/10.1016/j.bmc.2012.12.037
  • Hewitt, C. S., Abutaleb, N. S., Elhassanny, A. E., Nocentini, A., Cao, X., Amos, D. P Flaherty, D. P. (2021). Structure–activity relation- ship studies of acetazolamide-based carbonic anhydrase inhibi- tors with activity against Neisseria gonorrhoeae. ACS Infectious Dis- eases, 7, 1969-1984. https://doi.org/10.1021/acsinfecdis.1c00055
  • Holanda, V. N., da Silva, W. V., do Nascimento, P. H., Silva, S. R. B., Cabral Filho, P. E., de Oliveira Assis, S. P de Menezes Lima, V. L. (2020). Antileishmanial activity of 4-phenyl-1-[2-(phthalimido-2- yl) ethyl]-1H-1, 2, 3-triazole (PT4) derivative on Leishmaniaamazo- nensis and Leishmaniabraziliensis: In silico ADMET, in vitro activity, docking and molecular dynamic simulations. Bioorganic Chem- istry, 105, 104437. https://doi.org/10.1016/j.bioorg.2020.104437
  • Kalgutar, S. A., Jones, R., Sawant A. (2010). Metabolism, pharma- cokinetics and toxicity of functional groups: Impact of chemical building blocks on ADMET. In D. A. Smith (Eds.), Sulfonamide as an essential functional group in drug design (pp. 210-264). Cambridge, UK: Royal society of Chemistry.
  • Karpina, V. R., Kovalenko, S. S., Kovalenko, S. M., Drushlyak, O. G., Bunyatyan, N. D., Georgiyants, V. A. Maes, L. (2020). A novel series of [1, 2, 4]triazolo[4, 3-a]pyridine sulfonamides as poten- tial antimalarial agents: In silico studies, synthesis and in vitro evaluation. Molecules, 25(19), 4485. https://doi.org/10.3390/mol- ecules25194485
  • Mandić, L., Benčić, P., Mlinarić‐Majerski, K., Liekens, S., Snoeck, R., Andrei, G. ... Basarić, N. (2020). Substituted adamantyl- phthalimides: Synthesis, antiviral and antiproliferative activity. Archiv Der Pharmazie, 353(6), 2000024. https://doi.org/10.1002/ ardp.202000024
  • Nunes, O. C., Manaia, C. M., Kolvenbach, B. A., &Corvini, P. F. X. (2020). Living with sulfonamides: A diverse range of mechanisms observed in bacteria. Applied Microbiology and Biotechnology,104, 1-20. https://doi.org/10.1007/s00253-020-10982-5
  • Oliveira, A. R., Dos Santos, F. A., de Lima Ferreira, L. P., da Rocha Pitta, M. G., de Oliveira Silva, M. V., de Oliveira Cardoso, M. V. ... Leite, A. C. L. (2021). Synthesis, anticancer activity and mecha- nism of action of new phthalimido-1,3-thiazole derivatives.Chem- ico-Biological Interactions, 347, 109597. https://doi.org/10.1016/j. cbi.2021.109597
  • Petreni, A., De Luca, V., Scaloni, A., Nocentini, A., Capasso, C., &Su- puran, C. T. (2021). Anion inhibition studies of the Zn (II)-bound ι-carbonic anhydrase from the Gram-negative bacterium Burk- holderiaterritorii. Journal of Enzyme Inhibition and Medicinal Chem- istry, 36(1), 372-376. https://doi.org/10.1080/14756366.2020.1867122
  • Phatak, P. S., Bakale, R. D., Dhumal, S. T., Dahiwade, L. K., Choudhari, P. B., Siva Krishna, V Haval, K. P. (2019). Synthesis, antitubercular evaluation and molecular docking studies of phthalimide bear- ing 1,2,3-triazoles. Synthetic Communications, 49(16), 2017-2028. https://doi.org/10.1080/00397911.2019.1614630
  • Pippi, B., Joaquim, A. R., Lopes, W., Machado, G. R. M., Bergamo, V. Z., Giuliani, L. M. de Andrade, S. F. (2020). 8‐Hydroxyquinoline‐5‐ sulfonamides are promising antifungal candidates for the topical treatment of dermatomycosis. Journal of Applied Microbiology, 128(4), 1038-1049. https://doi.org/10.1111/jam.14545
  • Sayed, M., Kamal El-Dean, A. M., Ahmed, M., &Hassanien, R. (2018). Synthesis of some heterocyclic compounds derived from indole as antimicrobial agents. Synthetic Communications, 48(4), 413-421. https://doi.org/10.1080/00397911.2017.1403627
  • Scozzafava, A., Menabuoni, L., Mincione, F., Briganti, F., Mincione, G., &Supuran, C. T. (1999). Carbonic anhydrase inhibitors. Synthe- sis of water-soluble, topically effective, intraocular pressure-low- ering aromatic/heterocyclic sulfonamides containing cationic or anionic moieties: Is the tail more important than the ring?. Journal of Medicinal Chemistry, 42(14), 2641-2650. https://doi. org/10.1021/jm9900523
  • Singh, G., Saroa, A., Girdhar, S., Rani, S., Sahoo, S., &Choquesillo- Lazarte, D. (2015). Synthesis, characterization, electronic absorp- tion and antimicrobial studies of N-(silatranylpropyl) phthalimide derived from phthalic anhydride. InorganicaChimicaActa, 427, 232-239. https://doi.org/10.1016/j.ica.2015.01.011
  • Supuran, C. T., Innocenti, A., Mastrolorenzo, A., & Scozza- fava, A. (2004). Antiviral sulfonamide derivatives. Mini Re- views in Medicinal Chemistry, 4(2), 189-200. https://doi. org/10.2174/1389557043487402
  • TabatabaeiRafiei, L. S., Asadi, M., Hosseini, F. S., Amanlou, A., Biglar, M., &Amanlou, M. (2020). Synthesis and evaluation of anti-epi- leptic properties of new phthalimide-4,5-dihydrothiazole-amide derivatives. Polycyclic Aromatic Compounds, 1-11. https://doi.org/ 10.1080/10406638.2020.1776345
  • Turza, A., Borodi, G., Miclaus, M. O., &Kacso, I. (2020). Structural studies of the diuretic compound 4-chloro salicylic acid-5-sulfon- amide. Journal of Molecular Structure, 1212, 128154. https://doi. org/10.1016/j.molstruc.2020.128154
  • Verma, S. K., Verma, R., Xue, F., Thakur, P. K., Girish, Y. R., & Rakesh, K. P. (2020). Antibacterial activities of sulfonyl or sulfonamide con- taining heterocyclic derivatives and its structure-activity relation- ships (SAR) studies: A critical review. Bioorganic Chemistry, 105, 104400. https://doi.org/10.1016/j.bioorg.2020.104400
  • Wan, Y., Fang, G., Chen, H., Deng, X., & Tang, Z. (2021). Sulfonamide derivatives as potential anti-cancer agents and their SARs elu- cidation. European Journal of Medicinal Chemistry, 226, 113837. https://doi.org/10.1016/j.ejmech.2021.113837
  • World Health Organisation (2015). Antimicrobial Resistance Divi- sion, National Action Plans and Monitoring and Evaluation. Geneva: World Health Organisation. ISBN: 9789241509763
  • World Health Organisation (2021). Global antimicrobial resistance and use surveillance system (GLASS) report 2021. Geneva: World Health Organisation. Licence: CC BY-NC-SA 3.0 IGO.
  • World Health Organisation. (2021). Antimicrobial resistance.Re- trived from https://www.who.int/news-room/fact-sheets/detail/ antimicrobial-resistance

Evaluation of some o-benzenedisulfonimido– sulfonamide derivatives as potent antimicrobial agents

Year 2022, Volume: 52 Issue: 3, 297 - 301, 30.12.2022
https://doi.org/10.26650/IstanbulJPharm.2022.1055363

Abstract

Background and Aims: The discovery of new antimicrobials to overcome antimicrobial resistance has always been an important topic for sustainable world health. Since the sulfonamide carrying heterocyclic compounds present a number of advantages as biologically active compounds, in our work reported herein, a small collection of previously synthesized o-benzenedisulfonimido-sulfonamide derivatives were assayed to determine antimicrobial profiles against ten different microorganisms in search of finding promising new antibacterial/antifungal agents.
Methods: Eight compounds and their standards were tested against seven bacterial and three fungal strains, including members of Gram-positive, Gram-negative bacteria, and Candida spp., using the microbroth dilution method to measure their MIC (minimum inhibitory concentration) values.
Results: All assayed molecules showed different inhibitory effects on ten different targets, with considerable MIC values. Particularly, compound 2 exhibited better antimicrobial activity against the largest number of assayed microorganisms.
Conclusion: Further modification and development of o-benzenedisulfonimido-sulfonamide derivatives and additional in vitro studies against putative targets may result in new antimicrobial drug candidates in the near future.

References

  • Abdel-Aziz, A. A. M., El-Azab, A. S., AlSaif, N. A., Alanazi, M. M., El-
  • Gendy, M. A., Obaidullah, A. J Al-Suwaidan, I. A. (2020). Synthe-
  • sis, anti-inflammatory, cytotoxic, and COX-1/2 inhibitory activi- ties of cyclic imides bearing 3-benzenesulfonamide, oxime, and β-phenylalanine scaffolds: A molecular docking study. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 610-621. https:// doi.org/10.1080/14756366.2020.1722120
  • Alaa, A. M., El-Azab, A. S., Attia, S. M., Al-Obaid, A. M., Al-Omar, M. A., & El-Subbagh, H. I. (2011). Synthesis and biological evaluation of some novel cyclic-imides as hypoglycaemic, anti-hyperlipid- emic agents. European Journal of Medicinal Chemistry, 46(9), 4324- 4329. https://doi.org/10.1016/j.ejmech.2011.07.002
  • Angeli, A., Pinteala, M., Maier, S. S., Toti, A., Mannelli, L. D. C., Ghe- lardini, C. Supuran, C. T. (2021). Tellurides bearing benzensul-
  • fonamide as carbonic anhydrase inhibitors with potent antitu- mor activity. Bioorganic & Medicinal Chemistry Letters, 45, 128147. https://doi.org/10.1016/j.bmcl.2021.128147
  • Apaydın, S., &Török, M. (2019). Sulfonamide derivatives as multi- target agents for complex diseases. Bioorganic & Medicinal Chemistry Letters, 29(16), 2042-2050. https://doi.org/10.1016/j. bmcl.2019.06.041
  • Azevedo-Barbosa, H., Dias, D. F., Franco, L. L., Hawkes, J. A., &Carv- alho, D. T. (2020). From antibacterial to antitumour agents: A brief review on the chemical and medicinal aspects of sulfonamides. Mini Reviews in Medicinal Chemistry, 20(19), 2052-2066. https://doi. org/10.2174/1389557520666200905125738
  • Banarouei, N., Davood, A., Shafaroodi, H., Saeedi, G., &Shafiee, A. (2019). N-arylmethylideneaminophthalimide: Design, synthesis and evaluation as analgesic and anti-inflammatory agents. Mini Reviews in Medicinal Chemistry, 19(8),679-687. https://doi.org/10.2 174/1389557518666180424101009
  • Bermingham, A., & Derrick, J. P. (2002). The folic acid biosynthe- sis pathway in bacteria: Evaluation of potential for antibacterial drug discovery.Bioessays, 24(7), 637-648. https://doi.org/10.1002/ bies.10114
  • Capasso, C., &Supuran, C. T. (2014). Sulfa and trimethoprim-like drugs–Antimetabolites acting as carbonic anhydrase, dihydrop- teroate synthase and dihydrofolate reductase inhibitors. Jour- nal of Enzyme Inhibition and Medicinal Chemistry, 29(3), 379-387. https://doi.org/10.3109/14756366.2013.787422
  • Chen, H., Wang, B., Li, P., Yan, H., Li, G., Huang, H., & Lu, Y. (2021). The optimization and characterization of functionalized sulfonamides derived from sulfaphenazole against Mycobacterium tuberculosis with reduced CYP2C9 inhibition. Bioorganic & Medicinal Chemistry Letters, 40, 127924. https://doi.org/10.1016/j.bmcl.2021.127924
  • Clinical Laboratory StandardsInstitute (CLSI). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts: Ap- proved Standard M27-A NCCLS. Wayne, Pennsylvania; 2000.
  • Clinical Laboratory Standards Institute (CLSI). Methods for Dilu- tion Antimicrobial Susceptibility Tests for Bacteria That Grow Aer- obically: Approved Standard M7-A5. Wayne, Pennsylvania; 2006.
  • Connor, E. E. (1998). Sulfonamide antibiotics. Primary Care Up- date for OB/GYNS, 5(1), 32-35. https://doi.org/10.1016/S1068- 607X(97)00121-2
  • Greenwood, D. (2010). Antibiotic Chemotherapy (Ninth Edition). In R. G. Finch, D. Greenwood, S. R. Norrby& R. J. Whitley (Eds.), His- torical introduction (pp. 2-9). London, UK: W. B. Saunders Elsevier. https://doi.org/10.1016/B978-0-7020-4064-1.00001-4
  • Güzel-Akdemir, Ö., Akdemir, A., Isik, S., Vullo, D., &Supuran, C. T. (2013). o-Benzenedisulfonimido–sulfonamides are potent inhibi- tors of the tumor-associated carbonic anhydrase isoforms CA IX and CA XII. Bioorganic & Medicinal Chemistry, 21(6), 1386-1391. https://doi.org/10.1016/j.bmc.2012.12.037
  • Hewitt, C. S., Abutaleb, N. S., Elhassanny, A. E., Nocentini, A., Cao, X., Amos, D. P Flaherty, D. P. (2021). Structure–activity relation- ship studies of acetazolamide-based carbonic anhydrase inhibi- tors with activity against Neisseria gonorrhoeae. ACS Infectious Dis- eases, 7, 1969-1984. https://doi.org/10.1021/acsinfecdis.1c00055
  • Holanda, V. N., da Silva, W. V., do Nascimento, P. H., Silva, S. R. B., Cabral Filho, P. E., de Oliveira Assis, S. P de Menezes Lima, V. L. (2020). Antileishmanial activity of 4-phenyl-1-[2-(phthalimido-2- yl) ethyl]-1H-1, 2, 3-triazole (PT4) derivative on Leishmaniaamazo- nensis and Leishmaniabraziliensis: In silico ADMET, in vitro activity, docking and molecular dynamic simulations. Bioorganic Chem- istry, 105, 104437. https://doi.org/10.1016/j.bioorg.2020.104437
  • Kalgutar, S. A., Jones, R., Sawant A. (2010). Metabolism, pharma- cokinetics and toxicity of functional groups: Impact of chemical building blocks on ADMET. In D. A. Smith (Eds.), Sulfonamide as an essential functional group in drug design (pp. 210-264). Cambridge, UK: Royal society of Chemistry.
  • Karpina, V. R., Kovalenko, S. S., Kovalenko, S. M., Drushlyak, O. G., Bunyatyan, N. D., Georgiyants, V. A. Maes, L. (2020). A novel series of [1, 2, 4]triazolo[4, 3-a]pyridine sulfonamides as poten- tial antimalarial agents: In silico studies, synthesis and in vitro evaluation. Molecules, 25(19), 4485. https://doi.org/10.3390/mol- ecules25194485
  • Mandić, L., Benčić, P., Mlinarić‐Majerski, K., Liekens, S., Snoeck, R., Andrei, G. ... Basarić, N. (2020). Substituted adamantyl- phthalimides: Synthesis, antiviral and antiproliferative activity. Archiv Der Pharmazie, 353(6), 2000024. https://doi.org/10.1002/ ardp.202000024
  • Nunes, O. C., Manaia, C. M., Kolvenbach, B. A., &Corvini, P. F. X. (2020). Living with sulfonamides: A diverse range of mechanisms observed in bacteria. Applied Microbiology and Biotechnology,104, 1-20. https://doi.org/10.1007/s00253-020-10982-5
  • Oliveira, A. R., Dos Santos, F. A., de Lima Ferreira, L. P., da Rocha Pitta, M. G., de Oliveira Silva, M. V., de Oliveira Cardoso, M. V. ... Leite, A. C. L. (2021). Synthesis, anticancer activity and mecha- nism of action of new phthalimido-1,3-thiazole derivatives.Chem- ico-Biological Interactions, 347, 109597. https://doi.org/10.1016/j. cbi.2021.109597
  • Petreni, A., De Luca, V., Scaloni, A., Nocentini, A., Capasso, C., &Su- puran, C. T. (2021). Anion inhibition studies of the Zn (II)-bound ι-carbonic anhydrase from the Gram-negative bacterium Burk- holderiaterritorii. Journal of Enzyme Inhibition and Medicinal Chem- istry, 36(1), 372-376. https://doi.org/10.1080/14756366.2020.1867122
  • Phatak, P. S., Bakale, R. D., Dhumal, S. T., Dahiwade, L. K., Choudhari, P. B., Siva Krishna, V Haval, K. P. (2019). Synthesis, antitubercular evaluation and molecular docking studies of phthalimide bear- ing 1,2,3-triazoles. Synthetic Communications, 49(16), 2017-2028. https://doi.org/10.1080/00397911.2019.1614630
  • Pippi, B., Joaquim, A. R., Lopes, W., Machado, G. R. M., Bergamo, V. Z., Giuliani, L. M. de Andrade, S. F. (2020). 8‐Hydroxyquinoline‐5‐ sulfonamides are promising antifungal candidates for the topical treatment of dermatomycosis. Journal of Applied Microbiology, 128(4), 1038-1049. https://doi.org/10.1111/jam.14545
  • Sayed, M., Kamal El-Dean, A. M., Ahmed, M., &Hassanien, R. (2018). Synthesis of some heterocyclic compounds derived from indole as antimicrobial agents. Synthetic Communications, 48(4), 413-421. https://doi.org/10.1080/00397911.2017.1403627
  • Scozzafava, A., Menabuoni, L., Mincione, F., Briganti, F., Mincione, G., &Supuran, C. T. (1999). Carbonic anhydrase inhibitors. Synthe- sis of water-soluble, topically effective, intraocular pressure-low- ering aromatic/heterocyclic sulfonamides containing cationic or anionic moieties: Is the tail more important than the ring?. Journal of Medicinal Chemistry, 42(14), 2641-2650. https://doi. org/10.1021/jm9900523
  • Singh, G., Saroa, A., Girdhar, S., Rani, S., Sahoo, S., &Choquesillo- Lazarte, D. (2015). Synthesis, characterization, electronic absorp- tion and antimicrobial studies of N-(silatranylpropyl) phthalimide derived from phthalic anhydride. InorganicaChimicaActa, 427, 232-239. https://doi.org/10.1016/j.ica.2015.01.011
  • Supuran, C. T., Innocenti, A., Mastrolorenzo, A., & Scozza- fava, A. (2004). Antiviral sulfonamide derivatives. Mini Re- views in Medicinal Chemistry, 4(2), 189-200. https://doi. org/10.2174/1389557043487402
  • TabatabaeiRafiei, L. S., Asadi, M., Hosseini, F. S., Amanlou, A., Biglar, M., &Amanlou, M. (2020). Synthesis and evaluation of anti-epi- leptic properties of new phthalimide-4,5-dihydrothiazole-amide derivatives. Polycyclic Aromatic Compounds, 1-11. https://doi.org/ 10.1080/10406638.2020.1776345
  • Turza, A., Borodi, G., Miclaus, M. O., &Kacso, I. (2020). Structural studies of the diuretic compound 4-chloro salicylic acid-5-sulfon- amide. Journal of Molecular Structure, 1212, 128154. https://doi. org/10.1016/j.molstruc.2020.128154
  • Verma, S. K., Verma, R., Xue, F., Thakur, P. K., Girish, Y. R., & Rakesh, K. P. (2020). Antibacterial activities of sulfonyl or sulfonamide con- taining heterocyclic derivatives and its structure-activity relation- ships (SAR) studies: A critical review. Bioorganic Chemistry, 105, 104400. https://doi.org/10.1016/j.bioorg.2020.104400
  • Wan, Y., Fang, G., Chen, H., Deng, X., & Tang, Z. (2021). Sulfonamide derivatives as potential anti-cancer agents and their SARs elu- cidation. European Journal of Medicinal Chemistry, 226, 113837. https://doi.org/10.1016/j.ejmech.2021.113837
  • World Health Organisation (2015). Antimicrobial Resistance Divi- sion, National Action Plans and Monitoring and Evaluation. Geneva: World Health Organisation. ISBN: 9789241509763
  • World Health Organisation (2021). Global antimicrobial resistance and use surveillance system (GLASS) report 2021. Geneva: World Health Organisation. Licence: CC BY-NC-SA 3.0 IGO.
  • World Health Organisation. (2021). Antimicrobial resistance.Re- trived from https://www.who.int/news-room/fact-sheets/detail/ antimicrobial-resistance
There are 38 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Original Article
Authors

Kübra Demir-yazıcı 0000-0001-9928-4733

Fatıma Nur Yılmaz 0000-0001-8442-8538

Berna Özbek Çelik 0000-0001-8909-8398

Özlen Güzel Akdemir 0000-0003-3680-1945

Publication Date December 30, 2022
Submission Date January 10, 2022
Published in Issue Year 2022 Volume: 52 Issue: 3

Cite

APA Demir-yazıcı, K., Yılmaz, F. N., Özbek Çelik, B., Güzel Akdemir, Ö. (2022). Evaluation of some o-benzenedisulfonimido– sulfonamide derivatives as potent antimicrobial agents. İstanbul Journal of Pharmacy, 52(3), 297-301. https://doi.org/10.26650/IstanbulJPharm.2022.1055363
AMA Demir-yazıcı K, Yılmaz FN, Özbek Çelik B, Güzel Akdemir Ö. Evaluation of some o-benzenedisulfonimido– sulfonamide derivatives as potent antimicrobial agents. iujp. December 2022;52(3):297-301. doi:10.26650/IstanbulJPharm.2022.1055363
Chicago Demir-yazıcı, Kübra, Fatıma Nur Yılmaz, Berna Özbek Çelik, and Özlen Güzel Akdemir. “Evaluation of Some O-benzenedisulfonimido– Sulfonamide Derivatives As Potent Antimicrobial Agents”. İstanbul Journal of Pharmacy 52, no. 3 (December 2022): 297-301. https://doi.org/10.26650/IstanbulJPharm.2022.1055363.
EndNote Demir-yazıcı K, Yılmaz FN, Özbek Çelik B, Güzel Akdemir Ö (December 1, 2022) Evaluation of some o-benzenedisulfonimido– sulfonamide derivatives as potent antimicrobial agents. İstanbul Journal of Pharmacy 52 3 297–301.
IEEE K. Demir-yazıcı, F. N. Yılmaz, B. Özbek Çelik, and Ö. Güzel Akdemir, “Evaluation of some o-benzenedisulfonimido– sulfonamide derivatives as potent antimicrobial agents”, iujp, vol. 52, no. 3, pp. 297–301, 2022, doi: 10.26650/IstanbulJPharm.2022.1055363.
ISNAD Demir-yazıcı, Kübra et al. “Evaluation of Some O-benzenedisulfonimido– Sulfonamide Derivatives As Potent Antimicrobial Agents”. İstanbul Journal of Pharmacy 52/3 (December 2022), 297-301. https://doi.org/10.26650/IstanbulJPharm.2022.1055363.
JAMA Demir-yazıcı K, Yılmaz FN, Özbek Çelik B, Güzel Akdemir Ö. Evaluation of some o-benzenedisulfonimido– sulfonamide derivatives as potent antimicrobial agents. iujp. 2022;52:297–301.
MLA Demir-yazıcı, Kübra et al. “Evaluation of Some O-benzenedisulfonimido– Sulfonamide Derivatives As Potent Antimicrobial Agents”. İstanbul Journal of Pharmacy, vol. 52, no. 3, 2022, pp. 297-01, doi:10.26650/IstanbulJPharm.2022.1055363.
Vancouver Demir-yazıcı K, Yılmaz FN, Özbek Çelik B, Güzel Akdemir Ö. Evaluation of some o-benzenedisulfonimido– sulfonamide derivatives as potent antimicrobial agents. iujp. 2022;52(3):297-301.