Research Article
BibTex RIS Cite

The effects of dietary cadmium on growth, antioxidant defence system and feed evaluation performance of rainbow trout (Oncorhynchus mykiss)

Year 2024, Volume: 7 Issue: 2, 93 - 104, 02.04.2024
https://doi.org/10.3153/AR24009

Abstract

The present study was carried out to determine the effect of dietary cadmium exposure on growth performance, changes in manganese, zinc, copper, calcium, magnesium, iron, selenium, and cadmium metals in liver and muscle tissue, liver antioxidant enzymes, and the histology of the fish. Rainbow trout (Oncorhynchus mykiss) with weights of 39.45 ±1.13 g was used in the experiment conducted in 2 groups and three replicates. The Control group was fed a cadmium-free diet, and the Cadmium group was fed a diet containing 5.03 µg/kg of cadmium twice a day until satiation. It was determined that cadmium intake through the diet affected growth rate and the feed evaluation performance negatively. In fish exposed to cadmium, manganese, zinc, copper, calcium, magnesium, iron, selenium, superoxide dismutase, catalase and glutathione peroxidase values in both muscle and liver tissues were significantly (p<0.05) decreased, whereas cadmium levels in muscle and liver and malondialdehyde levels in liver were significantly (p<0.05) increased. The histopathological examination of the liver revealed that cadmium caused liver damage. These results showed that rainbow trout exposed to dietary cadmium were highly sensitive to the metal, and the decreased levels of metals such as copper, zinc, manganese, and selenium in the liver tissue, which are involved in the antioxidant defence system, can be considered an indicator of the weakening of the antioxidant defence system.

Ethical Statement

This study was conducted following the ethical protocol (2020/03) of Sinop University Animal Experiments Control Council.

Supporting Institution

The present research was funded by Sinop University Scientific Research Projects Coordination Unit

Project Number

SÜF-1901-21-011

Thanks

We thank the Scientific Research Projects of Sinop University for providing financial support and the Kızılırmak Su Urunleri Fish Farm for providing the experimental fish.

References

  • Abdel-Tawwab, M., Wafeek, M. (2014). Influence of water temperature and waterborne cadmium toxicity on growth performance and metallothionein–cadmium distribution in different organs of Nile tilapia, Oreochromis niloticus (L.). Journal of Thermal Biology, 45, 157-162. https://doi.org/10.1016/j.jtherbio.2014.09.002
  • Aebi, H. (1884). Catalase in vitro. Methods Enzymology, 105, 121-126. https://doi.org/10.1016/S0076-6879(84)05016-3
  • Ahmed, A. R., Farris, F. F., Ray, S. D. (2024). Lipid peroxidation. Encyclopedia of Toxicology, Wexler, P., Ed. 5, pp 861-870. ISBN: 9780123864550. https://doi.org/10.1016/B978-0-12-824315-2.00624-2
  • Ali, A., Al-Ogaily, S. M., Al-Asgah, N. A., Gropp, J. (2003) Effect of sublethal concentrations of copper on the growth performance of Oreochromis niloticus. Journal of Applied Ichthyology, 19, 183–188. https://doi.org/10.1046/j.1439-0426.2003.00440.x
  • Almeida, J.A., Diniz, Y.S., Marques, S.F.G., Faine, L.A., Ribas, B.O., Burneiko, R.C., Novelli, E.L.B. (2002). The use of the oxidative stress responses as biomarkers in Nile tilapia (Oreochromis niloticus) exposed to in vivo cadmium contamination. Environmental International, 27, 673–679. https://doi.org/10.1016/S0160-4120(01)00127-1
  • Almeida, A. J., Barreto, R. E., Novelli, E. L. B., Castro, F. J., Moron, S. E. (2009). Oxidative stress biomarkers and aggressive behavior in fish exposed to aquatic cadmium contamination. Neotropical Ichthyology, 7(1), 103-108. https://doi.org/10.1590/S1679-62252009000100013
  • AOAC, Official Method of Analysis, Association of Official Analytical Chemists. Washington, 16th Ed., 1995.
  • Bustamante, I. P., Bocher, P., Chere, Y., Miramand, P., Cauran, F. (2003). Distribution of trace elements in the tissues of benthic and pelagic fish from the Kerguelen. The Science of the Total Environment, 313, 25–39. https://doi.org/10.1016/S0048-9697(03)00265-1
  • Castaldo, G., Pillet, M., Slootmaekers, B., Bervoets, L., Town, R.M., Blust, R., De Boec, G. (2020). Investigating the effects of a sub-lethal metal mixture of Cu, Zn and Cd on bioaccumulation and ionoregulation in common carp, Cyprinus carpio. Aquatic Toxicology, 2018, 105363. https://doi.org/10.1016/j.aquatox.2019.105363
  • Cirillo, T., Amodio Cocchieri, R., Fasano, E., Lucisano, A., Tafuri, S., Ferrante, M. C., Carpene`, E., Andreani, G., Isani, G. (2012). Cadmium accumulation and antioxidant responses in Sparus aurata exposed to waterborne cadmium. Archives of Environmental Contamination and Toxicology, 62, 118–126. https://doi.org/10.1007/s00244-011-9676-9
  • Dabas, A., Nagpure, N. S., Kumar, R., Kushwaha, B., Kumar, P., Lakra, W. S. (2012). Assessment of tissue-specific effect of cadmium on antioxidant defense system and lipid peroxidation in freshwater murrel, Channa punctatus. Fish Physiology and Biochemistry, 38, 469–482. https://doi.org/10.1007/s10695-011-9527-7
  • Dai, Z., Cheng, J., Bao, L., Zhu, X., Li, H., Chen, X., Zhang, Y., Zhang, J., Chu, W., Pan, Y., Huang, H. (2020). Exposure to waterborne cadmium induce oxidative stress, autophagy and mitochondrial dysfunction in the liver of Procypris merus. Ecotoxicology and Environmental Safety, 204, 111051. https://doi.org/10.1016/j.ecoenv.2020.111051
  • Dang, F., Wang, W-X. (2009). Assessment of tissue-specific accumulation and effects of cadmium in a marine fish fed contaminated commercially produced diet. Aquatic Toxicology, 95, 248–255. https://doi.org/10.1016/j.aquatox.2009.09.013
  • Eken A. (2017). Rat kan ve doku örneklerinde oksidatif stres parametreleri. Journal of Clinical and Analytical Medicine, 1, 69-73.
  • Fontagne´-Dicharry, S., Godin, S., Liu, H., Prabhu, P.A.J., Bouyssie`re, B., Bueno, M., Tacon, P., Me´dale, F., Kaushik, S.J. (2015). Influence of the forms and levels of dietary selenium on antioxidant status and oxidative stress-related parameters in rainbow trout (Oncorhynchus mykiss) fry. British Journal of Nutrition, 113, 1876–1887. https://doi.org/10.1017/S0007114515001300
  • Genchi, G., Sinicropi, M.S., Lauria, G., Carocci, A., Catalano, A. (2020). The Effects of Cadmium Toxicity. International Journal of Environmental Research and Public Health, 17, 3782. https://doi.org/10.3390/ijerph17113782
  • Giacomin, M., Vilarinho, G.C., Castro, K. F., Ferreira, M., Duarte, R. M., Wood, C. M., Val, A. L. (2018). Physiological impacts and bioaccumulation of dietary Cu and Cd in a model teleost: The Amazonian tambaqui (Colossoma macropomum). Aquatic Toxicology, 199, 30-45. https://doi.org/10.1016/j.aquatox.2018.03.021
  • Gundogdu, A., Harmantepe, F.B., Dogan, G., Karsli, Z., Yagan Asci, M. (2009). Effects of Dietborne Copper on Accumulation in the Tissues and Organs, Growth and Feed Utilisation of Rainbow Trout (Oncorhynchus mykiss, Walbaum, 1792) Juvenile. Journal of Animal and Veterinary Advances, 8(12), 2495-2502.
  • Hu, W., Zhu, Q. L., Zheng, J-L., Wen, Z-Y. (2022). Cadmium induced oxidative stress, endoplasmic reticulum (ER) stress and apoptosis with compensative responses towards the up-regulation of ribosome, protein processing in the ER, and protein export pathways in the liver of zebrafish. Aquatic Toxicology, 242, 106023. https://doi.org/10.1016/j.aquatox.2021.106023
  • Kaçar, E. (2024). Heavy metal concentrations in various tissues of two fish species from Damsa Dam Lake (Turkey) and associated health risk assessment. Journal of Trace Elements in Medicine and Biology, 81, 127339. https://doi.org/10.1016/j.jtemb.2023.127339
  • Kargın, F. (1996). Seasonal changes in levels of heavy metals in tissues of Mullus barbatus and Sparus aurata Collected from İskenderun Gulf (Turkey). Water, Air and Soil Pollution. 89, 1-6. https://doi.org/10.1007/BF00282669
  • Kondera, E., Ługowska, K., Sarnowsk, P. (2014). High affinity of cadmium and copper to head kidney of common carp (Cyprinus carpio L.). Fish Physiology Biochemistry, 40, 9–22. https://doi.org/10.1007/s10695-013-9819-1
  • Kwong, R.W.M., Andrés, J.A., Niyogi, S. (2010). Molecular evidence and physiological characterization of iron absorption in isolated enterocytes of rainbow trout (Oncorhynchus mykiss): implications for dietary cadmium and lead absorption. Aquatic Toxicology, 99, 343–350. https://doi.org/10.1016/j.aquatox.2010.05.012
  • Lall, S. P., Kaushik, S. J. (2021). Nutrition and metabolism of minerals in fish. Animals, 11, 2711. https://doi.org/10.3390/ani11092711
  • Li, J., Yan, Y., Xie, X. (2018). Tissue-Specific Antioxidative Responses and Cadmium Accumulation in Silurus meridionalis Under Chronic Waterborne Cadmium Exposure. Bulletin of Environmental Contamination and Toxicology, 100, 485–491. https://doi.org/10.1007/s00128-018-2294-8
  • Li, J., Xie, X. (2019). Effects of waterborne cadmium exposure on growth performance, specific dynamic action, and energy budget of southern catfish Silurus meridionalis. Aquaculture, 511, 634194. https://doi.org/10.1016/j.aquaculture.2019.06.008
  • Liu, X.-J., Luo, Z., Li, C.-H., Xiong, B.-X, Zhao, Y.-H., Li, X.-D. (2011). Antioxidant responses, hepatic intermediary metabolism, histology and ultrastructure in Synechogobius hasta exposed to waterborne cadmium. Ecotoxicology and Environmental Safety, 74, 1156–1163. https://doi.org/10.1016/j.ecoenv.2011.02.015
  • Liu, W., Qiu, H., Yan, Y., Xie, X. (2021). Acute Cd Toxicity, Metal Accumulation, and Ion Loss in Southern Catfish (Silurus meridionalis Chen). Toxics, 9, 202. https://doi.org/10.3390/toxics9090202
  • Liu, Y., Chen, Q., Li, Y., Bi, L., Jin, L., Peng, R. (2022). Toxic effects of cadmium on fish. Toxics, 10, 622. https://doi.org/10.3390/toxics10100622
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L. (1951). Protein meausurement wih the folin phenol reagent. Journal of Biological Chemistry, 193, 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6
  • Mashroofeh, A., Bakhtiari, A.R., Pourkazemi, M., Rasouli, S. (2013). Bioaccumulation of Cd, Pb and Zn in the edible and inedible tissues of three sturgeon species in the Iranian coastline of the Caspian Sea. Chemosphere, 90 (2), 573–580. https://doi.org/10.1016/j.chemosphere.2012.08.034
  • Matovi´c, V.; Buha, A.; Ðuki´c-Cosi´c, D.; Bulat, Z. (2015). Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys. Food and Chemical Toxicology, 78, 130–140. https://doi.org/10.1016/j.fct.2015.02.011
  • Mcgeer, J.C., Niyogi, S., Smith, D.S. (2012). Cadmium. Homeostasıs and Toxıcology of Non-Essentıal Metals; Wood, C.M., Farrell, A.P. and Brauner, C.J., Ed.; Fish Physiology, 31B: pp 125-184. ISBN: 978-0-12-378634-0 https://doi.org/10.1016/S1546-5098(11)31025-4
  • Milestone (2018). Milestone SK-10 High Pressure Rotor Application Notes.
  • Nam, T. (2011). Lipid peroxidation and its toxicological implications. Toxicology Research, 27(1), 1-6. https://doi.org/10.5487/TR.2011.27.1.001
  • Noor, Z., Khan, S.A., Noor, M. (2020). Assessment of cadmium toxicity and its possible effects on goldfish (Carassius auratus), employing microscopy and biochemical techniques. Microscopy Research and Technique, 83(21), 1441–1449. https://doi.org/10.1002/jemt.23536
  • Ohkawa, H., Ohısnı, N., Yagı, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351-358. https://doi.org/10.1016/0003-2697(79)90738-3
  • Ojo, A.A., Wood, C.M. (2007). In vitro analysis of the bioavailability of six metals via the gastro-intestinal tract of the rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology, 83, 10–23. https://doi.org/10.1016/j.aquatox.2007.03.006
  • Özcan, O., Erdal, H., Çakırca, G., Yönden, Z. (2015). Oxidative stress and its impacts on intracellular lipids, proteins and DNA. Journal of Clinical and Experimental Investigations, 6 (3), 331-336. https://doi.org/10.5799/ahinjs.01.2015.03.0545
  • Özen, M.R., Pak, F. (2020). Metal accumulation in some tissues of Meagre (Argyrosomus regius) exposed to copper and cadmium. Ege Journal of Fisheries and Aquatic Sciences, 37(2), 201-206. https://doi.org/10.12714/egejfas.37.2.12
  • Paglia, D.E., Valentine, W.N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. Journal of Laboratory and Clinical Medicine, 70 (1), 158–169.
  • Pan, Y-X., Luo, Z., Zhuo, M-Q., Wei, C-C., Chen, G-H., Song, Y-F. (2018). Oxidative stress and mitochondrial dysfunction mediated Cd-induced hepatic lipid accumulation in zebrafish Danio rerio. Aquatic Toxicology, 199, 12-20. https://doi.org/10.1016/j.aquatox.2018.03.017
  • Paul, J.S., Small, B. C. (2021). Chronic exposure to environmental cadmium affects growth and survival, cellular stress, and glucose metabolism in juvenile channel catfish (Ictalurus punctatus). Aquatic Toxicology, 230, 105705. https://doi.org/10.1016/j.aquatox.2020.105705
  • Qiu, H., Wenming Liu, W., Yan, Y., Long, J., Xiaojun Xie, X. (2021). Effects of waterborne cadmium exposure on Spinibarbus sinensis hepatopancreas and kidney: Mitochondrial cadmium accumulation and respiratory metabolism. Comparative Biochemistry and Physiology, Part C, 248, 1-10. https://doi.org/10.1016/j.cbpc.2021.109115
  • Rome´o, M., Bennani, N., Gnassia-Barelli, M., Lafaurie, M., Girard J.P. (2000). Cadmium and copper display different responses towards oxidative stress in the kidney of the sea bass Dicentrarchus labrax. Aquatic Toxicology, 48, 185–194. https://doi.org/10.1016/S0166-445X(99)00039-9
  • Romero, A., Caride, A., Pereiro, N., Lafuente, A. (2011). Modulatory effects of melatonin on cadmium-ınduced changes in biogenic amines in rat hypothalamus. Neurotoxicity Research, 20, 240-249. https://doi.org/10.1007/s12640-010-9237-4
  • Shekh, K., Tang, S., Hecker, M., Niyogi, S. (2018). Investigating the role of ionoregulatory processes in the species- and life-stage-specific differences in sensitivity of rainbow trout and white sturgeon to cadmium. Environmental Science Technology, 52, 12868–12876. https://doi.org/10.1021/acs.est.8b04828
  • Souid, G., Souayed, N., Yaktiti, F., Maarouf, K. (2013). Effect of acute cadmium exposure on metal accumulation and oxidative stress biomarkers of Sparus aurata. Ecotoxicology and Environmental Safety, 89, 1-7. https://doi.org/10.1016/j.ecoenv.2012.12.015
  • Squadro, S., Prearo, M., Brizio, P., Gavinelli, S., Pellegrino, M., Scanzio, T., Guarise, S., Benedetto, A., Abete, M.C. (2013). Heavy metals distribution in muscle, liver, kidney and gill of European catfish (Silurus glanis) from Italian Rivers. Chemosphere, 90, 358-365. https://doi.org/10.1016/j.chemosphere.2012.07.028
  • Sun, Y., Oberley, L.W., Li, Y. (1988). A simple method for clinical assay of superoxide dismutase. Clinical Chemistry, 34 (3), 497–500. https://doi.org/10.1093/clinchem/34.3.497 Talas, Z. S., Orun, İ., Ozdemir, İ., Erdogan, K., Alkan, A., Yılmaz, İ. (2008). Antioxidative role of selenium against the toxic effect of heavy metals (Cd+2, Cr+3) on liver of rainbow trout (Oncorhynchus mykiss Walbaum 1792). Fish Physiology and Biochemistry, 34, 217–222. https://doi.org/10.1007/s10695-007-9179-9
  • Thevenod, F. (2003). Nephrotoxicity and the proximal tubule insights from cadmium. Nephro Physiology, 93(4), 87-93. https://doi.org/10.1159/000070241
  • Vallee, B.L. (1995). The function of metallothionein. Neurochemistry International, 27(1), 23-33. https://doi.org/10.1016/0197-0186(94)00165-Q
  • van Dyk, J.C., Pieterse, G., Van Vuren, J. (2007). Histological changes in the liver of Oreochromis mossambicus (Cichlidae) after exposure to cadmium and zinc. Ecotoxicology Environmental Safety, 66(3), 432–440. https://doi.org/10.1016/j.ecoenv.2005.10.012
  • Varol, M., Kaçar, E., Sünbül, M.R., Islam, A.R.M.T. (2022). Species, tissue and gender-related metal and element accumulation in fish species in a large reservoir (Turkey) and health risks and nutritional benefits for consumers. Environmental Toxicology and Pharmacology, 94, 103929. https://doi.org/10.1016/j.etap.2022.103929
  • Yeşilbudak, B., Erdem, C. (2014). Cadmium accumulation in gill, liver, kidney and muscle tissues of common carp, Cyprinus carpio, and nile tilapia, Oreochromis niloticus. Bulletin of Environmental Contamination Toxicology, 92, 546–550. https://doi.org/10.1007/s00128-014-1228-3
  • Zengin, H. (2018). Oxidative stress and antioxidant defenses after starvation in Oncorhynchus mykiss (Walbaum,1792) larvae reached free swimming stage. Ege Journal of Fisheries and Aquatic Sciences, 35(4), 387-396. https://doi.org/10.12714/egejfas.2018.35.4.04
  • Zheng Jia-Lang, Shuang-Shuang Yuan, Chang-Wen Wu, Zhen-Ming L. (2016). Acute exposure to waterborne cadmium induced oxidative stress and immunotoxicity in the brain, ovary and liver of zebrafish (Danio rerio). Aquatic Toxicology, 180, 36–44. https://doi.org/10.1016/j.aquatox.2016.09.012
Year 2024, Volume: 7 Issue: 2, 93 - 104, 02.04.2024
https://doi.org/10.3153/AR24009

Abstract

Project Number

SÜF-1901-21-011

References

  • Abdel-Tawwab, M., Wafeek, M. (2014). Influence of water temperature and waterborne cadmium toxicity on growth performance and metallothionein–cadmium distribution in different organs of Nile tilapia, Oreochromis niloticus (L.). Journal of Thermal Biology, 45, 157-162. https://doi.org/10.1016/j.jtherbio.2014.09.002
  • Aebi, H. (1884). Catalase in vitro. Methods Enzymology, 105, 121-126. https://doi.org/10.1016/S0076-6879(84)05016-3
  • Ahmed, A. R., Farris, F. F., Ray, S. D. (2024). Lipid peroxidation. Encyclopedia of Toxicology, Wexler, P., Ed. 5, pp 861-870. ISBN: 9780123864550. https://doi.org/10.1016/B978-0-12-824315-2.00624-2
  • Ali, A., Al-Ogaily, S. M., Al-Asgah, N. A., Gropp, J. (2003) Effect of sublethal concentrations of copper on the growth performance of Oreochromis niloticus. Journal of Applied Ichthyology, 19, 183–188. https://doi.org/10.1046/j.1439-0426.2003.00440.x
  • Almeida, J.A., Diniz, Y.S., Marques, S.F.G., Faine, L.A., Ribas, B.O., Burneiko, R.C., Novelli, E.L.B. (2002). The use of the oxidative stress responses as biomarkers in Nile tilapia (Oreochromis niloticus) exposed to in vivo cadmium contamination. Environmental International, 27, 673–679. https://doi.org/10.1016/S0160-4120(01)00127-1
  • Almeida, A. J., Barreto, R. E., Novelli, E. L. B., Castro, F. J., Moron, S. E. (2009). Oxidative stress biomarkers and aggressive behavior in fish exposed to aquatic cadmium contamination. Neotropical Ichthyology, 7(1), 103-108. https://doi.org/10.1590/S1679-62252009000100013
  • AOAC, Official Method of Analysis, Association of Official Analytical Chemists. Washington, 16th Ed., 1995.
  • Bustamante, I. P., Bocher, P., Chere, Y., Miramand, P., Cauran, F. (2003). Distribution of trace elements in the tissues of benthic and pelagic fish from the Kerguelen. The Science of the Total Environment, 313, 25–39. https://doi.org/10.1016/S0048-9697(03)00265-1
  • Castaldo, G., Pillet, M., Slootmaekers, B., Bervoets, L., Town, R.M., Blust, R., De Boec, G. (2020). Investigating the effects of a sub-lethal metal mixture of Cu, Zn and Cd on bioaccumulation and ionoregulation in common carp, Cyprinus carpio. Aquatic Toxicology, 2018, 105363. https://doi.org/10.1016/j.aquatox.2019.105363
  • Cirillo, T., Amodio Cocchieri, R., Fasano, E., Lucisano, A., Tafuri, S., Ferrante, M. C., Carpene`, E., Andreani, G., Isani, G. (2012). Cadmium accumulation and antioxidant responses in Sparus aurata exposed to waterborne cadmium. Archives of Environmental Contamination and Toxicology, 62, 118–126. https://doi.org/10.1007/s00244-011-9676-9
  • Dabas, A., Nagpure, N. S., Kumar, R., Kushwaha, B., Kumar, P., Lakra, W. S. (2012). Assessment of tissue-specific effect of cadmium on antioxidant defense system and lipid peroxidation in freshwater murrel, Channa punctatus. Fish Physiology and Biochemistry, 38, 469–482. https://doi.org/10.1007/s10695-011-9527-7
  • Dai, Z., Cheng, J., Bao, L., Zhu, X., Li, H., Chen, X., Zhang, Y., Zhang, J., Chu, W., Pan, Y., Huang, H. (2020). Exposure to waterborne cadmium induce oxidative stress, autophagy and mitochondrial dysfunction in the liver of Procypris merus. Ecotoxicology and Environmental Safety, 204, 111051. https://doi.org/10.1016/j.ecoenv.2020.111051
  • Dang, F., Wang, W-X. (2009). Assessment of tissue-specific accumulation and effects of cadmium in a marine fish fed contaminated commercially produced diet. Aquatic Toxicology, 95, 248–255. https://doi.org/10.1016/j.aquatox.2009.09.013
  • Eken A. (2017). Rat kan ve doku örneklerinde oksidatif stres parametreleri. Journal of Clinical and Analytical Medicine, 1, 69-73.
  • Fontagne´-Dicharry, S., Godin, S., Liu, H., Prabhu, P.A.J., Bouyssie`re, B., Bueno, M., Tacon, P., Me´dale, F., Kaushik, S.J. (2015). Influence of the forms and levels of dietary selenium on antioxidant status and oxidative stress-related parameters in rainbow trout (Oncorhynchus mykiss) fry. British Journal of Nutrition, 113, 1876–1887. https://doi.org/10.1017/S0007114515001300
  • Genchi, G., Sinicropi, M.S., Lauria, G., Carocci, A., Catalano, A. (2020). The Effects of Cadmium Toxicity. International Journal of Environmental Research and Public Health, 17, 3782. https://doi.org/10.3390/ijerph17113782
  • Giacomin, M., Vilarinho, G.C., Castro, K. F., Ferreira, M., Duarte, R. M., Wood, C. M., Val, A. L. (2018). Physiological impacts and bioaccumulation of dietary Cu and Cd in a model teleost: The Amazonian tambaqui (Colossoma macropomum). Aquatic Toxicology, 199, 30-45. https://doi.org/10.1016/j.aquatox.2018.03.021
  • Gundogdu, A., Harmantepe, F.B., Dogan, G., Karsli, Z., Yagan Asci, M. (2009). Effects of Dietborne Copper on Accumulation in the Tissues and Organs, Growth and Feed Utilisation of Rainbow Trout (Oncorhynchus mykiss, Walbaum, 1792) Juvenile. Journal of Animal and Veterinary Advances, 8(12), 2495-2502.
  • Hu, W., Zhu, Q. L., Zheng, J-L., Wen, Z-Y. (2022). Cadmium induced oxidative stress, endoplasmic reticulum (ER) stress and apoptosis with compensative responses towards the up-regulation of ribosome, protein processing in the ER, and protein export pathways in the liver of zebrafish. Aquatic Toxicology, 242, 106023. https://doi.org/10.1016/j.aquatox.2021.106023
  • Kaçar, E. (2024). Heavy metal concentrations in various tissues of two fish species from Damsa Dam Lake (Turkey) and associated health risk assessment. Journal of Trace Elements in Medicine and Biology, 81, 127339. https://doi.org/10.1016/j.jtemb.2023.127339
  • Kargın, F. (1996). Seasonal changes in levels of heavy metals in tissues of Mullus barbatus and Sparus aurata Collected from İskenderun Gulf (Turkey). Water, Air and Soil Pollution. 89, 1-6. https://doi.org/10.1007/BF00282669
  • Kondera, E., Ługowska, K., Sarnowsk, P. (2014). High affinity of cadmium and copper to head kidney of common carp (Cyprinus carpio L.). Fish Physiology Biochemistry, 40, 9–22. https://doi.org/10.1007/s10695-013-9819-1
  • Kwong, R.W.M., Andrés, J.A., Niyogi, S. (2010). Molecular evidence and physiological characterization of iron absorption in isolated enterocytes of rainbow trout (Oncorhynchus mykiss): implications for dietary cadmium and lead absorption. Aquatic Toxicology, 99, 343–350. https://doi.org/10.1016/j.aquatox.2010.05.012
  • Lall, S. P., Kaushik, S. J. (2021). Nutrition and metabolism of minerals in fish. Animals, 11, 2711. https://doi.org/10.3390/ani11092711
  • Li, J., Yan, Y., Xie, X. (2018). Tissue-Specific Antioxidative Responses and Cadmium Accumulation in Silurus meridionalis Under Chronic Waterborne Cadmium Exposure. Bulletin of Environmental Contamination and Toxicology, 100, 485–491. https://doi.org/10.1007/s00128-018-2294-8
  • Li, J., Xie, X. (2019). Effects of waterborne cadmium exposure on growth performance, specific dynamic action, and energy budget of southern catfish Silurus meridionalis. Aquaculture, 511, 634194. https://doi.org/10.1016/j.aquaculture.2019.06.008
  • Liu, X.-J., Luo, Z., Li, C.-H., Xiong, B.-X, Zhao, Y.-H., Li, X.-D. (2011). Antioxidant responses, hepatic intermediary metabolism, histology and ultrastructure in Synechogobius hasta exposed to waterborne cadmium. Ecotoxicology and Environmental Safety, 74, 1156–1163. https://doi.org/10.1016/j.ecoenv.2011.02.015
  • Liu, W., Qiu, H., Yan, Y., Xie, X. (2021). Acute Cd Toxicity, Metal Accumulation, and Ion Loss in Southern Catfish (Silurus meridionalis Chen). Toxics, 9, 202. https://doi.org/10.3390/toxics9090202
  • Liu, Y., Chen, Q., Li, Y., Bi, L., Jin, L., Peng, R. (2022). Toxic effects of cadmium on fish. Toxics, 10, 622. https://doi.org/10.3390/toxics10100622
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L. (1951). Protein meausurement wih the folin phenol reagent. Journal of Biological Chemistry, 193, 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6
  • Mashroofeh, A., Bakhtiari, A.R., Pourkazemi, M., Rasouli, S. (2013). Bioaccumulation of Cd, Pb and Zn in the edible and inedible tissues of three sturgeon species in the Iranian coastline of the Caspian Sea. Chemosphere, 90 (2), 573–580. https://doi.org/10.1016/j.chemosphere.2012.08.034
  • Matovi´c, V.; Buha, A.; Ðuki´c-Cosi´c, D.; Bulat, Z. (2015). Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys. Food and Chemical Toxicology, 78, 130–140. https://doi.org/10.1016/j.fct.2015.02.011
  • Mcgeer, J.C., Niyogi, S., Smith, D.S. (2012). Cadmium. Homeostasıs and Toxıcology of Non-Essentıal Metals; Wood, C.M., Farrell, A.P. and Brauner, C.J., Ed.; Fish Physiology, 31B: pp 125-184. ISBN: 978-0-12-378634-0 https://doi.org/10.1016/S1546-5098(11)31025-4
  • Milestone (2018). Milestone SK-10 High Pressure Rotor Application Notes.
  • Nam, T. (2011). Lipid peroxidation and its toxicological implications. Toxicology Research, 27(1), 1-6. https://doi.org/10.5487/TR.2011.27.1.001
  • Noor, Z., Khan, S.A., Noor, M. (2020). Assessment of cadmium toxicity and its possible effects on goldfish (Carassius auratus), employing microscopy and biochemical techniques. Microscopy Research and Technique, 83(21), 1441–1449. https://doi.org/10.1002/jemt.23536
  • Ohkawa, H., Ohısnı, N., Yagı, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351-358. https://doi.org/10.1016/0003-2697(79)90738-3
  • Ojo, A.A., Wood, C.M. (2007). In vitro analysis of the bioavailability of six metals via the gastro-intestinal tract of the rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology, 83, 10–23. https://doi.org/10.1016/j.aquatox.2007.03.006
  • Özcan, O., Erdal, H., Çakırca, G., Yönden, Z. (2015). Oxidative stress and its impacts on intracellular lipids, proteins and DNA. Journal of Clinical and Experimental Investigations, 6 (3), 331-336. https://doi.org/10.5799/ahinjs.01.2015.03.0545
  • Özen, M.R., Pak, F. (2020). Metal accumulation in some tissues of Meagre (Argyrosomus regius) exposed to copper and cadmium. Ege Journal of Fisheries and Aquatic Sciences, 37(2), 201-206. https://doi.org/10.12714/egejfas.37.2.12
  • Paglia, D.E., Valentine, W.N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. Journal of Laboratory and Clinical Medicine, 70 (1), 158–169.
  • Pan, Y-X., Luo, Z., Zhuo, M-Q., Wei, C-C., Chen, G-H., Song, Y-F. (2018). Oxidative stress and mitochondrial dysfunction mediated Cd-induced hepatic lipid accumulation in zebrafish Danio rerio. Aquatic Toxicology, 199, 12-20. https://doi.org/10.1016/j.aquatox.2018.03.017
  • Paul, J.S., Small, B. C. (2021). Chronic exposure to environmental cadmium affects growth and survival, cellular stress, and glucose metabolism in juvenile channel catfish (Ictalurus punctatus). Aquatic Toxicology, 230, 105705. https://doi.org/10.1016/j.aquatox.2020.105705
  • Qiu, H., Wenming Liu, W., Yan, Y., Long, J., Xiaojun Xie, X. (2021). Effects of waterborne cadmium exposure on Spinibarbus sinensis hepatopancreas and kidney: Mitochondrial cadmium accumulation and respiratory metabolism. Comparative Biochemistry and Physiology, Part C, 248, 1-10. https://doi.org/10.1016/j.cbpc.2021.109115
  • Rome´o, M., Bennani, N., Gnassia-Barelli, M., Lafaurie, M., Girard J.P. (2000). Cadmium and copper display different responses towards oxidative stress in the kidney of the sea bass Dicentrarchus labrax. Aquatic Toxicology, 48, 185–194. https://doi.org/10.1016/S0166-445X(99)00039-9
  • Romero, A., Caride, A., Pereiro, N., Lafuente, A. (2011). Modulatory effects of melatonin on cadmium-ınduced changes in biogenic amines in rat hypothalamus. Neurotoxicity Research, 20, 240-249. https://doi.org/10.1007/s12640-010-9237-4
  • Shekh, K., Tang, S., Hecker, M., Niyogi, S. (2018). Investigating the role of ionoregulatory processes in the species- and life-stage-specific differences in sensitivity of rainbow trout and white sturgeon to cadmium. Environmental Science Technology, 52, 12868–12876. https://doi.org/10.1021/acs.est.8b04828
  • Souid, G., Souayed, N., Yaktiti, F., Maarouf, K. (2013). Effect of acute cadmium exposure on metal accumulation and oxidative stress biomarkers of Sparus aurata. Ecotoxicology and Environmental Safety, 89, 1-7. https://doi.org/10.1016/j.ecoenv.2012.12.015
  • Squadro, S., Prearo, M., Brizio, P., Gavinelli, S., Pellegrino, M., Scanzio, T., Guarise, S., Benedetto, A., Abete, M.C. (2013). Heavy metals distribution in muscle, liver, kidney and gill of European catfish (Silurus glanis) from Italian Rivers. Chemosphere, 90, 358-365. https://doi.org/10.1016/j.chemosphere.2012.07.028
  • Sun, Y., Oberley, L.W., Li, Y. (1988). A simple method for clinical assay of superoxide dismutase. Clinical Chemistry, 34 (3), 497–500. https://doi.org/10.1093/clinchem/34.3.497 Talas, Z. S., Orun, İ., Ozdemir, İ., Erdogan, K., Alkan, A., Yılmaz, İ. (2008). Antioxidative role of selenium against the toxic effect of heavy metals (Cd+2, Cr+3) on liver of rainbow trout (Oncorhynchus mykiss Walbaum 1792). Fish Physiology and Biochemistry, 34, 217–222. https://doi.org/10.1007/s10695-007-9179-9
  • Thevenod, F. (2003). Nephrotoxicity and the proximal tubule insights from cadmium. Nephro Physiology, 93(4), 87-93. https://doi.org/10.1159/000070241
  • Vallee, B.L. (1995). The function of metallothionein. Neurochemistry International, 27(1), 23-33. https://doi.org/10.1016/0197-0186(94)00165-Q
  • van Dyk, J.C., Pieterse, G., Van Vuren, J. (2007). Histological changes in the liver of Oreochromis mossambicus (Cichlidae) after exposure to cadmium and zinc. Ecotoxicology Environmental Safety, 66(3), 432–440. https://doi.org/10.1016/j.ecoenv.2005.10.012
  • Varol, M., Kaçar, E., Sünbül, M.R., Islam, A.R.M.T. (2022). Species, tissue and gender-related metal and element accumulation in fish species in a large reservoir (Turkey) and health risks and nutritional benefits for consumers. Environmental Toxicology and Pharmacology, 94, 103929. https://doi.org/10.1016/j.etap.2022.103929
  • Yeşilbudak, B., Erdem, C. (2014). Cadmium accumulation in gill, liver, kidney and muscle tissues of common carp, Cyprinus carpio, and nile tilapia, Oreochromis niloticus. Bulletin of Environmental Contamination Toxicology, 92, 546–550. https://doi.org/10.1007/s00128-014-1228-3
  • Zengin, H. (2018). Oxidative stress and antioxidant defenses after starvation in Oncorhynchus mykiss (Walbaum,1792) larvae reached free swimming stage. Ege Journal of Fisheries and Aquatic Sciences, 35(4), 387-396. https://doi.org/10.12714/egejfas.2018.35.4.04
  • Zheng Jia-Lang, Shuang-Shuang Yuan, Chang-Wen Wu, Zhen-Ming L. (2016). Acute exposure to waterborne cadmium induced oxidative stress and immunotoxicity in the brain, ovary and liver of zebrafish (Danio rerio). Aquatic Toxicology, 180, 36–44. https://doi.org/10.1016/j.aquatox.2016.09.012
There are 57 citations in total.

Details

Primary Language English
Subjects Fish Physiology and Genetics, Pisciculture
Journal Section Research Articles
Authors

Ayşe Gündoğdu 0000-0003-1323-1003

Fatma Burcu Harmantepe 0000-0002-3277-396X

Project Number SÜF-1901-21-011
Early Pub Date March 30, 2024
Publication Date April 2, 2024
Submission Date December 5, 2023
Acceptance Date February 6, 2024
Published in Issue Year 2024Volume: 7 Issue: 2

Cite

APA Gündoğdu, A., & Harmantepe, F. B. (2024). The effects of dietary cadmium on growth, antioxidant defence system and feed evaluation performance of rainbow trout (Oncorhynchus mykiss). Aquatic Research, 7(2), 93-104. https://doi.org/10.3153/AR24009

16291

is licensed under a CreativeCommons Attribtion-ShareAlike 4.0 International Licence 14628   1325927040

Diamond Open Access refers to a scholarly publication model in which journals and platforms do not charge fees to either authors or readers.

Open Access Statement:

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.

Archiving Policy:

Archiving is done according to TÜBİTAK ULAKBİM "DergiPark" publication policy (LOCKSS).