Research Article
BibTex RIS Cite

Effects of the fresh and dried housefly (Musca domestica) larvae in the diets of Nile tilapia Oreochromis niloticus (Linnaeus, 1758): growth, feed utilization efficiency, body composition and biological indices

Year 2023, Volume: 6 Issue: 1, 1 - 10, 01.01.2023
https://doi.org/10.3153/AR23001

Abstract

A 56-day feeding trial was undertaken to assess the effects of housefly maggots (HM) forms (dried and fresh) as protein sources on growth, feed efficiency, and body indices of Oreochromis niloticus fingerlings. A control diet (T0) contained 300 g/kg of fishmeal (without HM). Two practical diets with the same formula were prepared with dried HM (T1) and fresh HM (T2) where 66 % of the fishmeal was replaced. Diets were fed to triplicate groups of tilapia (mean initial weight: 10.26 ±0.12 g). There was no difference in survival, condition factor, feed conversion ratio, and protein efficiency ratio. Fish fed diets T0 and T1 had significantly increased (P < 0.05) mean final weight (50.25 ±1.39 - 52.24 ±1.03 g), specific growth rate (2.84 ±0.03 - 2.88 ±0.03 %/day) and weight gain (389.70 ±7.63 - 402.78 ±8.16 %) compared to T2 diet ones (46.30 ±2.03 g; 2.67 ±0.07 %/day and 356.70 ±7.76 % respectively). Viscerosomatic and hepatosomatic index in fish fed T1 and T2 diets were significantly higher than those fed T0. The present findings indicate that the dried form of housefly maggot has given the best results in terms of growth compared to the live form. However, housefly forms did not affect feed efficiency parameters. 

Supporting Institution

Ministry of Higher Education and Scientific Research of the Republic of Benin

Project Number

Grant No MERS-2015-125

Thanks

The authors thank the Laboratory of Ecology and Aquatics Ecosystems Management for providing the facilities required for the study. Sincere gratitude is also extended to Megnonhou Noumonvi and Valentin Ekpe for their contribution in carrying out the feeding experiment.

References

  • Alofa, C.S., Oke, V., Abou, Y. (2016). Effect of replacement of fish meal with broiler chicken viscera on growth, feed utilization and production of African catfish Clarias gariepinus (Burchell, 1822). International Journal of Fisheries and Aquatic Studies, 4(6), 182-186.
  • Alofa, C.S., Abou, Y. (2020). A comparison between chicken viscera and housefly maggot cultured from this byproducts for Nile tilapia Diets : growth performance, feed utilization and whole body composition. Asian Journal of Fisheries and Aquatic Research, 5(3), 1-12. https://doi.org/10.9734/ajfar/2019/v5i330075
  • Alofa, C.S., Adite, A., Abou, Y. (2020). Evaluation of Spirulina (Spirulina platensis) wastes and live housefly (Musca domestica) larvae as dietary protein sources in diets of Oreochromis niloticus (Linnaeus 1758) fingerlings. Aquatic Research, 3(1), 24-35. https://doi.org/10.3153/ar20003
  • Alofa, C.S., Abou, Y. (2021). A mixture of chicken viscera, housefly larvae and spirulina waste as replacement of fishmeal in Nile tilapia (Oreochromis niloticus) diets. Aquaculture Studies, 21(1), 11-21. https://doi.org/10.4194/2618-6381-v21_1_02 Aniebo, A.O., Odukwe, C.A., Ebenebe, C.I., Ajuogu, P.K., Owen, O.J., Onu, P.N. (2011). Effect of housefly larvae (Musca domestica) Meal on the carcass and sensory qualities of the mud catfish (Clarias gariepinus). Advances in Food and Energy Security, 1, 24-28.
  • AOAC (Association of Official Agricultural Chemists) (2005). Official Methods of Analysis (18th ed.) Gaithersburg, MD : Association of Official Analytical Chemists. https://doi.org/10.1002/0471740039.vec0284
  • Awom, I.E., Eyo, O.V. (2016). Comparative Study of Growth Performance, Food Utilization and Survival of the African Catfish Clarias gariepinus (Burchell, 1822) Fingerlings Fed Live Maggot (Musca domestica) and Coppens Commercial Feed. International Journal of Scientific Research in Science Engineering and Technology, 2(2), 379-386.
  • Bhujel, R.C. (2014). A manual for tilapia business. CABI Nosworthy Way Wallingford Oxfordshire OX10 8DE UK, 199 p. ISBN 978-1-78064-136-2. https://doi.org/10.1079/9781780641362.0000
  • Bowker, J. (2013). Attractant Properties of Chemical Constituents of the Green Macroalga Ulva and Their Response Effects on the Commercially Important Sea Urchin Tripneustes gratilla. Department of Biological Sciences, Honours Project 2. University of Cape Town, pp. 1-29. http://hdl.handle.net/11427/14098
  • Caballero, M.J., López-Calero, G., Socorro, J., Roo F.J., Izquierdo, M.S., Férnandez, A.J. (1999). Combined effect of lipid level and fish meal quality on liver histology of gilthead sea bream Sparus aurata. Aquaculture, 179, 277-290. https://doi.org/10.1016/S0044-8486(99)00165-9
  • Cai, J.N., Leung, P.S., Luo, Y.J., Yuan, X.H., Yuan, Y.M. (2018). Improving the performance of tilapia farming under climate variation: perspective from bioeconomic modelling. In Food and Agriculture Organization of the United Nations (FAO). Fisheries and Aquaculture Technical Paper No. 608. Rome, FAO.
  • Cummins Jr, V.C., Rawles, S.D., Thompson, K.R., Velasquez, A., Kobayashia, K., Hagera, J., Webster, C.D. (2017). Evaluation of black soldier fly (Hermetia illucens) larvae meal as partial or total replacement of marine fish meal in practical diets for Pacific white shrimp (Litopenaeus vannamei). Aquaculture, 473, 337-344. https://doi.org/10.1016/j.aquaculture.2017.02.022
  • DeLong, D., Losordo, T.M., Rakocy, J. (2009). Tank culture of tilapia. United States Department of Agriculture, Cooperative State Research, Education and Extension Services: 1-8.
  • Diener, S, Zurbrügg, C, Tockner, K. (2009). Conversion of organic material by black soldier fly larvae: Establishing optimal feeding rates. Waste Management Resssource, 27, 603-610. https://doi.org/10.1177/0734242X09103838
  • Djissou, A.S.M., Adjahouinou, D.C., Koshio, S., Fiogbe, E.D. (2016). Complete replacement of fish meal by other animal protein sources on growth performance of Clarias gariepinus fingerlings. International Aquaculture Research, 8, 333-341. https://doi.org/10.1007/s40071-016-0146-x
  • Dong, G.F., Yang, Y.O., Song, X.M., Yu, L., Zhao, T.T., Huang, G.L., Hu, Z.J., Zhang, J.L. (2013). Comparative effects of dietary supplementation with maggot meal and soybean meal in gibel carp (Carassius auratus gibelio) and darkbarbel catfish (Pelteobagrus vachelli): Growth performance and antioxidant responses. Aquaculture Nutrition, 19, 543-554. https://doi.org/10.1111/anu.12006
  • Ekpo, I. Bender, J. (1989). Digestibility of a commercial fish feed, wet algae, and dried algae by Tilapia nilotica and silver carp. Progressive Fish-Culturist, 5(1), 83-86. https://doi.org/10.1577/1548-8640(1989)051<0083:DOACFF>2.3.CO;2 El-Sayed, A.F.M. (2006). Tilapia culture. CABI Publishing, Cambridge, Massachusetts. https://doi.org/10.1079/9780851990149.0000
  • FAO (Food and Agriculture Organisation) (2018). The State of World Fisheries and Aquaculture : Meeting the Sustainable Development Goals ; FAO : Rome, Italy.
  • FAO (Food and Agriculture Organisation) (2020). Nile tilapia: nutritional requirements. http://www.fao.org/fishery/affris/species profiles/nile-tilapia/nutritional-requirements/en/ (assessed 28/4/2020)
  • Fasakin, E.A., Balogun, A.M., Ajayi, O.O. (2003). Evaluation of full-fat and defatted maggot meals in the feeding of clariid catfish Clarias gariepinus fingerlings. Aquaculture Research, 34, 733-738. https://doi.org/10.1046/j.1365-2109.2003.00876.x
  • Fitches E.C., Dickinson M., De Marzo D., Wakefield M.E., Charlton A.C. (2018). Alternative protein production for animal feed: Musca domestica productivity on poultry litter and nutritional quality of processed larval meals. Journal of Insects as Food and Feed, 5(2), 77-88. https://doi.org/10.3920/JIFF2017.0061
  • Folch, J., Lees, M., Stanley, G.H.S. (1957). A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry, 226, 497-509. https://doi.org/10.1016/S0021-9258(18)64849-5
  • Gasco, L., Gai F., Maricchiolo, G., Genovese, L., Ragonese, S., Bottari, T., Caruso, G. (2018). Fishmeal alternative protein sources for aquaculture feeds: current situation and alternative sources. In: Feeds for the Aquaculture Sector. Springer International Publishing, Cham, pp. 1-28. https://doi.org/10.1007/978-3-319-77941-6_1
  • Guillaume, J., Kaushik, S.J., Bergot, P., Metailler, R. (1999). Nutrition et alimentation des poissons et crustacés. INRA-IFREMER éditions, Paris, 489 p.
  • Guroy, D., Karadal, O. (2019). Impacts of cycled dietary protein ratios on the growth performance and somatic indices of meagre (Argyrosomus regius). Aquatic Sciences and Engineering, 34(2), 61-66. https://doi.org/10.26650/ASE540928 Hansen, A.C., Rosenlund, G., Karlsen, O., Olsvik, P.A., Hemre, G.I. (2006). The inclusion of plant protein in cod diets, its effects on macronutrient digestibility, gut and liver histology and heat shock protein transcription. Aquaculture Research, 37, 773-784. https://doi.org/10.1111/j.1365-2109.2006.01490.x
  • Henry, M., Gasco, L., Piccolo, G., Fountoulaki, E. (2015). Review on the use of insects in the diet of farmed fish: Past and future. Animal Feed Science and Technology, 203, 1-22. https://doi.org/10.1016/j.anifeedsci.2015.03.001
  • Hu, L., Yun, B., Xue, M., Wang, J., Wu, X., Zheng, Y., Han, F. (2013). Effects of fish mealquality and fish meal substitution by animal protein blend on growth performance, flesh quality and liver histology of Japanese seabass (Lateolabrax japonicus). Aquaculture, 372-375, 52-61. https://doi.org/10.1016/j.aquaculture.2012.10.025
  • Lin, Y.H., Mui, J.J. (2017). Evaluation of dietary inclusion of housefly maggot (Musca domestica) meal on growth, fillet composition and physiological responses for barramundi, Lates calcarifer. Aquaculture Research, 48(5), 2478-2485. https://doi.org/10.1111/are.13085 Liu, X.J., Luo, Z., Xiong, B.X., Liu, X., Zhao, Y.H., Hu, G.F., Lv, G.J. (2010). Effect of water borne copper exposure on growth, hepatic enzymatic activities and histology in Synechogobius hasta. Ecotoxicology and Environmental Safety, 73, 1286-1291. https://doi.org/10.1016/j.ecoenv.2010.06.019
  • Makkar, H.P.S., Tran, G., Heuze, V., Ankers, P. (2014). State-of-the-art on use of insects as animal feed. Animal Feed Science Technology, 197, 1-33. https://doi.org/10.1016/j.anifeedsci.2014.07.008
  • Nash, R.D.M., Valencia, A.H., Geffen, A.J. (2006). The origin of Fulton’s condition factor-setting the record straight. Fisheries, 31, 236-238.
  • Obirikorang, K.A., Amisah, S., Agbo, N.W., Adjei-Boateng, D., Adjei, N.G., Skov, P.V. (2015). Evaluation of locally-available agro-industrial byproducts as partial replacements to fishmeal in diets for Nile Tilapia (Oreochromis niloticus) production in Ghana. Journal of Animal Research and Nutrition, 1(1), 1-9. https://doi.org/10.21767/2572-5459.100002
  • Ogunji, J.O., Summan Toor, R.U.A., Schulz, C., Kloas, W. (2008). Growth performance, nutrient utilization of Nile tilapia Oreochromis niloticus fed housefly maggot meal (magmeal) diets. Turkish Journal of Fisheries and Aquatic Science, 8, 141-147.
  • Ossey, Y.B., Koumi, A.R., Koffi, K.M., Atse, B.C., Kouame, L.P. (2012). Utilisation du soja, de la cervelle bovine et de l’asticot comme sources de protéines alimentaires chez les larves de Heterobranchus longifilis (Valenciennes, 1840). Journal of Animal and Plant Sciences, 15, 2099-2108.
  • Oyelese, O.A. (2007). Utilization of compounded ration and maggot in the diet of Clarias gariepinus. Research Journal of Applied Sciences, 2, 301-306.
  • Rurangwa, E., Van den Berg, J., Laleye, P.A., van Duijn, A.P., Rothuis, A. (2014). Mission exploratoire Pêche, Pisciculture et Aquaculture au Bénin: Un quick scan du secteur pour des possibilités d’interventions. IMARES report C072/14, 70p.
  • Shiau, S.Y., Yu, Y.P. (1999). Dietary supplementation of chitin and chitosan depresses growth in tilapia, Oreochromis niloticus × O. aureus. Aquaculture, 179, 439-446. https://doi.org/10.1016/s0044-8486(99)00177-5
  • Tran, G., Heuzé, V., Makkar, H.P.S. (2015). Insects in fish diets. Animal frontiers, 5(2), 37-44.
  • Van Huis, A., Van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G., Vantomme, P. (2013). Edible Insects: Future prospects for food and feed security (No. 171). Rome: FAO.
  • Wang, L., Li, J., Jin, J., Zhu, F., Roffeis, M., Zhang, X. (2017). A comprehensive evaluation of replacing fishmeal with housefly (Musca domestica) maggot meal in the diet of Nile tilapia (Oreochromis niloticus): Growth performance, flesh quality, innate immunity and water environment. Aquaculture Nutrition, 23(5), 983-993. https://doi.org/10.1111/anu.12466
Year 2023, Volume: 6 Issue: 1, 1 - 10, 01.01.2023
https://doi.org/10.3153/AR23001

Abstract

Project Number

Grant No MERS-2015-125

References

  • Alofa, C.S., Oke, V., Abou, Y. (2016). Effect of replacement of fish meal with broiler chicken viscera on growth, feed utilization and production of African catfish Clarias gariepinus (Burchell, 1822). International Journal of Fisheries and Aquatic Studies, 4(6), 182-186.
  • Alofa, C.S., Abou, Y. (2020). A comparison between chicken viscera and housefly maggot cultured from this byproducts for Nile tilapia Diets : growth performance, feed utilization and whole body composition. Asian Journal of Fisheries and Aquatic Research, 5(3), 1-12. https://doi.org/10.9734/ajfar/2019/v5i330075
  • Alofa, C.S., Adite, A., Abou, Y. (2020). Evaluation of Spirulina (Spirulina platensis) wastes and live housefly (Musca domestica) larvae as dietary protein sources in diets of Oreochromis niloticus (Linnaeus 1758) fingerlings. Aquatic Research, 3(1), 24-35. https://doi.org/10.3153/ar20003
  • Alofa, C.S., Abou, Y. (2021). A mixture of chicken viscera, housefly larvae and spirulina waste as replacement of fishmeal in Nile tilapia (Oreochromis niloticus) diets. Aquaculture Studies, 21(1), 11-21. https://doi.org/10.4194/2618-6381-v21_1_02 Aniebo, A.O., Odukwe, C.A., Ebenebe, C.I., Ajuogu, P.K., Owen, O.J., Onu, P.N. (2011). Effect of housefly larvae (Musca domestica) Meal on the carcass and sensory qualities of the mud catfish (Clarias gariepinus). Advances in Food and Energy Security, 1, 24-28.
  • AOAC (Association of Official Agricultural Chemists) (2005). Official Methods of Analysis (18th ed.) Gaithersburg, MD : Association of Official Analytical Chemists. https://doi.org/10.1002/0471740039.vec0284
  • Awom, I.E., Eyo, O.V. (2016). Comparative Study of Growth Performance, Food Utilization and Survival of the African Catfish Clarias gariepinus (Burchell, 1822) Fingerlings Fed Live Maggot (Musca domestica) and Coppens Commercial Feed. International Journal of Scientific Research in Science Engineering and Technology, 2(2), 379-386.
  • Bhujel, R.C. (2014). A manual for tilapia business. CABI Nosworthy Way Wallingford Oxfordshire OX10 8DE UK, 199 p. ISBN 978-1-78064-136-2. https://doi.org/10.1079/9781780641362.0000
  • Bowker, J. (2013). Attractant Properties of Chemical Constituents of the Green Macroalga Ulva and Their Response Effects on the Commercially Important Sea Urchin Tripneustes gratilla. Department of Biological Sciences, Honours Project 2. University of Cape Town, pp. 1-29. http://hdl.handle.net/11427/14098
  • Caballero, M.J., López-Calero, G., Socorro, J., Roo F.J., Izquierdo, M.S., Férnandez, A.J. (1999). Combined effect of lipid level and fish meal quality on liver histology of gilthead sea bream Sparus aurata. Aquaculture, 179, 277-290. https://doi.org/10.1016/S0044-8486(99)00165-9
  • Cai, J.N., Leung, P.S., Luo, Y.J., Yuan, X.H., Yuan, Y.M. (2018). Improving the performance of tilapia farming under climate variation: perspective from bioeconomic modelling. In Food and Agriculture Organization of the United Nations (FAO). Fisheries and Aquaculture Technical Paper No. 608. Rome, FAO.
  • Cummins Jr, V.C., Rawles, S.D., Thompson, K.R., Velasquez, A., Kobayashia, K., Hagera, J., Webster, C.D. (2017). Evaluation of black soldier fly (Hermetia illucens) larvae meal as partial or total replacement of marine fish meal in practical diets for Pacific white shrimp (Litopenaeus vannamei). Aquaculture, 473, 337-344. https://doi.org/10.1016/j.aquaculture.2017.02.022
  • DeLong, D., Losordo, T.M., Rakocy, J. (2009). Tank culture of tilapia. United States Department of Agriculture, Cooperative State Research, Education and Extension Services: 1-8.
  • Diener, S, Zurbrügg, C, Tockner, K. (2009). Conversion of organic material by black soldier fly larvae: Establishing optimal feeding rates. Waste Management Resssource, 27, 603-610. https://doi.org/10.1177/0734242X09103838
  • Djissou, A.S.M., Adjahouinou, D.C., Koshio, S., Fiogbe, E.D. (2016). Complete replacement of fish meal by other animal protein sources on growth performance of Clarias gariepinus fingerlings. International Aquaculture Research, 8, 333-341. https://doi.org/10.1007/s40071-016-0146-x
  • Dong, G.F., Yang, Y.O., Song, X.M., Yu, L., Zhao, T.T., Huang, G.L., Hu, Z.J., Zhang, J.L. (2013). Comparative effects of dietary supplementation with maggot meal and soybean meal in gibel carp (Carassius auratus gibelio) and darkbarbel catfish (Pelteobagrus vachelli): Growth performance and antioxidant responses. Aquaculture Nutrition, 19, 543-554. https://doi.org/10.1111/anu.12006
  • Ekpo, I. Bender, J. (1989). Digestibility of a commercial fish feed, wet algae, and dried algae by Tilapia nilotica and silver carp. Progressive Fish-Culturist, 5(1), 83-86. https://doi.org/10.1577/1548-8640(1989)051<0083:DOACFF>2.3.CO;2 El-Sayed, A.F.M. (2006). Tilapia culture. CABI Publishing, Cambridge, Massachusetts. https://doi.org/10.1079/9780851990149.0000
  • FAO (Food and Agriculture Organisation) (2018). The State of World Fisheries and Aquaculture : Meeting the Sustainable Development Goals ; FAO : Rome, Italy.
  • FAO (Food and Agriculture Organisation) (2020). Nile tilapia: nutritional requirements. http://www.fao.org/fishery/affris/species profiles/nile-tilapia/nutritional-requirements/en/ (assessed 28/4/2020)
  • Fasakin, E.A., Balogun, A.M., Ajayi, O.O. (2003). Evaluation of full-fat and defatted maggot meals in the feeding of clariid catfish Clarias gariepinus fingerlings. Aquaculture Research, 34, 733-738. https://doi.org/10.1046/j.1365-2109.2003.00876.x
  • Fitches E.C., Dickinson M., De Marzo D., Wakefield M.E., Charlton A.C. (2018). Alternative protein production for animal feed: Musca domestica productivity on poultry litter and nutritional quality of processed larval meals. Journal of Insects as Food and Feed, 5(2), 77-88. https://doi.org/10.3920/JIFF2017.0061
  • Folch, J., Lees, M., Stanley, G.H.S. (1957). A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry, 226, 497-509. https://doi.org/10.1016/S0021-9258(18)64849-5
  • Gasco, L., Gai F., Maricchiolo, G., Genovese, L., Ragonese, S., Bottari, T., Caruso, G. (2018). Fishmeal alternative protein sources for aquaculture feeds: current situation and alternative sources. In: Feeds for the Aquaculture Sector. Springer International Publishing, Cham, pp. 1-28. https://doi.org/10.1007/978-3-319-77941-6_1
  • Guillaume, J., Kaushik, S.J., Bergot, P., Metailler, R. (1999). Nutrition et alimentation des poissons et crustacés. INRA-IFREMER éditions, Paris, 489 p.
  • Guroy, D., Karadal, O. (2019). Impacts of cycled dietary protein ratios on the growth performance and somatic indices of meagre (Argyrosomus regius). Aquatic Sciences and Engineering, 34(2), 61-66. https://doi.org/10.26650/ASE540928 Hansen, A.C., Rosenlund, G., Karlsen, O., Olsvik, P.A., Hemre, G.I. (2006). The inclusion of plant protein in cod diets, its effects on macronutrient digestibility, gut and liver histology and heat shock protein transcription. Aquaculture Research, 37, 773-784. https://doi.org/10.1111/j.1365-2109.2006.01490.x
  • Henry, M., Gasco, L., Piccolo, G., Fountoulaki, E. (2015). Review on the use of insects in the diet of farmed fish: Past and future. Animal Feed Science and Technology, 203, 1-22. https://doi.org/10.1016/j.anifeedsci.2015.03.001
  • Hu, L., Yun, B., Xue, M., Wang, J., Wu, X., Zheng, Y., Han, F. (2013). Effects of fish mealquality and fish meal substitution by animal protein blend on growth performance, flesh quality and liver histology of Japanese seabass (Lateolabrax japonicus). Aquaculture, 372-375, 52-61. https://doi.org/10.1016/j.aquaculture.2012.10.025
  • Lin, Y.H., Mui, J.J. (2017). Evaluation of dietary inclusion of housefly maggot (Musca domestica) meal on growth, fillet composition and physiological responses for barramundi, Lates calcarifer. Aquaculture Research, 48(5), 2478-2485. https://doi.org/10.1111/are.13085 Liu, X.J., Luo, Z., Xiong, B.X., Liu, X., Zhao, Y.H., Hu, G.F., Lv, G.J. (2010). Effect of water borne copper exposure on growth, hepatic enzymatic activities and histology in Synechogobius hasta. Ecotoxicology and Environmental Safety, 73, 1286-1291. https://doi.org/10.1016/j.ecoenv.2010.06.019
  • Makkar, H.P.S., Tran, G., Heuze, V., Ankers, P. (2014). State-of-the-art on use of insects as animal feed. Animal Feed Science Technology, 197, 1-33. https://doi.org/10.1016/j.anifeedsci.2014.07.008
  • Nash, R.D.M., Valencia, A.H., Geffen, A.J. (2006). The origin of Fulton’s condition factor-setting the record straight. Fisheries, 31, 236-238.
  • Obirikorang, K.A., Amisah, S., Agbo, N.W., Adjei-Boateng, D., Adjei, N.G., Skov, P.V. (2015). Evaluation of locally-available agro-industrial byproducts as partial replacements to fishmeal in diets for Nile Tilapia (Oreochromis niloticus) production in Ghana. Journal of Animal Research and Nutrition, 1(1), 1-9. https://doi.org/10.21767/2572-5459.100002
  • Ogunji, J.O., Summan Toor, R.U.A., Schulz, C., Kloas, W. (2008). Growth performance, nutrient utilization of Nile tilapia Oreochromis niloticus fed housefly maggot meal (magmeal) diets. Turkish Journal of Fisheries and Aquatic Science, 8, 141-147.
  • Ossey, Y.B., Koumi, A.R., Koffi, K.M., Atse, B.C., Kouame, L.P. (2012). Utilisation du soja, de la cervelle bovine et de l’asticot comme sources de protéines alimentaires chez les larves de Heterobranchus longifilis (Valenciennes, 1840). Journal of Animal and Plant Sciences, 15, 2099-2108.
  • Oyelese, O.A. (2007). Utilization of compounded ration and maggot in the diet of Clarias gariepinus. Research Journal of Applied Sciences, 2, 301-306.
  • Rurangwa, E., Van den Berg, J., Laleye, P.A., van Duijn, A.P., Rothuis, A. (2014). Mission exploratoire Pêche, Pisciculture et Aquaculture au Bénin: Un quick scan du secteur pour des possibilités d’interventions. IMARES report C072/14, 70p.
  • Shiau, S.Y., Yu, Y.P. (1999). Dietary supplementation of chitin and chitosan depresses growth in tilapia, Oreochromis niloticus × O. aureus. Aquaculture, 179, 439-446. https://doi.org/10.1016/s0044-8486(99)00177-5
  • Tran, G., Heuzé, V., Makkar, H.P.S. (2015). Insects in fish diets. Animal frontiers, 5(2), 37-44.
  • Van Huis, A., Van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G., Vantomme, P. (2013). Edible Insects: Future prospects for food and feed security (No. 171). Rome: FAO.
  • Wang, L., Li, J., Jin, J., Zhu, F., Roffeis, M., Zhang, X. (2017). A comprehensive evaluation of replacing fishmeal with housefly (Musca domestica) maggot meal in the diet of Nile tilapia (Oreochromis niloticus): Growth performance, flesh quality, innate immunity and water environment. Aquaculture Nutrition, 23(5), 983-993. https://doi.org/10.1111/anu.12466
There are 38 citations in total.

Details

Primary Language English
Subjects Hydrobiology
Journal Section Research Articles
Authors

Cayen Sédro Alofa 0000-0002-3412-3362

Isabella Yasmine Olodo 0000-0003-2588-4415

Mouhamed Chabı Kpera Orou Narı 0000-0002-6266-1045

Youssouf Abou 0000-0002-8273-0036

Project Number Grant No MERS-2015-125
Publication Date January 1, 2023
Submission Date March 31, 2022
Published in Issue Year 2023Volume: 6 Issue: 1

Cite

APA Alofa, C. S., Olodo, I. Y., Chabı Kpera Orou Narı, M., Abou, Y. (2023). Effects of the fresh and dried housefly (Musca domestica) larvae in the diets of Nile tilapia Oreochromis niloticus (Linnaeus, 1758): growth, feed utilization efficiency, body composition and biological indices. Aquatic Research, 6(1), 1-10. https://doi.org/10.3153/AR23001

16291

is licensed under a CreativeCommons Attribtion-ShareAlike 4.0 International Licence 14628   1325927040

Diamond Open Access refers to a scholarly publication model in which journals and platforms do not charge fees to either authors or readers.

Open Access Statement:

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.

Archiving Policy:

Archiving is done according to TÜBİTAK ULAKBİM "DergiPark" publication policy (LOCKSS).