Review
BibTex RIS Cite
Year 2024, Volume: 7
https://doi.org/10.35208/ert.1397380

Abstract

References

  • P. Wambua, J. Ivens, and I. Verpoest, “Natural fibers: can they replace glass in fiber reinforced plastics?,” Composites science and technology, Vol. 63(9), pp. 1259–1264, 2003. [CrossRef]
  • A. K. Mohanty, L. T. Drzal, and M. Misra, “Engineered natural fiber reinforced polypropylene composites: influence of surface modifications and novel powder impregnation processing,” Journal of Adhesion Science and Technology, Vol. 16(8), pp. 999–1015, 2002. [CrossRef]
  • R. A. Kurien, D. P. Selvaraj, M. Sekar, M, C. P. Koshy, C. Paul, S. Palanisamy, C. Santulli, and P. Kumar, “A comprehensive review on the mechanical, physical, and thermal properties of abaca fiber for their introduction into structural polymer composites,” Cellulose, pp. 1–22, 2023. [CrossRef]
  • S. Palanisamy, K. Vijayananth, T. M. Murugesan, M. Palaniappan, and C. Santulli, “The Prospects of Natural Fiber Composites: A Brief Review,” International Journal of Lightweight Materials and Manufacture, 2024. [Pre-print] doi: 10.1016/j.ijlmm.2024.01.003. [CrossRef]
  • N. Uddin, Developments in fiber-reinforced polymer (FRP) composites for civil engineering. Elsevier, 2013. [CrossRef]
  • M. Y. Khalid, A. Al Rashid, Z. U. Arif, W. Ahmed, H. Arshad, and A. A. Zaidi, “Natural fiber reinforced composites: Sustainable materials for emerging applications,” Results in Engineering, Vol. 11, Article 100263, 2021. [CrossRef]
  • C. Santulli, S. Palanisamy, and S. Dharmalingam, “Natural fibers-based bio-epoxy composites: mechanical and thermal properties,” Epoxy-Based Biocomposites, 2023, pp. 163–176. [CrossRef]
  • K. L. Pickering, M. G. A. Efendy, and T. M. Le, “A review of recent developments in natural fiber composites and their mechanical performance,” Composites Part A: Applied Science and Manufacturing, Vol. 83, pp. 98–112, 2016. [CrossRef]
  • B. Dahlke, H. Larbig, H. D. Scherzer, and R. Poltrock, “Natural fiber reinforced foams based on renewable resources for automotive interior applications,” Journal of Cellular Plastics, Vol. 34(4), pp. 361–379, 1998. [CrossRef]
  • S. Palanisamy, M. Kalimuthu, C. Santulli, R. Nagarajan, and G. Karuppiah, “Effect of extraction methods on the properties of bast fibers,” in bast fibers and their composites: Processing, properties and applications, Springer, pp. 17–37, 2022. [CrossRef]
  • A. C. N. Singleton, C. A. Baillie, P. W. R. Beaumont, and T. Peijs, “On the mechanical properties, deformation and fracture of a natural fiber/recycled polymer composite,” Composites Part B: Engineering, Vol. 34(6), pp. 519–526, 2003. [CrossRef]
  • N. Shah, J. Fehrenbach, and C. A. Ulven, “Hybridization of hemp fiber and recycled-carbon fiber in polypropylene composites,” Sustainability, Vol. 11(11), Article 3163, 2019. [CrossRef]
  • M. Asim, M. Jawaid, M. Nasir, and N. Saba, “Effect of fiber loadings and treatment on dynamic mechanical, thermal and flammability properties of pineapple leaf fiber and kenaf phenolic composites,” Journal of Renewable Materials, Vol. 6(4), Article 383, 2018. [CrossRef]
  • C. Santulli, S. Palanisamy, and M. Kalimuthu, “Pineapple fibers, their composites and applications,” in Plant Fibers, their Composites, and Applications, Elsevier, pp. 323–346, 2022. [CrossRef]
  • S. Palanisamy, M. Kalimuthu, M. Palaniappan, A. Alavudeen, N. Rajini, C. Santulli, F. Mohammad. and H. Al-Lohedan, “Characterization of acacia caesia bark fibers (ACBFs),” Journal of Natural Fibers, Vol. 19(15), pp. 10241–10252, 2022. [CrossRef]
  • O. Faruk, A. K. Bledzki, H.-P. Fink, and M. Sain, “Biocomposites reinforced with natural fibers: 2000–2010,” Progress in polymer science, Vol. 37(11), pp. 1552–1596, 2012. [CrossRef]
  • M. J. John and S. Thomas, “Biofibers and biocomposites,” Carbohydrate Polymers, Vol. 71(3), pp. 343–364, 2008. [CrossRef]
  • S. K. Ramamoorthy, M. Skrifvars, and A. Persson, “A review of natural fibers used in biocomposites: Plant, animal and regenerated cellulose fibers,” Polymer Reviews, Vol. 55(1), pp. 107–162, 2015. [CrossRef]
  • M. Butnariu, and A. I. Flavius, “General information about cellulose,” Biotechnol Bioprocess, Vol. 3(3), pp. 2314–2766, 2022.
  • E. Zini, and M. Scandola, “Green composites: an overview,” Polymer Composites, Vol. 32(12), pp. 1905–1915, 2011. [CrossRef]
  • M. Jacob, S. Thomas, and K. T. Varughese, “Mechanical properties of sisal / oil palm hybrid fiber reinforced natural rubber composites,” Composites Science and Technology, Vol. 64, pp. 955–965, 2004. [CrossRef]
  • A. Kicińska-Jakubowska, E. Bogacz, and M. Zimniewska, “Review of natural fibers. Part I—Vegetable fibers,” Journal of Natural Fibers, Vol. 9(3), pp. 150–167, 2012. [CrossRef]
  • A. Célino, S. Fréour, F. Jacquemin, and P. Casari, “The hygroscopic behavior of plant fibers: a review,” Frontiers in chemistry, vol. 1, p. 43, 2014. [CrossRef]
  • P. Suman, A. L. Naidu, and P. R. Rao, “Processing and mechanical behaviour of hair fiber reinforced polymer metal matrix composites,” in International Conference on Recent Innovations in Engineering and Technology (ICRIET-2k16), Organized by Gandhi Institute of Engineering and Technology, Gunpur on 5th & 6th November-2016, 2016.
  • K. R. Sumesh, A. Ajithram, S. Palanisamy, and V. Kavimani, “Mechanical properties of ramie/flax hybrid natural fiber composites under different conditions,” Biomass Conversion and Biorefinery, pp. 1–12, 2023. [CrossRef]
  • H. Chen, “Chemical composition and structure of natural lignocellulose,” in Biotechnology of lignocellulose, Springer, 2014, pp. 25–71. [CrossRef]
  • A. K. Mohanty, M. Misra, and L. T. Drzal, Natural fibers, biopolymers, and biocomposites. CRC Press, 2005. [CrossRef]
  • M. M. Ibrahim, A. Dufresne, W. K. El-Zawawy, and F. A. Agblevor, “Banana fibers and microfibrils as lignocellulosic reinforcements in polymer composites,” Carbohydrate Polymers, Vol. 81(4), pp. 811–819, 2010. [CrossRef]
  • G. Karuppiah, K. C. Kuttalam, N. Ayrilmis, R. Nagarajan, M. I.Devi, S. Palanisamy. and C. Santulli, “Tribological analysis of jute/coir polyester composites filled with eggshell powder (ESP) or nanoclay (NC) using grey rational method,” Fibers, Vol. 10(7), Article 60, 2022. [CrossRef]
  • M. Joonobi, J. Harun, P. M. Tahir, L. H. Zaini, S. SaifulAzry, and M. D. Makinejad, “Characteristic of nanofibers extracted from kenaf core,” BioResources, Vol. 5(4), pp. 2556–2566, 2010. [CrossRef]
  • P. H. F. Pereira, M. D. F. Rosa, M. O. H. Cioffi, K. C. C. D. C. Benini, A. C. Milanese, H. J. C. Voorwald. and D. R. Mulinari, “Vegetal fibers in polymeric composites: a review,” Polímeros, Vol. 25, pp. 9–22, 2015. [CrossRef]
  • M. M. Rao, and K. M. Rao,” Extraction and tensile properties of natural fibers: Vakka, date and bamboo. Composite Structuresvol. 77, pp. 288–295, 2007. [CrossRef]
  • G. Karuppiah, K. C. Kuttalam, and M. Palaniappan, “Multiobjective optimization of fabrication parameters of jute fiber / polyester composites with egg shell powder and nanoclay filler,” Molecules, Vol. 25(23), Article 5579, 2020. [CrossRef]
  • L. Mwaikambo, “Review of the history, properties and application of plant fibers,” African Journal of Science and Technology, Vol. 7(2), Article 121, 2006.
  • Y.-F. Wang, Z. Jankauskiene, C. S. Qiu, E. Gruzdeviene, S. H. Long, E. Alexopoulou, Y. Guo, J. Szopa, D. M. Hao, A. L. Fernando. and H. Wang, H, “Fiber flax breeding in China and Europe,” Journal of Natural Fibers, Vol. 15(3), pp. 309–324, 2018. [CrossRef]
  • M. J. A. Van den Oever, H. L. Bos, and M. Van Kemenade, “Influence of the physical structure of flax fibers on the mechanical properties of flax fiber reinforced polypropylene composites,” Applied Composite Materials, Vol. 7(5), pp. 387–402, 2000.
  • S. Sharma, S. S. Nair, Z. Zhang, A. J. Ragauskas, and Y. Deng, “Characterization of micro fibrillation process of cellulose and mercerized cellulose pulp,” RSC Advances, Vol. 5( 77), pp. 63111–63122, 2015. [CrossRef]
  • W. Wang, M. Sain, and P. A. Cooper, “Study of moisture absorption in natural fiber plastic composites,” Composites science and technology, Vol. 66(3–4), pp. 379–386, 2006. [CrossRef]
  • T. M. Murugesan, S. Palanisamy, C. Santulli, and M. Palaniappan, “Mechanical characterization of alkali treated Sansevieria cylindrica fibers–Natural rubber composites,” Materials Today: Proceedings, Vol. 62, pp. 5402–5406, 2022. [CrossRef]
  • C. C. Sun, “True density of microcrystalline cellulose,” Journal of Pharmaceutical Sciences, Vol. 94(10), pp. 2132–2134, 2005. [CrossRef]
  • D. B. Dittenber, and H. V. S. GangaRao, “Critical review of recent publications on use of natural composites in infrastructure,” Composites Part A: Applied Science and Manufacturing, Vol. 43(8), pp. 1419–1429, 2012. [CrossRef]
  • E. Jayamani, S. Hamdan, M. R. Rahman, and M. K. Bin Bakri, “Comparative study of dielectric properties of hybrid natural fiber composites,” Procedia Engineering, Vol. 97, pp. 536–544, 2014. [CrossRef]
  • A. L. Naidu, B. Sudarshan, and K. H. Krishna, “Study on mechanical behavior of groundnut shell fiber reinforced polymer metal matrix composities,” International Journal of Engineering Research & Technology, Vol. 2, Article 2, 2013.
  • E. Omrani, P. L. Menezes, and P. K. Rohatgi, “State of the art on tribological behavior of polymer matrix composites reinforced with natural fibers in the green materials world,” Engineering Science and Technology, an International Journal, Vol. 19(2), pp. 717–736, 2016. [CrossRef]
  • L. U. Devi, S. S. Bhagawan, and S. Thomas, “Mechanical properties of pineapple leaf fiber‐reinforced polyester composites,” Journal of Applied Polymer Science, Vol. 64(9), pp. 1739–1748, 1997. [CrossRef]
  • M. Jonoobi, M Jonoobi, R. Oladi, Y. Davoudpour, K. Oksman, A. Dufresne, Y. Hamzeh, R. Davoodi, “Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review,” Cellulose, Vol. 22, pp. 935–969, 2015. [CrossRef]
  • M. Praveen Kumar, R. V. Mangalaraja, S. Karazhanov, T. F. de Oliveira, M. Sasikumar, G. Murugadoss, S. Mubarak, S. Palanisamy. and N. Kumaresan, “An overview of noble-metal-free nanostructured electrocatalysts for overall water splitting,” Materials Technology for the Energy and Environmental Nexus, Volume 1, pp. 1–3, 2023. [CrossRef]
  • R. P. de Melo, M. F. V Marques, P. Navard, and N. P. Duque, “Degradation studies and mechanical properties of treated curauá fibers and microcrystalline cellulose in composites with polyamide 6,” Journal of Composite Materials, Vol. 51(25), pp. 3481–3489, 2017. [CrossRef]
  • R. Badrinath and T. Senthilvelan, “Comparative investigation on mechanical properties of banana and sisal reinforced polymer based composites,” Procedia Materials Science, Vol. 5, pp. 2263–2272, 2014. [CrossRef]
  • X. Li and G. L. Tabil, “Panigrahi S,” Chemical Treatments of Natural Fiber for Use in Natu‐ral Fiber-Reinforced Composites: A Review Journal of Polymers and the Environment, Vol. 15(1), pp. 25–33, 2007. [CrossRef]
  • N. A. Nordin, F. M. Yussof, S. Kasolang, Z. Salleh, and M. A. Ahmad, “Wear rate of natural fiber: long kenaf composite,” Procedia Engineering, Vol. 68, pp. 145–151, 2013. [CrossRef]
  • A. G. Adeniyi, D. V. Onifade, J. O. Ighalo, and A. S. Adeoye, “A review of coir fiber reinforced polymer composites,” Composites Part B: Engineering, Vol. 176, Article 107305, 2019. [CrossRef]
  • S. Palanisamy, M. Kalimuthu, S. Dharmalingam, A. Alavudeen, R. Nagarajan, S. O. Ismail, S. Siengchin, F. Mohammad. and H. A. Al-Lohedan, “Effects of fiber loadings and lengths on mechanical properties of Sansevieria Cylindrica fiber reinforced natural rubber biocomposites,” Materials Research Express, Vol. 10(8), Article 85503, 2023. [CrossRef]
  • S.-J. Park and M.-K. Seo, “Modeling of fiber–matrix interface in composite materials,” Interface Science and Technology, Vol. 18, pp. 739–776, 2011. [CrossRef]
  • A. Gani, M. Ibrahim, F. Ulmi, and A. Farhan, “The influence of different fiber sizes on the flexural strength of natural fiber-reinforced polymer composites,” Results in Materials, Article 100534, 2024.
  • D. C. William, Materials science and engineering: An introduction. John Wiley, 2014. [CrossRef]
  • S. Palanisamy, T. M. Murugesan, M. Palaniappan, C. Santulli, and N. Ayrilmis, “Use of hemp waste for the development of myceliumgrown matrix biocomposites: A concise bibliographic review,” BioResources, Vol. 18(4), 2023. [CrossRef]
  • M. Ramesh, K. Palanikumar, and K. H. Reddy, “Comparative evaluation on properties of hybrid glass fiber-sisal/jute reinforced epoxy composites,” Procedia Engineering, Vol. 51, pp. 745–750, 2013. [CrossRef]
  • V. Mishra, and S. Biswas, “Physical and mechanical properties of bi-directional jute fiber epoxy composites,” Procedia Engineering, Vol. 51, pp. 561–566, 2013. [CrossRef]
  • M. Ramesh, T. S. A. Atreya, U. S. Aswin, H. Eashwar, and C. Deepa, “Processing and mechanical property evaluation of banana fiber reinforced polymer composites,” Procedia Engineering, Vol. 97, pp. 563–572, 2014. [CrossRef]
  • G. D. Babu, K. S. Babu, and P. N. Kishore, “Tensile and wear behavior of calotropis gigentea fruit fiber reinforced polyester composites,” Procedia Engineering, Vol. 97, pp. 531–535, 2014. [CrossRef]
  • N. Klinklow, S. Padungkul, S. Kanthong, S. Patcharaphun, and R. Techapiesancharoenkij, “Development of a kraft paper box lined with thermal-insulating materials by utilizing natural wastes,” Key Engineering Materials, Vol. 545, pp. 82–88, 2013. [CrossRef]
  • S. Ashworth, J. Rongong, P. Wilson, and J. Meredith, “Mechanical and damping properties of resin transfer moulded jute-carbon hybrid composites,” Composites Part B: Engineering, Vol. 105, pp. 60–66, 2016. [CrossRef]
  • S. Siengchin, and R. Dangtungee, “Polyethylene and polypropylene hybrid composites based on nano silicon dioxide and different flax structures,” Journal of Thermoplastic Composite Materials, Vol. 27(10), pp. 1428–1447, 2014. [CrossRef]
  • S. M. S. Kumar, D. and Duraibabu, and K. Subramanian, “Studies on mechanical, thermal and dynamic mechanical properties of untreated (raw) and treated coconut sheath fiber reinforced epoxy composites,” Materials & Design, Vol. 59, pp. 63–69, 2014. [CrossRef]
  • F. Costa, and J. R. M. d’Almeida, “Effect of water absorption on the mechanical properties of sisal and jute fiber composites,” Polymer-Plastics Technology and Engineering, Vol. 38(5), pp. 1081–1094, 1999. [CrossRef]
  • B. Ly, W. Thielemans, A. Dufresne, D. Chaussy, and M. N. Belgacem, “Surface functionalization of cellulose fibers and their incorporation in renewable polymeric matrices,” Composites Science and Technology, Vol. 68(15–16), pp. 3193–3201, 2008. [CrossRef]
  • H. Ma, Y. Li, Y. Shen, L. Xie, and D. Wang, “Effect of linear density and yarn structure on the mechanical properties of ramie fiber yarn reinforced composites,” Composites Part A: Applied Science and Manufacturing, Vol. 87, pp. 98–108, 2016. [CrossRef]
  • A. K. Mohanty, M. A. Khan, S. Sahoo, and G. Hinrichsen, “Effect of chemical modification on the performance of biodegradable jute yarn-Biopol® composites,” Journal of Materials Science, Vol. 35(10), pp. 2589–2595, 2000. [CrossRef]
  • M. Dun, J. Hao, W. Wang, G. Wang, and H. Cheng, “Sisal fiber reinforced high density polyethylene pre-preg for potential application in filament winding,” Composites Part B: Engineering, vol. 159, pp. 369–377, 2019. [CrossRef]
  • P. Lehtiniemi, K. Dufva, T. Berg, M. Skrifvars, and P. Järvelä, “Natural fiber-based reinforcements in epoxy composites processed by filament winding,” Journal of Reinforced Plastics and Composites, Vol. 30(23), pp. 1947–1955, 2011. [CrossRef]
  • M. Abdelmouleh, S. Boufi, M. N. Belgacem, and A. Dufresne, “Short natural-fiber reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibers loading,” Composites Science and Technology, Vol. 67(7–8), pp. 1627–1639, 2007. [CrossRef]
  • A. Gopinath, M. S. Kumar, and A. Elayaperumal, “Experimental investigations on mechanical properties of jute fiber reinforced composites with polyester and epoxy resin matrices,” Procedia Engineering, Vol. 97, pp. 2052–2063, 2014. [CrossRef]
  • K. Oksman, M. Skrifvars, and J.-F. Selin, “Natural fibers as reinforcement in polylactic acid (PLA) composites,” Composites Science and Technology, Vol. 63(9), pp. 1317–1324, 2003. [CrossRef]
  • S. M. da Luz, A. R. Goncalves, and A. P. Del’Arco Jr, “Mechanical behavior and microstructural analysis of sugarcane bagasse fibers reinforced polypropylene composites,” Composites Part A: Applied Science and Manufacturing, Vol. 38(6), pp. 1455–1461, 2007. [CrossRef]
  • S. Srisuwan, N. Prasoetsopha, and N. Suppakarn, “The effects of alkalized and silanized woven sisal fibers on mechanical properties of natural rubber modified epoxy resin,” Energy Procedia, Vol. 56, pp. 19–25, 2014. [CrossRef]
  • H. Rashnal, I. Aminul, V. V Aart, and V. Ignaas, “Tensile behaviour of environment friendly jute epoxy laminated composite,” Procedia Engineering, Vol. 56, pp. 782–788, 2013. [CrossRef]
  • Y. Ruksakulpiwat, N. Suppakarn, W. Sutapun, and W. Thomthong, “Vetiver–polypropylene composites: physical and mechanical properties,” Composites Part A: Applied Science and Manufacturing, Vol. 38(2), pp. 590–601, 2007. [CrossRef]
  • M. M. Thwe and K. Liao, “Effects of environmental aging on the mechanical properties of bamboo–glass fiber reinforced polymer matrix hybrid composites,” Composites Part A: Applied Science and Manufacturing, Vol. 33(1), pp. 43–52, 2002. [CrossRef]
  • S. A. S. Goulart, T. A. Oliveira, A. Teixeira, P. C. Miléo, and D. R. Mulinari, “Mechanical behaviour of polypropylene reinforced palm fibers composites,” Procedia Engineering, Vol. 10, pp. 2034–2039, 2011. [CrossRef]
  • V. Fiore, T. Scalici, G. Di Bella, and A. Valenza, “A review on basalt fiber and its composites,” Composites Part B: Engineering, Vol. 74, pp. 74–94, 2015. [CrossRef]
  • J. Summerscales, A. Virk, and W. Hall, “A review of bast fibers and their composites: Part 3–Modelling,” Composites Part A: Applied Science and Manufacturing, Vol. 44, pp. 132–139, 2013. [CrossRef]
  • K. Srinivas, A. L. Naidu, and M. V. A. R. Bahubalendruni, “A review on chemical and mechanical properties of natural fiber reinforced polymer composites,” International Journal of Performability Engineering, Vol. 13(2), Article 189, 2017. [CrossRef]
  • H. Ku, H. Wang, N. Pattarachaiyakoop, and M. Trada, “Composites : Part B A review on the tensile properties of natural fiber reinforced polymer composites,” Composites Part B: Engineering, Vol. 42, pp. 856–873, 2011. [CrossRef]
  • F. de Andrade Silva, N. Chawla, and R. D. de Toledo Filho, “Tensile behavior of high performance natural (sisal) fibers,” Composites Science and Technology, Vol. 68, no. 15–16, pp. 3438–3443, 2008. [CrossRef]
  • M. Z. Rong, M. Q. Zhang, Y. Liu, G. C. Yang, and H. M. Zeng, “The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites,” Composites Science and technology, Vol. 61(10), pp. 1437–1447, 2001. [CrossRef]
  • S. Palanisamy, M. Kalimuthu, C. Santulli, M. Palaniappan, R. Nagarajan, and C. Fragassa, “Tailoring epoxy composites with acacia caesia bark fibers: evaluating the effects of fiber amount and length on material characteristics,” Fibers, Vol. 11(7), Article 63, 2023. [CrossRef]
  • Y. Zou, N. Reddy, and Y. Yang, “Reusing polyester/cotton blend fabrics for composites,” Composites Part B: Engineering, Vol. 42(4), pp. 763–770, 2011. [CrossRef]
  • V. K. Thakur, M. K. Thakur, and R. K. Gupta, “Review : Raw natural fiber – based polymer composites,” International Journal of Polymer Analysis and Characterization, Vol. 19(3), pp. 256–271, 2014. [CrossRef]
  • M. M. Kabir, H. Wang, T. Aravinthan, F. Cardona, and K.-T. Lau, “Effects of natural fiber surface on composite properties: A review,” in Proceedings of the 1st international postgraduate conference on engineering, designing and developing the built environment for sustainable wellbeing (eddBE2011), 2011, pp. 94–99.
  • A. Moudood, A. Rahman, H. M. Khanlou, W. Hall, A. Öchsner, and G. Francucci, “Environmental effects on the durability and the mechanical performance of flax fiber/bio-epoxy composites,” Composites Part B: Engineering, Vol. 171, pp. 284–293, 2019. [CrossRef]
  • A. B. Nair, P. Sivasubramanian, P. Balakrishnan, K. A. N. Ajith Kumar, and M. S. Sreekala, “Environmental effects, biodegradation, and life cycle analysis of fully biodegradable ‘green’ composites,” Wiley, pp. 515–568, 2013. [CrossRef]
  • V. P. Arthanarieswaran, A. Kumaravel, and M. Kathirselvam, “Evaluation of mechanical properties of banana and sisal fiber reinforced epoxy composites: Influence of glass fiber hybridization,” Materials & Design, Vol. 64, pp. 194–202, 2014. [CrossRef]
  • I. N. Hidayah, D. N. Syuhada, H. P. S. A. Khalil, Z. A. M. Ishak, and M. Mariatti, “Enhanced performance of lightweight kenaf-based hierarchical composite laminates with embedded carbon nanotubes,” Materials & Design, Vol. 171, Article 107710, 2019. [CrossRef]
  • V. Paul, K. Kanny, and G. G. Redhi, “Mechanical, thermal and morphological properties of a bio-based composite derived from banana plant source,” Composites Part A: Applied Science and Manufacturing, Vol. 68, pp. 90–100, 2015. [CrossRef]
  • M. P. M. Dicker, P. F. Duckworth, A. B. Baker, G. Francois, M. K. Hazzard, and P. M. Weaver, “Green composites: A review of material attributes and complementary applications,” Composites Part A: Applied Science and Manufacturing, Vol. 56, pp. 280–289, 2014. [CrossRef]
  • E. R. S. Goutham, S. S.Hussain,C. Muthukumar, S. Krishnasamy, T. S. Muthu Kumar, C. Santulli, S. Palanisamy, J. Parameswaranpillai, and N. Jesuarockiam, “Drilling parameters and post-drilling residual tensile properties of natural-fiber-reinforced composites: A review,” Journal of Composites Science, Vol. 7(4), Article 136, 2023. [CrossRef]
  • I. M. De Rosa, J. M. Kenny, D. Puglia, C. Santulli, and F. Sarasini, “Tensile behavior of New Zealand flax (Phormium tenax) fibers,” Journal of Reinforced Plastics and Composites, Vol. 29(23), pp. 3450–3454, 2010. [CrossRef]
  • B.-H. Lee, H.-J. Kim, and W.-R. Yu, “Fabrication of long and discontinuous natural fiber reinforced polypropylene biocomposites and their mechanical properties,” Fibers and Polymers, Vol. 10(1), pp. 83–90, 2009. [CrossRef]
  • P. S. Kumar, C. U. Kiran, and K. P. Rao, “Effect of fiber surface treatments on mechanical properties of sisal fiber polymer composites–a review,” International Journal of Advanced Research in Science, Engineering and Technolology, Vol. 4, pp. 4411–4416, 2017.
  • A. L. Naidu, and P. S. V. R. Rao, “A review on chemical behaviour of natural fiber composites,” International Journal of Chemical Sciences, Vol. 14(4), pp. 2223–2238, 2016.
  • R. Siakeng, M. Jawaid, H. Ariffin, S. M. Sapuan, M. Asim, and N. Saba, “Natural fiber reinforced polylactic acid composites: A review,” Polymer Composites, Vol. 40(2), pp. 446–463, 2019. [CrossRef]
  • O. Onuaguluchi, and N. Banthia, “Plant-based natural fiber reinforced cement composites: A review,” Cement and Concrete Composites, Vol. 68, pp. 96–108, 2016. [CrossRef]
  • M. Fagone, F. Loccarini, and G. Ranocchiai, “Strength evaluation of jute fabric for the reinforcement of rammed earth structures,” Composites Part B: Engineering, Vol. 113, pp. 1–13, 2017. [CrossRef]
  • N. M. Muhammad Hijas, P. Pramod, P. Prasanth, H. Sivam, and P. Sivasubramanian, “Development of jute fiber reinforced natural rubber composite material & determination of its mechanical properties,” IJIRST, Vol. 3, pp. 207–212, 2017. [CrossRef]
  • A. J. Adeyi, M. O. Durowoju, O. Adeyi, E. O. Oke, O. A. Olalere, and A. D. Ogunsola, “Momordica augustisepala L. stem fiber reinforced thermoplastic starch: Mechanical property characterization and fuzzy logic artificial intelligent modelling,” Results in Engineering, Vol. 10, Article 100222, 2021. [CrossRef]
  • G. Thilagavathi, E. Pradeep, T. Kannaian, and L. Sasikala, “Development of natural fiber nonwovens for application as car interiors for noise control,” Journal of Industrial Textiles, Vol. 39(3), pp. 267–278, 2010. [CrossRef]
  • N. E. Zafeiropoulos, C. A. Baillie, and J. M. Hodgkinson, “Engineering and characterisation of the interface in flax fiber/polypropylene composite materials. Part II. The effect of surface treatments on the interface,” Composites part A: applied science and manufacturing, Vol. 33(9), pp. 1185–1190, 2002. [CrossRef]
  • E. A. Elbadry, M. S. Aly-Hassan, and H. Hamada, “Mechanical properties of natural jute fabric/jute mat fiber reinforced polymer matrix hybrid composites,” Advances in Mechanical Engineering, Vol. 4, Article 354547, 2012. [CrossRef]
  • A. K. M. Nayab-Ul-Hossain, S. K. Sela, and S. Bin Sadeque, “Recycling of dyed fiber waste to minimize resistance and to prepare electro thermal conductive bar,” Results in Engineering, vol. 3, Article 100022, 2019. [CrossRef]
  • S. Mahmud, K. M. F. Hasan, M. A. Jahid, K. Mohiuddin, R. Zhang, and J. Zhu, “Comprehensive review on plant fiber-reinforced polymeric biocomposites,” Journal of Materials Science, Vol. 56, pp. 7231–7264, 2021. [CrossRef]
  • S. Palanisamy, M. Kalimuthu, A. Azeez, M. Palaniappan, S. Dharmalingam , R. Nagarajan, and C. Santulli, “Wear properties and post-moisture absorption mechanical behavior of kenaf/banana-fiber-reinforced epoxy composites,” Fibers, Vol. 10(4), Article 32, 2022. [CrossRef]
  • S. V Joshi, L. T. Drzal, A. K. Mohanty, and S. Arora, “Are natural fiber composites environmentally superior to glass fiber reinforced composites?,” Composites Part A: Applied science and manufacturing, Vol. 35(3), pp. 371–376, 2004. [CrossRef]
  • J. P. Correa, J. M. Montalvo-Navarrete, and M. A. Hidalgo-Salazar, “Carbon footprint considerations for biocomposite materials for sustainable products: A review,” Journal of Cleaner Production, Vol. 208, pp. 785–794, 2019. [CrossRef]
  • V. K. Thakur, Green composites from natural resources. CRC Press, 2013. [CrossRef]
  • R. N. Arancon, “Market and trade of coconut products: Expert’s consulatation on coconut sector development in Asia and the Pacific,” Asian and pacific coconut community, Bangkok, 2013.
  • E. C. Botelho, R. A. Silva, L. C. Pardini, and M. C. Rezende, “A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures,” Materials Research, Vol. 9, pp. 247–256, 2006. [CrossRef]
  • A. Ticoalu, T. Aravinthan, and F. Cardona, “A review of current development in natural fiber composites for structural and infrastructure applications,” in Proceedings of the southern region engineering conference (SREC 2010), 2010, pp. 113–117.
  • A. Belaadi, A. Bezazi, M. Maache, and F. Scarpa, “Fatigue in sisal fiber reinforced polyester composites: hysteresis and energy dissipation,” Procedia Engineering, Vol. 74, pp. 325–328, 2014. [CrossRef]
  • R. Kumar, M. I. Ul Haq, A. Raina, and A. Anand, “Industrial applications of natural fiber-reinforced polymer composites–challenges and opportunities,” International Journal of Sustainable Engineering, Vol. 12(3), pp. 212–220, 2019. [CrossRef]
  • Y. G. Thyavihalli Girijappa, S. Mavinkere Rangappa, J. Parameswaranpillai, and S. Siengchin, “Natural fibers as sustainable and renewable resource for development of eco-friendly composites: a comprehensive review,” Frontiers in Materials, Vol. 6, Article 226, 2019. [CrossRef]
  • L. Mohammed, M. N. M. Ansari, G. Pua, M. Jawaid, and M. S. Islam, “A review on natural fiber reinforced polymer composite and its applications,” Vol. 2015, Article 243947, 2015. [CrossRef]

Fostering sustainability: The environmental advantages of natural fiber composite materials – a mini review

Year 2024, Volume: 7
https://doi.org/10.35208/ert.1397380

Abstract

In recent decades, natural fiber reinforced composites (NFRCs) have become an attractive substitute for conventional materials such as glass fiber and have attracted considerable interest from researchers and academics, particularly in the context of environmental protection. Environmental factors and their impact on the fundamental properties of renewable materials are becoming an increasingly popular area of study, particularly natural fibers and their composites. While this area of research is still expanding, natural fiber-reinforced polymer composites (NFRCs) have found widespread use in a variety of engineering contexts. Natural fibers (NFs) such as pineapple leaf (PALF), bamboo, abaca, coconut fibers, jute, banana, flax, hemp, sisal, kenaf, and others have many desirable properties, but their development and use present researchers with a number of obstacles. These fibers have attracted attention due to their various advantageous properties, such as lightness, economy, biodegradability, remarkable specific strength, and competitive mechanical properties, which make them promising candidates for use as biomaterials. As a result, they can serve as alternative materials to traditional composite fibers such as glass, aramid, and carbon in various applications. In addition, natural fibers have attracted the interest of an increasing number of researchers because they are readily available in nature and as by-products of agricultural and food systems, contributing to the improvement of the environmental ecosystem. This interest coincides with the search for environmentally friendly materials to replace synthetic fibers used in the construction, automotive, and packaging industries. The use of natural fibers is not only logical but also practical, as their fibrous form can be easily extracted and strengthened by chemical, physical, or enzymatic treatments. This article provides a brief overview of NFRCs, looking at their chemical, physical, and mechanical properties. It also highlights some of the significant advances associated with NFRCs from an economic, environmental, and sustainability perspective. Additionally, it provides a concise discussion of their diverse applications, all with a focus on their positive impact on the environment.

References

  • P. Wambua, J. Ivens, and I. Verpoest, “Natural fibers: can they replace glass in fiber reinforced plastics?,” Composites science and technology, Vol. 63(9), pp. 1259–1264, 2003. [CrossRef]
  • A. K. Mohanty, L. T. Drzal, and M. Misra, “Engineered natural fiber reinforced polypropylene composites: influence of surface modifications and novel powder impregnation processing,” Journal of Adhesion Science and Technology, Vol. 16(8), pp. 999–1015, 2002. [CrossRef]
  • R. A. Kurien, D. P. Selvaraj, M. Sekar, M, C. P. Koshy, C. Paul, S. Palanisamy, C. Santulli, and P. Kumar, “A comprehensive review on the mechanical, physical, and thermal properties of abaca fiber for their introduction into structural polymer composites,” Cellulose, pp. 1–22, 2023. [CrossRef]
  • S. Palanisamy, K. Vijayananth, T. M. Murugesan, M. Palaniappan, and C. Santulli, “The Prospects of Natural Fiber Composites: A Brief Review,” International Journal of Lightweight Materials and Manufacture, 2024. [Pre-print] doi: 10.1016/j.ijlmm.2024.01.003. [CrossRef]
  • N. Uddin, Developments in fiber-reinforced polymer (FRP) composites for civil engineering. Elsevier, 2013. [CrossRef]
  • M. Y. Khalid, A. Al Rashid, Z. U. Arif, W. Ahmed, H. Arshad, and A. A. Zaidi, “Natural fiber reinforced composites: Sustainable materials for emerging applications,” Results in Engineering, Vol. 11, Article 100263, 2021. [CrossRef]
  • C. Santulli, S. Palanisamy, and S. Dharmalingam, “Natural fibers-based bio-epoxy composites: mechanical and thermal properties,” Epoxy-Based Biocomposites, 2023, pp. 163–176. [CrossRef]
  • K. L. Pickering, M. G. A. Efendy, and T. M. Le, “A review of recent developments in natural fiber composites and their mechanical performance,” Composites Part A: Applied Science and Manufacturing, Vol. 83, pp. 98–112, 2016. [CrossRef]
  • B. Dahlke, H. Larbig, H. D. Scherzer, and R. Poltrock, “Natural fiber reinforced foams based on renewable resources for automotive interior applications,” Journal of Cellular Plastics, Vol. 34(4), pp. 361–379, 1998. [CrossRef]
  • S. Palanisamy, M. Kalimuthu, C. Santulli, R. Nagarajan, and G. Karuppiah, “Effect of extraction methods on the properties of bast fibers,” in bast fibers and their composites: Processing, properties and applications, Springer, pp. 17–37, 2022. [CrossRef]
  • A. C. N. Singleton, C. A. Baillie, P. W. R. Beaumont, and T. Peijs, “On the mechanical properties, deformation and fracture of a natural fiber/recycled polymer composite,” Composites Part B: Engineering, Vol. 34(6), pp. 519–526, 2003. [CrossRef]
  • N. Shah, J. Fehrenbach, and C. A. Ulven, “Hybridization of hemp fiber and recycled-carbon fiber in polypropylene composites,” Sustainability, Vol. 11(11), Article 3163, 2019. [CrossRef]
  • M. Asim, M. Jawaid, M. Nasir, and N. Saba, “Effect of fiber loadings and treatment on dynamic mechanical, thermal and flammability properties of pineapple leaf fiber and kenaf phenolic composites,” Journal of Renewable Materials, Vol. 6(4), Article 383, 2018. [CrossRef]
  • C. Santulli, S. Palanisamy, and M. Kalimuthu, “Pineapple fibers, their composites and applications,” in Plant Fibers, their Composites, and Applications, Elsevier, pp. 323–346, 2022. [CrossRef]
  • S. Palanisamy, M. Kalimuthu, M. Palaniappan, A. Alavudeen, N. Rajini, C. Santulli, F. Mohammad. and H. Al-Lohedan, “Characterization of acacia caesia bark fibers (ACBFs),” Journal of Natural Fibers, Vol. 19(15), pp. 10241–10252, 2022. [CrossRef]
  • O. Faruk, A. K. Bledzki, H.-P. Fink, and M. Sain, “Biocomposites reinforced with natural fibers: 2000–2010,” Progress in polymer science, Vol. 37(11), pp. 1552–1596, 2012. [CrossRef]
  • M. J. John and S. Thomas, “Biofibers and biocomposites,” Carbohydrate Polymers, Vol. 71(3), pp. 343–364, 2008. [CrossRef]
  • S. K. Ramamoorthy, M. Skrifvars, and A. Persson, “A review of natural fibers used in biocomposites: Plant, animal and regenerated cellulose fibers,” Polymer Reviews, Vol. 55(1), pp. 107–162, 2015. [CrossRef]
  • M. Butnariu, and A. I. Flavius, “General information about cellulose,” Biotechnol Bioprocess, Vol. 3(3), pp. 2314–2766, 2022.
  • E. Zini, and M. Scandola, “Green composites: an overview,” Polymer Composites, Vol. 32(12), pp. 1905–1915, 2011. [CrossRef]
  • M. Jacob, S. Thomas, and K. T. Varughese, “Mechanical properties of sisal / oil palm hybrid fiber reinforced natural rubber composites,” Composites Science and Technology, Vol. 64, pp. 955–965, 2004. [CrossRef]
  • A. Kicińska-Jakubowska, E. Bogacz, and M. Zimniewska, “Review of natural fibers. Part I—Vegetable fibers,” Journal of Natural Fibers, Vol. 9(3), pp. 150–167, 2012. [CrossRef]
  • A. Célino, S. Fréour, F. Jacquemin, and P. Casari, “The hygroscopic behavior of plant fibers: a review,” Frontiers in chemistry, vol. 1, p. 43, 2014. [CrossRef]
  • P. Suman, A. L. Naidu, and P. R. Rao, “Processing and mechanical behaviour of hair fiber reinforced polymer metal matrix composites,” in International Conference on Recent Innovations in Engineering and Technology (ICRIET-2k16), Organized by Gandhi Institute of Engineering and Technology, Gunpur on 5th & 6th November-2016, 2016.
  • K. R. Sumesh, A. Ajithram, S. Palanisamy, and V. Kavimani, “Mechanical properties of ramie/flax hybrid natural fiber composites under different conditions,” Biomass Conversion and Biorefinery, pp. 1–12, 2023. [CrossRef]
  • H. Chen, “Chemical composition and structure of natural lignocellulose,” in Biotechnology of lignocellulose, Springer, 2014, pp. 25–71. [CrossRef]
  • A. K. Mohanty, M. Misra, and L. T. Drzal, Natural fibers, biopolymers, and biocomposites. CRC Press, 2005. [CrossRef]
  • M. M. Ibrahim, A. Dufresne, W. K. El-Zawawy, and F. A. Agblevor, “Banana fibers and microfibrils as lignocellulosic reinforcements in polymer composites,” Carbohydrate Polymers, Vol. 81(4), pp. 811–819, 2010. [CrossRef]
  • G. Karuppiah, K. C. Kuttalam, N. Ayrilmis, R. Nagarajan, M. I.Devi, S. Palanisamy. and C. Santulli, “Tribological analysis of jute/coir polyester composites filled with eggshell powder (ESP) or nanoclay (NC) using grey rational method,” Fibers, Vol. 10(7), Article 60, 2022. [CrossRef]
  • M. Joonobi, J. Harun, P. M. Tahir, L. H. Zaini, S. SaifulAzry, and M. D. Makinejad, “Characteristic of nanofibers extracted from kenaf core,” BioResources, Vol. 5(4), pp. 2556–2566, 2010. [CrossRef]
  • P. H. F. Pereira, M. D. F. Rosa, M. O. H. Cioffi, K. C. C. D. C. Benini, A. C. Milanese, H. J. C. Voorwald. and D. R. Mulinari, “Vegetal fibers in polymeric composites: a review,” Polímeros, Vol. 25, pp. 9–22, 2015. [CrossRef]
  • M. M. Rao, and K. M. Rao,” Extraction and tensile properties of natural fibers: Vakka, date and bamboo. Composite Structuresvol. 77, pp. 288–295, 2007. [CrossRef]
  • G. Karuppiah, K. C. Kuttalam, and M. Palaniappan, “Multiobjective optimization of fabrication parameters of jute fiber / polyester composites with egg shell powder and nanoclay filler,” Molecules, Vol. 25(23), Article 5579, 2020. [CrossRef]
  • L. Mwaikambo, “Review of the history, properties and application of plant fibers,” African Journal of Science and Technology, Vol. 7(2), Article 121, 2006.
  • Y.-F. Wang, Z. Jankauskiene, C. S. Qiu, E. Gruzdeviene, S. H. Long, E. Alexopoulou, Y. Guo, J. Szopa, D. M. Hao, A. L. Fernando. and H. Wang, H, “Fiber flax breeding in China and Europe,” Journal of Natural Fibers, Vol. 15(3), pp. 309–324, 2018. [CrossRef]
  • M. J. A. Van den Oever, H. L. Bos, and M. Van Kemenade, “Influence of the physical structure of flax fibers on the mechanical properties of flax fiber reinforced polypropylene composites,” Applied Composite Materials, Vol. 7(5), pp. 387–402, 2000.
  • S. Sharma, S. S. Nair, Z. Zhang, A. J. Ragauskas, and Y. Deng, “Characterization of micro fibrillation process of cellulose and mercerized cellulose pulp,” RSC Advances, Vol. 5( 77), pp. 63111–63122, 2015. [CrossRef]
  • W. Wang, M. Sain, and P. A. Cooper, “Study of moisture absorption in natural fiber plastic composites,” Composites science and technology, Vol. 66(3–4), pp. 379–386, 2006. [CrossRef]
  • T. M. Murugesan, S. Palanisamy, C. Santulli, and M. Palaniappan, “Mechanical characterization of alkali treated Sansevieria cylindrica fibers–Natural rubber composites,” Materials Today: Proceedings, Vol. 62, pp. 5402–5406, 2022. [CrossRef]
  • C. C. Sun, “True density of microcrystalline cellulose,” Journal of Pharmaceutical Sciences, Vol. 94(10), pp. 2132–2134, 2005. [CrossRef]
  • D. B. Dittenber, and H. V. S. GangaRao, “Critical review of recent publications on use of natural composites in infrastructure,” Composites Part A: Applied Science and Manufacturing, Vol. 43(8), pp. 1419–1429, 2012. [CrossRef]
  • E. Jayamani, S. Hamdan, M. R. Rahman, and M. K. Bin Bakri, “Comparative study of dielectric properties of hybrid natural fiber composites,” Procedia Engineering, Vol. 97, pp. 536–544, 2014. [CrossRef]
  • A. L. Naidu, B. Sudarshan, and K. H. Krishna, “Study on mechanical behavior of groundnut shell fiber reinforced polymer metal matrix composities,” International Journal of Engineering Research & Technology, Vol. 2, Article 2, 2013.
  • E. Omrani, P. L. Menezes, and P. K. Rohatgi, “State of the art on tribological behavior of polymer matrix composites reinforced with natural fibers in the green materials world,” Engineering Science and Technology, an International Journal, Vol. 19(2), pp. 717–736, 2016. [CrossRef]
  • L. U. Devi, S. S. Bhagawan, and S. Thomas, “Mechanical properties of pineapple leaf fiber‐reinforced polyester composites,” Journal of Applied Polymer Science, Vol. 64(9), pp. 1739–1748, 1997. [CrossRef]
  • M. Jonoobi, M Jonoobi, R. Oladi, Y. Davoudpour, K. Oksman, A. Dufresne, Y. Hamzeh, R. Davoodi, “Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review,” Cellulose, Vol. 22, pp. 935–969, 2015. [CrossRef]
  • M. Praveen Kumar, R. V. Mangalaraja, S. Karazhanov, T. F. de Oliveira, M. Sasikumar, G. Murugadoss, S. Mubarak, S. Palanisamy. and N. Kumaresan, “An overview of noble-metal-free nanostructured electrocatalysts for overall water splitting,” Materials Technology for the Energy and Environmental Nexus, Volume 1, pp. 1–3, 2023. [CrossRef]
  • R. P. de Melo, M. F. V Marques, P. Navard, and N. P. Duque, “Degradation studies and mechanical properties of treated curauá fibers and microcrystalline cellulose in composites with polyamide 6,” Journal of Composite Materials, Vol. 51(25), pp. 3481–3489, 2017. [CrossRef]
  • R. Badrinath and T. Senthilvelan, “Comparative investigation on mechanical properties of banana and sisal reinforced polymer based composites,” Procedia Materials Science, Vol. 5, pp. 2263–2272, 2014. [CrossRef]
  • X. Li and G. L. Tabil, “Panigrahi S,” Chemical Treatments of Natural Fiber for Use in Natu‐ral Fiber-Reinforced Composites: A Review Journal of Polymers and the Environment, Vol. 15(1), pp. 25–33, 2007. [CrossRef]
  • N. A. Nordin, F. M. Yussof, S. Kasolang, Z. Salleh, and M. A. Ahmad, “Wear rate of natural fiber: long kenaf composite,” Procedia Engineering, Vol. 68, pp. 145–151, 2013. [CrossRef]
  • A. G. Adeniyi, D. V. Onifade, J. O. Ighalo, and A. S. Adeoye, “A review of coir fiber reinforced polymer composites,” Composites Part B: Engineering, Vol. 176, Article 107305, 2019. [CrossRef]
  • S. Palanisamy, M. Kalimuthu, S. Dharmalingam, A. Alavudeen, R. Nagarajan, S. O. Ismail, S. Siengchin, F. Mohammad. and H. A. Al-Lohedan, “Effects of fiber loadings and lengths on mechanical properties of Sansevieria Cylindrica fiber reinforced natural rubber biocomposites,” Materials Research Express, Vol. 10(8), Article 85503, 2023. [CrossRef]
  • S.-J. Park and M.-K. Seo, “Modeling of fiber–matrix interface in composite materials,” Interface Science and Technology, Vol. 18, pp. 739–776, 2011. [CrossRef]
  • A. Gani, M. Ibrahim, F. Ulmi, and A. Farhan, “The influence of different fiber sizes on the flexural strength of natural fiber-reinforced polymer composites,” Results in Materials, Article 100534, 2024.
  • D. C. William, Materials science and engineering: An introduction. John Wiley, 2014. [CrossRef]
  • S. Palanisamy, T. M. Murugesan, M. Palaniappan, C. Santulli, and N. Ayrilmis, “Use of hemp waste for the development of myceliumgrown matrix biocomposites: A concise bibliographic review,” BioResources, Vol. 18(4), 2023. [CrossRef]
  • M. Ramesh, K. Palanikumar, and K. H. Reddy, “Comparative evaluation on properties of hybrid glass fiber-sisal/jute reinforced epoxy composites,” Procedia Engineering, Vol. 51, pp. 745–750, 2013. [CrossRef]
  • V. Mishra, and S. Biswas, “Physical and mechanical properties of bi-directional jute fiber epoxy composites,” Procedia Engineering, Vol. 51, pp. 561–566, 2013. [CrossRef]
  • M. Ramesh, T. S. A. Atreya, U. S. Aswin, H. Eashwar, and C. Deepa, “Processing and mechanical property evaluation of banana fiber reinforced polymer composites,” Procedia Engineering, Vol. 97, pp. 563–572, 2014. [CrossRef]
  • G. D. Babu, K. S. Babu, and P. N. Kishore, “Tensile and wear behavior of calotropis gigentea fruit fiber reinforced polyester composites,” Procedia Engineering, Vol. 97, pp. 531–535, 2014. [CrossRef]
  • N. Klinklow, S. Padungkul, S. Kanthong, S. Patcharaphun, and R. Techapiesancharoenkij, “Development of a kraft paper box lined with thermal-insulating materials by utilizing natural wastes,” Key Engineering Materials, Vol. 545, pp. 82–88, 2013. [CrossRef]
  • S. Ashworth, J. Rongong, P. Wilson, and J. Meredith, “Mechanical and damping properties of resin transfer moulded jute-carbon hybrid composites,” Composites Part B: Engineering, Vol. 105, pp. 60–66, 2016. [CrossRef]
  • S. Siengchin, and R. Dangtungee, “Polyethylene and polypropylene hybrid composites based on nano silicon dioxide and different flax structures,” Journal of Thermoplastic Composite Materials, Vol. 27(10), pp. 1428–1447, 2014. [CrossRef]
  • S. M. S. Kumar, D. and Duraibabu, and K. Subramanian, “Studies on mechanical, thermal and dynamic mechanical properties of untreated (raw) and treated coconut sheath fiber reinforced epoxy composites,” Materials & Design, Vol. 59, pp. 63–69, 2014. [CrossRef]
  • F. Costa, and J. R. M. d’Almeida, “Effect of water absorption on the mechanical properties of sisal and jute fiber composites,” Polymer-Plastics Technology and Engineering, Vol. 38(5), pp. 1081–1094, 1999. [CrossRef]
  • B. Ly, W. Thielemans, A. Dufresne, D. Chaussy, and M. N. Belgacem, “Surface functionalization of cellulose fibers and their incorporation in renewable polymeric matrices,” Composites Science and Technology, Vol. 68(15–16), pp. 3193–3201, 2008. [CrossRef]
  • H. Ma, Y. Li, Y. Shen, L. Xie, and D. Wang, “Effect of linear density and yarn structure on the mechanical properties of ramie fiber yarn reinforced composites,” Composites Part A: Applied Science and Manufacturing, Vol. 87, pp. 98–108, 2016. [CrossRef]
  • A. K. Mohanty, M. A. Khan, S. Sahoo, and G. Hinrichsen, “Effect of chemical modification on the performance of biodegradable jute yarn-Biopol® composites,” Journal of Materials Science, Vol. 35(10), pp. 2589–2595, 2000. [CrossRef]
  • M. Dun, J. Hao, W. Wang, G. Wang, and H. Cheng, “Sisal fiber reinforced high density polyethylene pre-preg for potential application in filament winding,” Composites Part B: Engineering, vol. 159, pp. 369–377, 2019. [CrossRef]
  • P. Lehtiniemi, K. Dufva, T. Berg, M. Skrifvars, and P. Järvelä, “Natural fiber-based reinforcements in epoxy composites processed by filament winding,” Journal of Reinforced Plastics and Composites, Vol. 30(23), pp. 1947–1955, 2011. [CrossRef]
  • M. Abdelmouleh, S. Boufi, M. N. Belgacem, and A. Dufresne, “Short natural-fiber reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibers loading,” Composites Science and Technology, Vol. 67(7–8), pp. 1627–1639, 2007. [CrossRef]
  • A. Gopinath, M. S. Kumar, and A. Elayaperumal, “Experimental investigations on mechanical properties of jute fiber reinforced composites with polyester and epoxy resin matrices,” Procedia Engineering, Vol. 97, pp. 2052–2063, 2014. [CrossRef]
  • K. Oksman, M. Skrifvars, and J.-F. Selin, “Natural fibers as reinforcement in polylactic acid (PLA) composites,” Composites Science and Technology, Vol. 63(9), pp. 1317–1324, 2003. [CrossRef]
  • S. M. da Luz, A. R. Goncalves, and A. P. Del’Arco Jr, “Mechanical behavior and microstructural analysis of sugarcane bagasse fibers reinforced polypropylene composites,” Composites Part A: Applied Science and Manufacturing, Vol. 38(6), pp. 1455–1461, 2007. [CrossRef]
  • S. Srisuwan, N. Prasoetsopha, and N. Suppakarn, “The effects of alkalized and silanized woven sisal fibers on mechanical properties of natural rubber modified epoxy resin,” Energy Procedia, Vol. 56, pp. 19–25, 2014. [CrossRef]
  • H. Rashnal, I. Aminul, V. V Aart, and V. Ignaas, “Tensile behaviour of environment friendly jute epoxy laminated composite,” Procedia Engineering, Vol. 56, pp. 782–788, 2013. [CrossRef]
  • Y. Ruksakulpiwat, N. Suppakarn, W. Sutapun, and W. Thomthong, “Vetiver–polypropylene composites: physical and mechanical properties,” Composites Part A: Applied Science and Manufacturing, Vol. 38(2), pp. 590–601, 2007. [CrossRef]
  • M. M. Thwe and K. Liao, “Effects of environmental aging on the mechanical properties of bamboo–glass fiber reinforced polymer matrix hybrid composites,” Composites Part A: Applied Science and Manufacturing, Vol. 33(1), pp. 43–52, 2002. [CrossRef]
  • S. A. S. Goulart, T. A. Oliveira, A. Teixeira, P. C. Miléo, and D. R. Mulinari, “Mechanical behaviour of polypropylene reinforced palm fibers composites,” Procedia Engineering, Vol. 10, pp. 2034–2039, 2011. [CrossRef]
  • V. Fiore, T. Scalici, G. Di Bella, and A. Valenza, “A review on basalt fiber and its composites,” Composites Part B: Engineering, Vol. 74, pp. 74–94, 2015. [CrossRef]
  • J. Summerscales, A. Virk, and W. Hall, “A review of bast fibers and their composites: Part 3–Modelling,” Composites Part A: Applied Science and Manufacturing, Vol. 44, pp. 132–139, 2013. [CrossRef]
  • K. Srinivas, A. L. Naidu, and M. V. A. R. Bahubalendruni, “A review on chemical and mechanical properties of natural fiber reinforced polymer composites,” International Journal of Performability Engineering, Vol. 13(2), Article 189, 2017. [CrossRef]
  • H. Ku, H. Wang, N. Pattarachaiyakoop, and M. Trada, “Composites : Part B A review on the tensile properties of natural fiber reinforced polymer composites,” Composites Part B: Engineering, Vol. 42, pp. 856–873, 2011. [CrossRef]
  • F. de Andrade Silva, N. Chawla, and R. D. de Toledo Filho, “Tensile behavior of high performance natural (sisal) fibers,” Composites Science and Technology, Vol. 68, no. 15–16, pp. 3438–3443, 2008. [CrossRef]
  • M. Z. Rong, M. Q. Zhang, Y. Liu, G. C. Yang, and H. M. Zeng, “The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites,” Composites Science and technology, Vol. 61(10), pp. 1437–1447, 2001. [CrossRef]
  • S. Palanisamy, M. Kalimuthu, C. Santulli, M. Palaniappan, R. Nagarajan, and C. Fragassa, “Tailoring epoxy composites with acacia caesia bark fibers: evaluating the effects of fiber amount and length on material characteristics,” Fibers, Vol. 11(7), Article 63, 2023. [CrossRef]
  • Y. Zou, N. Reddy, and Y. Yang, “Reusing polyester/cotton blend fabrics for composites,” Composites Part B: Engineering, Vol. 42(4), pp. 763–770, 2011. [CrossRef]
  • V. K. Thakur, M. K. Thakur, and R. K. Gupta, “Review : Raw natural fiber – based polymer composites,” International Journal of Polymer Analysis and Characterization, Vol. 19(3), pp. 256–271, 2014. [CrossRef]
  • M. M. Kabir, H. Wang, T. Aravinthan, F. Cardona, and K.-T. Lau, “Effects of natural fiber surface on composite properties: A review,” in Proceedings of the 1st international postgraduate conference on engineering, designing and developing the built environment for sustainable wellbeing (eddBE2011), 2011, pp. 94–99.
  • A. Moudood, A. Rahman, H. M. Khanlou, W. Hall, A. Öchsner, and G. Francucci, “Environmental effects on the durability and the mechanical performance of flax fiber/bio-epoxy composites,” Composites Part B: Engineering, Vol. 171, pp. 284–293, 2019. [CrossRef]
  • A. B. Nair, P. Sivasubramanian, P. Balakrishnan, K. A. N. Ajith Kumar, and M. S. Sreekala, “Environmental effects, biodegradation, and life cycle analysis of fully biodegradable ‘green’ composites,” Wiley, pp. 515–568, 2013. [CrossRef]
  • V. P. Arthanarieswaran, A. Kumaravel, and M. Kathirselvam, “Evaluation of mechanical properties of banana and sisal fiber reinforced epoxy composites: Influence of glass fiber hybridization,” Materials & Design, Vol. 64, pp. 194–202, 2014. [CrossRef]
  • I. N. Hidayah, D. N. Syuhada, H. P. S. A. Khalil, Z. A. M. Ishak, and M. Mariatti, “Enhanced performance of lightweight kenaf-based hierarchical composite laminates with embedded carbon nanotubes,” Materials & Design, Vol. 171, Article 107710, 2019. [CrossRef]
  • V. Paul, K. Kanny, and G. G. Redhi, “Mechanical, thermal and morphological properties of a bio-based composite derived from banana plant source,” Composites Part A: Applied Science and Manufacturing, Vol. 68, pp. 90–100, 2015. [CrossRef]
  • M. P. M. Dicker, P. F. Duckworth, A. B. Baker, G. Francois, M. K. Hazzard, and P. M. Weaver, “Green composites: A review of material attributes and complementary applications,” Composites Part A: Applied Science and Manufacturing, Vol. 56, pp. 280–289, 2014. [CrossRef]
  • E. R. S. Goutham, S. S.Hussain,C. Muthukumar, S. Krishnasamy, T. S. Muthu Kumar, C. Santulli, S. Palanisamy, J. Parameswaranpillai, and N. Jesuarockiam, “Drilling parameters and post-drilling residual tensile properties of natural-fiber-reinforced composites: A review,” Journal of Composites Science, Vol. 7(4), Article 136, 2023. [CrossRef]
  • I. M. De Rosa, J. M. Kenny, D. Puglia, C. Santulli, and F. Sarasini, “Tensile behavior of New Zealand flax (Phormium tenax) fibers,” Journal of Reinforced Plastics and Composites, Vol. 29(23), pp. 3450–3454, 2010. [CrossRef]
  • B.-H. Lee, H.-J. Kim, and W.-R. Yu, “Fabrication of long and discontinuous natural fiber reinforced polypropylene biocomposites and their mechanical properties,” Fibers and Polymers, Vol. 10(1), pp. 83–90, 2009. [CrossRef]
  • P. S. Kumar, C. U. Kiran, and K. P. Rao, “Effect of fiber surface treatments on mechanical properties of sisal fiber polymer composites–a review,” International Journal of Advanced Research in Science, Engineering and Technolology, Vol. 4, pp. 4411–4416, 2017.
  • A. L. Naidu, and P. S. V. R. Rao, “A review on chemical behaviour of natural fiber composites,” International Journal of Chemical Sciences, Vol. 14(4), pp. 2223–2238, 2016.
  • R. Siakeng, M. Jawaid, H. Ariffin, S. M. Sapuan, M. Asim, and N. Saba, “Natural fiber reinforced polylactic acid composites: A review,” Polymer Composites, Vol. 40(2), pp. 446–463, 2019. [CrossRef]
  • O. Onuaguluchi, and N. Banthia, “Plant-based natural fiber reinforced cement composites: A review,” Cement and Concrete Composites, Vol. 68, pp. 96–108, 2016. [CrossRef]
  • M. Fagone, F. Loccarini, and G. Ranocchiai, “Strength evaluation of jute fabric for the reinforcement of rammed earth structures,” Composites Part B: Engineering, Vol. 113, pp. 1–13, 2017. [CrossRef]
  • N. M. Muhammad Hijas, P. Pramod, P. Prasanth, H. Sivam, and P. Sivasubramanian, “Development of jute fiber reinforced natural rubber composite material & determination of its mechanical properties,” IJIRST, Vol. 3, pp. 207–212, 2017. [CrossRef]
  • A. J. Adeyi, M. O. Durowoju, O. Adeyi, E. O. Oke, O. A. Olalere, and A. D. Ogunsola, “Momordica augustisepala L. stem fiber reinforced thermoplastic starch: Mechanical property characterization and fuzzy logic artificial intelligent modelling,” Results in Engineering, Vol. 10, Article 100222, 2021. [CrossRef]
  • G. Thilagavathi, E. Pradeep, T. Kannaian, and L. Sasikala, “Development of natural fiber nonwovens for application as car interiors for noise control,” Journal of Industrial Textiles, Vol. 39(3), pp. 267–278, 2010. [CrossRef]
  • N. E. Zafeiropoulos, C. A. Baillie, and J. M. Hodgkinson, “Engineering and characterisation of the interface in flax fiber/polypropylene composite materials. Part II. The effect of surface treatments on the interface,” Composites part A: applied science and manufacturing, Vol. 33(9), pp. 1185–1190, 2002. [CrossRef]
  • E. A. Elbadry, M. S. Aly-Hassan, and H. Hamada, “Mechanical properties of natural jute fabric/jute mat fiber reinforced polymer matrix hybrid composites,” Advances in Mechanical Engineering, Vol. 4, Article 354547, 2012. [CrossRef]
  • A. K. M. Nayab-Ul-Hossain, S. K. Sela, and S. Bin Sadeque, “Recycling of dyed fiber waste to minimize resistance and to prepare electro thermal conductive bar,” Results in Engineering, vol. 3, Article 100022, 2019. [CrossRef]
  • S. Mahmud, K. M. F. Hasan, M. A. Jahid, K. Mohiuddin, R. Zhang, and J. Zhu, “Comprehensive review on plant fiber-reinforced polymeric biocomposites,” Journal of Materials Science, Vol. 56, pp. 7231–7264, 2021. [CrossRef]
  • S. Palanisamy, M. Kalimuthu, A. Azeez, M. Palaniappan, S. Dharmalingam , R. Nagarajan, and C. Santulli, “Wear properties and post-moisture absorption mechanical behavior of kenaf/banana-fiber-reinforced epoxy composites,” Fibers, Vol. 10(4), Article 32, 2022. [CrossRef]
  • S. V Joshi, L. T. Drzal, A. K. Mohanty, and S. Arora, “Are natural fiber composites environmentally superior to glass fiber reinforced composites?,” Composites Part A: Applied science and manufacturing, Vol. 35(3), pp. 371–376, 2004. [CrossRef]
  • J. P. Correa, J. M. Montalvo-Navarrete, and M. A. Hidalgo-Salazar, “Carbon footprint considerations for biocomposite materials for sustainable products: A review,” Journal of Cleaner Production, Vol. 208, pp. 785–794, 2019. [CrossRef]
  • V. K. Thakur, Green composites from natural resources. CRC Press, 2013. [CrossRef]
  • R. N. Arancon, “Market and trade of coconut products: Expert’s consulatation on coconut sector development in Asia and the Pacific,” Asian and pacific coconut community, Bangkok, 2013.
  • E. C. Botelho, R. A. Silva, L. C. Pardini, and M. C. Rezende, “A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures,” Materials Research, Vol. 9, pp. 247–256, 2006. [CrossRef]
  • A. Ticoalu, T. Aravinthan, and F. Cardona, “A review of current development in natural fiber composites for structural and infrastructure applications,” in Proceedings of the southern region engineering conference (SREC 2010), 2010, pp. 113–117.
  • A. Belaadi, A. Bezazi, M. Maache, and F. Scarpa, “Fatigue in sisal fiber reinforced polyester composites: hysteresis and energy dissipation,” Procedia Engineering, Vol. 74, pp. 325–328, 2014. [CrossRef]
  • R. Kumar, M. I. Ul Haq, A. Raina, and A. Anand, “Industrial applications of natural fiber-reinforced polymer composites–challenges and opportunities,” International Journal of Sustainable Engineering, Vol. 12(3), pp. 212–220, 2019. [CrossRef]
  • Y. G. Thyavihalli Girijappa, S. Mavinkere Rangappa, J. Parameswaranpillai, and S. Siengchin, “Natural fibers as sustainable and renewable resource for development of eco-friendly composites: a comprehensive review,” Frontiers in Materials, Vol. 6, Article 226, 2019. [CrossRef]
  • L. Mohammed, M. N. M. Ansari, G. Pua, M. Jawaid, and M. S. Islam, “A review on natural fiber reinforced polymer composite and its applications,” Vol. 2015, Article 243947, 2015. [CrossRef]
There are 122 citations in total.

Details

Primary Language English
Subjects Materials Science and Technologies
Journal Section Review
Authors

Sivasubramanian Palanisamy 0000-0003-1926-4949

Thulasi Mani Murugesan 0009-0002-0215-9341

Murugesan Palaniappan 0000-0001-6864-6439

Carlo Santulli 0000-0002-1686-4271

Nadir Ayrilmis 0000-0002-9991-4800

Early Pub Date March 21, 2024
Publication Date
Submission Date November 29, 2023
Acceptance Date February 27, 2024
Published in Issue Year 2024 Volume: 7

Cite

APA Palanisamy, S., Murugesan, T. M., Palaniappan, M., Santulli, C., et al. (2024). Fostering sustainability: The environmental advantages of natural fiber composite materials – a mini review. Environmental Research and Technology, 7. https://doi.org/10.35208/ert.1397380
AMA Palanisamy S, Murugesan TM, Palaniappan M, Santulli C, Ayrilmis N. Fostering sustainability: The environmental advantages of natural fiber composite materials – a mini review. ERT. March 2024;7. doi:10.35208/ert.1397380
Chicago Palanisamy, Sivasubramanian, Thulasi Mani Murugesan, Murugesan Palaniappan, Carlo Santulli, and Nadir Ayrilmis. “Fostering Sustainability: The Environmental Advantages of Natural Fiber Composite Materials – a Mini Review”. Environmental Research and Technology 7, March (March 2024). https://doi.org/10.35208/ert.1397380.
EndNote Palanisamy S, Murugesan TM, Palaniappan M, Santulli C, Ayrilmis N (March 1, 2024) Fostering sustainability: The environmental advantages of natural fiber composite materials – a mini review. Environmental Research and Technology 7
IEEE S. Palanisamy, T. M. Murugesan, M. Palaniappan, C. Santulli, and N. Ayrilmis, “Fostering sustainability: The environmental advantages of natural fiber composite materials – a mini review”, ERT, vol. 7, 2024, doi: 10.35208/ert.1397380.
ISNAD Palanisamy, Sivasubramanian et al. “Fostering Sustainability: The Environmental Advantages of Natural Fiber Composite Materials – a Mini Review”. Environmental Research and Technology 7 (March 2024). https://doi.org/10.35208/ert.1397380.
JAMA Palanisamy S, Murugesan TM, Palaniappan M, Santulli C, Ayrilmis N. Fostering sustainability: The environmental advantages of natural fiber composite materials – a mini review. ERT. 2024;7. doi:10.35208/ert.1397380.
MLA Palanisamy, Sivasubramanian et al. “Fostering Sustainability: The Environmental Advantages of Natural Fiber Composite Materials – a Mini Review”. Environmental Research and Technology, vol. 7, 2024, doi:10.35208/ert.1397380.
Vancouver Palanisamy S, Murugesan TM, Palaniappan M, Santulli C, Ayrilmis N. Fostering sustainability: The environmental advantages of natural fiber composite materials – a mini review. ERT. 2024;7.