Research Article
BibTex RIS Cite

Uranil iyonlarının sulu çözeltilerden amidoksimatlı poli[N-(3,4-disiyanofenil) akrilamid] üzerine adsorpsiyonu

Year 2019, Issue: 17, 131 - 144, 31.12.2019
https://doi.org/10.31590/ejosat.610868

Abstract

Uranyum kirliliği yüksek toksisite ve radyoaktivite içerir. Bu nedenle insan sağlığı ve çevre için ciddi bir tehdit oluşturur. Bu nedenle sulu çözeltilerden uranyumun geri kazanımı için kimyasal çökeltme, iyon değişimi, ters ozmoz ve adsorpsiyon gibi bir dizi teknik geliştirilmiştir. Düşük konsantrasyonlarda, sulu çözeltilerden uranyum gibi uzun ömürlü radyonüklidlerin adsorpsiyon yoluyla ayrılması hem nükleer/radyasyon kimyasında hem de çevre/atık işlem kimyasında önemlidir. Çevre kirliliğinin önlenmesi konusunda ekonomik ve teknik bakımlardan uygulanabilir yöntemlere ihtiyaç duyulması nedeniyle, doğal ve sentetik adsorbanlar üzerinde birçok çalışma yapılmaktadır. Amidoksim grupları içeren polimerlerin ağır metal iyonları içeren kompleksler oluşturma eğiliminde olduğu ve uranyum iyonları içeren komplekslerin de oldukça çok araştırıldığı belirlenmiştir. Bu çalışmada sulu çözeltilerden uranyumun giderilmesi amacıyla amidoksim grupları içeren yeni bir polimer adsorban madde üretilmiştir. N-(3,4-disiyanofenil) akrilamid monomerini sentezlemek için 4-aminoftalonitril ve akriloil klorür kullanıldı ve bu monomer poli [N-(3,4-disiyanofenil) akrilamid]’e polimerize edildi. Son olarak, polimer nitril grupları içeren amidoksimatlanmış forma dönüştürüldü. Monomer, polimer ve amidoksimatlanmış formunun yapısı, FT-IR spektroskopisi ve termal analiz yöntemleri ile karakterize edildi. Temas süresi, pH, ilk konsantrasyon ve amidoksimatlı polimer tarafından U(VI) adsorpsiyonu üzerindeki sıcaklık gibi çeşitli deneysel parametrelerin etkisi araştırılmış ve uranyumun sulu çözeltiden adsorpsiyonu için koşullar belirlenmiştir. Kinetik koşullar için, veriler sözde birinci derece, sözde ikinci derece ve partikül içi kinetik modeline uygulandı. Sonuçlar, U(VI) 'nın amidoksimatlanmış polimer üzerindeki adsorpsiyonunun sözde ikinci dereceden kinetik modeline uyduğunu göstermiştir. Denge koşulları için sulu çözeltilerdeki denge verileri Langmuir, Freundlich, Temkin ve Dubinin-Radushkevich gibi farklı sorpsiyon izotermlerine uygulandı. Adsorpsiyon denge verilerinin, U(VI) iyonlarının amidoksimasyonlu polimer tarafından adsorpsiyonunda Langmuir modeline çok uyum gösterdiği ve maksimum adsorpsiyon kapasitesinin 175.4 mg/g olduğu belirlenmiştir. Termodinamik koşullar için, ΔHº, ΔSº ve ΔGº termodinamik parametreleri hesaplandı ve değerlendirildi. ΔGº (-2.92 kJ/mol) negatif değeri, spontanlığı belirtirken, ΔHº (15.14 J/mol) pozitif değeri, amidoksimasyonlu polimer tarafından U(VI) adsorpsiyonu için adsorpsiyon işleminin endotermik yapısını göstermektedir.

Supporting Institution

Van Yüzüncü Yıl Üniversitesi Bilimsel Araştırma Proje Birimi

Project Number

2015-FBE-D031

Thanks

Bu çalışma, 2015-FBE-D031 No’lu doktora projesi olarak Van Yüzüncü Yıl Üniversitesi Bilimsel Araştırma Proje Birimi Tarafından desteklenmiştir.

References

  • Aycan, H.Ş., Arslan, Z.K. (2017). Adsorpsiyon-Yüzey İlişkisi Konusunun Öğretiminde Aletli Analiz Uygulamalarının Fen Bilgisi Öğretmen Adaylarının Akademik Başarılarına Etkisi. Journal of The Turkish Chemical Society, 2, 107-126.
  • Barber, P.S., Kelley, S.P., Rogers, R.D. (2012). Highly selective extraction of the uranyl ion with hydrophobic amidoxime-functionalized ionic liquids via η2 coordination. RSC Advances, 8526-8530.
  • Baybaş, D., Güler, R., Güler, H., Ayçık, G.A,. 2010. Amidoksimlenmiş Ağ Yapılı Bir Polimerin (IPN) 228Ac3+, 212Pb2+, 212Bi3+, 208Tl+ ve UO22+ İçin Adsorban Özelliklerinin İncelenmesi. C.Ü. Fen-Edebiyat Fakültesi, Fen Bilimleri Dergisi. 31, 43-54.
  • Bulut, A., Yuşan, S., Aytas S., Sert, S. (2018). The use of sea shell (Donax trunculus) powder to remove Sr(II) ions from aqueous solutions. Water Science & Technology, 78, 87-836.
  • Can, H.K., Doğan, A.L., Rzaev, Z.M.O., Üner, A.H., Güner, A. (2006). Synthesis, characterization, and antitumor activity of poly(maleic anhydride-co-vinyl acetate-co-acrylic acid). Journal of Applied Polymer Science, 100, 3425-3432.
  • Chen, B., Wang, J., Kang, L., Mai, X., Zheng, N., Zhang, Q., Liang, J., Chen, D. (2017). Adsorption of uranium from uranium mine contaminated water usingphosphate rock apatite (PRA): Isotherm, kinetic and characterizationstudies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 520, 612-621.
  • Chen, M., Li, Z., Geng, Y., Zhao, H., He, S., Li, Q. (2018). Adsorption behavior of thorium on N,N,N′,N′-tetraoctyldiglycolamid (TODGA) impregnated graphene aerogel. Talanta, 181, 311–317.
  • Das, S., Brown, S., Mayes, R. T.; Janke, C. J., Tsouris, C., Kuo, L. J.; Gill, G., Dai, S. (2016). Novel poly(imide dioxime) sorbents: Development and testing for enhanced extraction of uranium from natural seawater. Chemical Engineering Journal, 298, 125-135.
  • Gao, Q., Hu J., Li, R., Xing, Z., Xu, L., Wang, M., Guo, X., Wu, G. (2016). Radiation synthesis of a new amidoximated UHMWPE fibrous adsorbent with high adsorption selectivity for uranium over vanadium in simulated seawater. Radiation Physicsand Chemistry, 122, 1–8.
  • Gunathilake, C., Gorka, J., Dai, S., Jaroniec, M. (2015). Amidoxime-modified mesoporous silica for uranium adsorption under seawater condition. Journal of Materials Chemistry A, 3, 11650-11659.
  • Huang, L., Zhang, L., Hua, D.J. (2015). Thin metal nanostructures: synthesis, properties and applications. Radioanal Nuclear Chemistry, 305, 445-453.
  • Khalili, F., Al-Banna G. (2015). ‘Adsorption of Uranium(VI) and Thorium(IV) by insolubilized humic acid from Ajloun soil-Jordan’. Journal of Environmental Radioactivity,146, 16-26.
  • Kong, L., Zhu Y., Wang M., Li Z., et. al. (2016). Simultaneous reduction and adsorption for immobilization ofuranium from aqueous solution by nano-flake. Journal of Hazardous Materials, 320, 435–441.
  • Kokosza, K., Balzarini, J., Piotrowska, D.G. (2013). Design, synthesis, antiviral and cytostatic evaluation of novel isoxazolidine nucleotide analogues with a carbamoyl linker. Bioorganic & Medicinal Chemistry, 21, 1097–1108.
  • Liu, S., Yang, Y., Liu, T., Wu, W. (2017). Recovery of uranium(VI) from aqueous solution by 2-picolylamine functionalized poly(styrene-co-maleic anhydride) resin. Journal of Colloid and Interface Science, 497, 385–392.
  • Lu, X., He, S. N., Zhang, D. X., Reda, A. T., Liu, C., Feng, J., Yang, Z. (2016). Synthesis and characterization of amidoxime modified calix[8] arene for adsorption of U(VI) in low concentration uranium solutions. RSC. Advances, 6, 101087-101097.
  • Qadeer, R., Saleem, M. (1997). Adsorption UO22+ ions on activated charcoal: pH effect. Adsorption Sceince and Technology, 15, 373-376.
  • Pekel, N., Şahiner, N., Güven, O. (2000). Development of new chelating hydrogels based on N-vinyl imidazole and acrylonitrile. Radiation Physics and Chemistry, 59, 485-491.
  • Rahman-Sani, A., Bandegharaei, A.H., Hosseini, S.H., Kharghani, K., Zarei, H., Rastegar, A. (2015). Kinetic, equilibrium and thermodynamic studies on sorption of uranium and thorium from aqueous solutions by a selective impregnated resin containing carminic acid. Journal of Hazardous Materials, 286, 152–163.
  • Shen, J. N., Yu, J., Chu, Y. X., Zhou, Y., Chen, W. J. (2012). Preparation and Uranium Sorption Performance of Amidoximated Polyacrylonitrile/Organobentonite Nano Composite. Advanced Materials Research, 476-478.
  • Sorg, T.J. (1991). Radon, Radium and Uranium in Drinking Water. Removal of uranium from drinking water by conventional treatment methods, Cothern and Rebers (Eds) Lewis Publishers, Michigan. ISBN 0873712072. 173-191.
  • Stemper, J., Tuo, W., Mazario, E., Helal, A.S., Djurovic, A., Lion., C., C., Chahine, J.M., Maruel, F., Hemadi, M. (2018). Synthesis of bis(amidoxime)s and evaluation of their properties as uranyl-complexing agents. Tetrahedron, 74, 2641-2649.
  • Tavengwa, N.T., Cukrowska, E., Chimuka, L. (2015). Selective Adsorption of Uranium (VI) on NaHCO3 Leached Composite -Methacryloxypropyltrimethoxysilane Coated Magnetic Ion-imprinted Polymers Prepared by Precipitation Polymerization. South Africa Journal. Chemistry, 68, 61–68.
  • Xu, C.; Wang, J.; Yang, T.; Xia, C.; Liu, X.; Ding, X. (2015). Adsorption of uranium by amidoximated chitosan-grafted polyacrylonitrile, using response surface methodology. Carbohydrate Polymers, 121, 79-85.
  • Wei, M. Liao, J.L. Liu, N. Zhang, D. Kang, H.J. Yang, Y.Y. Yong, Y. and Jin, J.N. (2007). Interaction between uranium and humic acid (I): adsorption behaviors of U(VI) in soil humic acids. Nuclear Science and Techniques, 18, 287–293.
  • Yi, Z., Yao, J., Kuang, Y., Chen, H., Wang, F., Xu, S. (2016). Uptake of hexavalent uranium from aqueous solutions using coconut husk activated carbon. Desalination and Water Treatment, 57, 1749-1755.
  • Zeng, J., Zhang, H., Sui, Y., Hu, Y., Ding, D., Wang, F., Xue, J., Wang, Y. (2017). New Amidoxime Based Material TMP-g-AO for Uranium Adsorption under Seawater Conditions. Industrial & Engineering Chemistry Research, 1-42.

Adsorption of uranyl ions from aqueous solutions onto amidoximated poly[N-(3,4-dicyanophenyl) acrylamide]

Year 2019, Issue: 17, 131 - 144, 31.12.2019
https://doi.org/10.31590/ejosat.610868

Abstract

Uranium pollution contains high toxicity and radioactivity. Therefore, it poses a serious threat to human health and the environment. Therefore, a number of techniques have been developed for the recovery of uranium from aqueous solutions, such as chemical precipitation, ion exchange, reverse osmosis and adsorption. At low concentrations, the separation of longevity radionuclides, such as uranium, from aqueous solutions by adsorption is important in both nuclear/radiation chemistry and environmental/waste treatment chemistry. Due to the need for economic and technical applicable methods for the prevention of environmental pollution, many studies have been carried out on natural and synthetic adsorbents. It has been found that polymers containing amidoxime groups tend to form complexes containing heavy metal ions and complexes containing uranium ions have been investigated quite a lot. In this study, a novel polymer adsorbent containing amidoxime groups was produced to remove uranium from aqueous solutions. 4-Aminophthalonitrile and acryloyl chloride were used to synthesize the N- (3,4-dicyanophenyl) acrylamide monomer, which was polymerized to poly [N- (3,4-dicyanophenyl) acrylamide]. Finally, the polymer was converted to the amidoximatized form containing nitrile groups. The structure of the monomer, polymer and amidoximatized form was characterized by FT-IR spectroscopy and thermal analysis methods. The effect of various experimental parameters such as contact time, pH, initial concentration and temperature on U (VI) adsorption by the amidoximatized polymer was investigated and conditions for adsorption of uranium from aqueous solution were determined. For kinetic conditions, the data were applied to the Pseudo-first order, pseudo-second order, and intra-particle kinetics model. The results showed that the adsorption of U (VI) on the amidoximatized polymer fits the so-called second order kinetic model. For equilibrium conditions, equilibrium data in aqueous solutions were applied to different sorption isotherms such as Langmuir Freundlich, Temkin and Dubinin-Radushkevich. Adsorption equilibrium data were found to be more compatible with Langmuir model in adsorption of U (VI) ions by amidoximated polymer and maximum adsorption capacity was 175.4 mg/g. For thermodynamic conditions, ΔHº, ΔSº and ΔGº thermodynamic parameters were calculated and evaluated. A negative value of ΔGº (-2.92 kJ/mol) indicates spontaneity, while a positive value of ΔHº (15.14 J/mol) indicates the endothermic structure of adsorption for U (VI) adsorption by the amidoximated polymer.

Project Number

2015-FBE-D031

References

  • Aycan, H.Ş., Arslan, Z.K. (2017). Adsorpsiyon-Yüzey İlişkisi Konusunun Öğretiminde Aletli Analiz Uygulamalarının Fen Bilgisi Öğretmen Adaylarının Akademik Başarılarına Etkisi. Journal of The Turkish Chemical Society, 2, 107-126.
  • Barber, P.S., Kelley, S.P., Rogers, R.D. (2012). Highly selective extraction of the uranyl ion with hydrophobic amidoxime-functionalized ionic liquids via η2 coordination. RSC Advances, 8526-8530.
  • Baybaş, D., Güler, R., Güler, H., Ayçık, G.A,. 2010. Amidoksimlenmiş Ağ Yapılı Bir Polimerin (IPN) 228Ac3+, 212Pb2+, 212Bi3+, 208Tl+ ve UO22+ İçin Adsorban Özelliklerinin İncelenmesi. C.Ü. Fen-Edebiyat Fakültesi, Fen Bilimleri Dergisi. 31, 43-54.
  • Bulut, A., Yuşan, S., Aytas S., Sert, S. (2018). The use of sea shell (Donax trunculus) powder to remove Sr(II) ions from aqueous solutions. Water Science & Technology, 78, 87-836.
  • Can, H.K., Doğan, A.L., Rzaev, Z.M.O., Üner, A.H., Güner, A. (2006). Synthesis, characterization, and antitumor activity of poly(maleic anhydride-co-vinyl acetate-co-acrylic acid). Journal of Applied Polymer Science, 100, 3425-3432.
  • Chen, B., Wang, J., Kang, L., Mai, X., Zheng, N., Zhang, Q., Liang, J., Chen, D. (2017). Adsorption of uranium from uranium mine contaminated water usingphosphate rock apatite (PRA): Isotherm, kinetic and characterizationstudies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 520, 612-621.
  • Chen, M., Li, Z., Geng, Y., Zhao, H., He, S., Li, Q. (2018). Adsorption behavior of thorium on N,N,N′,N′-tetraoctyldiglycolamid (TODGA) impregnated graphene aerogel. Talanta, 181, 311–317.
  • Das, S., Brown, S., Mayes, R. T.; Janke, C. J., Tsouris, C., Kuo, L. J.; Gill, G., Dai, S. (2016). Novel poly(imide dioxime) sorbents: Development and testing for enhanced extraction of uranium from natural seawater. Chemical Engineering Journal, 298, 125-135.
  • Gao, Q., Hu J., Li, R., Xing, Z., Xu, L., Wang, M., Guo, X., Wu, G. (2016). Radiation synthesis of a new amidoximated UHMWPE fibrous adsorbent with high adsorption selectivity for uranium over vanadium in simulated seawater. Radiation Physicsand Chemistry, 122, 1–8.
  • Gunathilake, C., Gorka, J., Dai, S., Jaroniec, M. (2015). Amidoxime-modified mesoporous silica for uranium adsorption under seawater condition. Journal of Materials Chemistry A, 3, 11650-11659.
  • Huang, L., Zhang, L., Hua, D.J. (2015). Thin metal nanostructures: synthesis, properties and applications. Radioanal Nuclear Chemistry, 305, 445-453.
  • Khalili, F., Al-Banna G. (2015). ‘Adsorption of Uranium(VI) and Thorium(IV) by insolubilized humic acid from Ajloun soil-Jordan’. Journal of Environmental Radioactivity,146, 16-26.
  • Kong, L., Zhu Y., Wang M., Li Z., et. al. (2016). Simultaneous reduction and adsorption for immobilization ofuranium from aqueous solution by nano-flake. Journal of Hazardous Materials, 320, 435–441.
  • Kokosza, K., Balzarini, J., Piotrowska, D.G. (2013). Design, synthesis, antiviral and cytostatic evaluation of novel isoxazolidine nucleotide analogues with a carbamoyl linker. Bioorganic & Medicinal Chemistry, 21, 1097–1108.
  • Liu, S., Yang, Y., Liu, T., Wu, W. (2017). Recovery of uranium(VI) from aqueous solution by 2-picolylamine functionalized poly(styrene-co-maleic anhydride) resin. Journal of Colloid and Interface Science, 497, 385–392.
  • Lu, X., He, S. N., Zhang, D. X., Reda, A. T., Liu, C., Feng, J., Yang, Z. (2016). Synthesis and characterization of amidoxime modified calix[8] arene for adsorption of U(VI) in low concentration uranium solutions. RSC. Advances, 6, 101087-101097.
  • Qadeer, R., Saleem, M. (1997). Adsorption UO22+ ions on activated charcoal: pH effect. Adsorption Sceince and Technology, 15, 373-376.
  • Pekel, N., Şahiner, N., Güven, O. (2000). Development of new chelating hydrogels based on N-vinyl imidazole and acrylonitrile. Radiation Physics and Chemistry, 59, 485-491.
  • Rahman-Sani, A., Bandegharaei, A.H., Hosseini, S.H., Kharghani, K., Zarei, H., Rastegar, A. (2015). Kinetic, equilibrium and thermodynamic studies on sorption of uranium and thorium from aqueous solutions by a selective impregnated resin containing carminic acid. Journal of Hazardous Materials, 286, 152–163.
  • Shen, J. N., Yu, J., Chu, Y. X., Zhou, Y., Chen, W. J. (2012). Preparation and Uranium Sorption Performance of Amidoximated Polyacrylonitrile/Organobentonite Nano Composite. Advanced Materials Research, 476-478.
  • Sorg, T.J. (1991). Radon, Radium and Uranium in Drinking Water. Removal of uranium from drinking water by conventional treatment methods, Cothern and Rebers (Eds) Lewis Publishers, Michigan. ISBN 0873712072. 173-191.
  • Stemper, J., Tuo, W., Mazario, E., Helal, A.S., Djurovic, A., Lion., C., C., Chahine, J.M., Maruel, F., Hemadi, M. (2018). Synthesis of bis(amidoxime)s and evaluation of their properties as uranyl-complexing agents. Tetrahedron, 74, 2641-2649.
  • Tavengwa, N.T., Cukrowska, E., Chimuka, L. (2015). Selective Adsorption of Uranium (VI) on NaHCO3 Leached Composite -Methacryloxypropyltrimethoxysilane Coated Magnetic Ion-imprinted Polymers Prepared by Precipitation Polymerization. South Africa Journal. Chemistry, 68, 61–68.
  • Xu, C.; Wang, J.; Yang, T.; Xia, C.; Liu, X.; Ding, X. (2015). Adsorption of uranium by amidoximated chitosan-grafted polyacrylonitrile, using response surface methodology. Carbohydrate Polymers, 121, 79-85.
  • Wei, M. Liao, J.L. Liu, N. Zhang, D. Kang, H.J. Yang, Y.Y. Yong, Y. and Jin, J.N. (2007). Interaction between uranium and humic acid (I): adsorption behaviors of U(VI) in soil humic acids. Nuclear Science and Techniques, 18, 287–293.
  • Yi, Z., Yao, J., Kuang, Y., Chen, H., Wang, F., Xu, S. (2016). Uptake of hexavalent uranium from aqueous solutions using coconut husk activated carbon. Desalination and Water Treatment, 57, 1749-1755.
  • Zeng, J., Zhang, H., Sui, Y., Hu, Y., Ding, D., Wang, F., Xue, J., Wang, Y. (2017). New Amidoxime Based Material TMP-g-AO for Uranium Adsorption under Seawater Conditions. Industrial & Engineering Chemistry Research, 1-42.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Çiğdem Öter 0000-0002-8262-4882

Özlem Selçuk Zorer 0000-0002-6486-8365

Project Number 2015-FBE-D031
Publication Date December 31, 2019
Published in Issue Year 2019 Issue: 17

Cite

APA Öter, Ç., & Selçuk Zorer, Ö. (2019). Uranil iyonlarının sulu çözeltilerden amidoksimatlı poli[N-(3,4-disiyanofenil) akrilamid] üzerine adsorpsiyonu. Avrupa Bilim Ve Teknoloji Dergisi(17), 131-144. https://doi.org/10.31590/ejosat.610868