Research Article
BibTex RIS Cite

Türkiye’den Salmo cinsine ait iki türün karşılaştırmalı otolit morfolojisi

Year 2024, Volume: 41 Issue: 1, 8 - 15, 15.03.2024
https://doi.org/10.12714/egejfas.41.1.02

Abstract

Bu çalışmada, Terme Çayı (Samsun) ve Çam Deresi (Artvin)’nde yaşayan Salmo coruhensis Turan, Kottelat & Engin, 2010 ve Salmo fahrettini Turan, Kalayci, Bektaş, Kaya & Bayçelebi, 2020 türlerinin sagittal otolit morfolojileri taramalı elektron mikroskobu görüntüleri ile tanımlanmıştır. Otolit şekli ve dış hatları ayrıca, şekil indeksleri, eliptik Fourier katsayıları ve dalgacık dönüşümü ile analiz edilmiştir. Çalışma materyali olarak toplamda 30 S. coruhensis sample ve 20 S. fahrettini örneği elde edilmiştir. Otolit şekli ve morfometrisindeki türler arası farklılıklar, temel bileşenler analizi, kanonik ayrım analizi ve çok değişkenli varyans analizi ile değerlendirilmiştir. Çalışılan iki salmonid türü hem morfometrik hem de şekil analizi yöntemleriyle ayırt edilmiştir. Bununla birlikte, dalgacık dönüşümünün tür ayrımında şekil indeksleri ve Fourier katsayılarından daha etkili olduğu ve genel sınıflandırma başarı oranının %80 olduğu bulunmuştur. Sonuçlarımız sakkular otolit morfolojisinin alabalık türlerinin farklılaşmasında ek bir tanısal karakter olabileceğini göstermiştir.

References

  • Akbay, R., Yilmaz, S., Ozpicak, M., Saygin, S., & Polat, N. (2022). Lagenar otolith morphometry of gibel carp, Carassius gibelio (Cyprinidae): Comparisons among four populations in Samsun Province (Turkey). Journal of Ichthyology, 62, 770 776. https://doi.org/10.1134/S0032945222050022
  • Anderson, M.J. (2001). A new method for non‐parametric multivariate analysis of variance. Austral Ecology, 26, 32-46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x
  • Assis, I.O., da Silva, V.E., Souto-Vieira, D., Lozano, A.P., Volpedo, A. V., & Fabré, N.N. (2020). Ecomorphological patterns in otoliths of tropical fishes: assessing trophic groups and depth strata preference by shape. Environmental Biology of Fishes, 103(4), 349-361. https://doi.org/10.1007/s10641-020-00961-0
  • Bardakci, F., Degerli, N., Ozdemir, O., & Basibuyuk, H.H. (2006). Phylogeography of the Turkish brown trout Salmo trutta L.: mitochondrial DNA PCR‐RFLP variation. Journal of Fish Biology, 68(A), 36-55. https://doi.org/10.1111/j.0022-1112.2006.00948.x
  • Bardakci, F., Tanyolac, J., Akpinar, M.A., & Erdem, U. (1994). Morphological comparison of trout (Salmo trutta L., 1766) populations caught from streams in Sivas. Turkish Journal of Zoology, 18, 1-6.
  • Bernatchez, L. (2001). The evolutionary history of brown trout (Salmo trutta L.) inferred from phylogeographic, nested clade, and mismatch analyses of mitochondrial DNA variation. Evolution, 55, 351-379. https://doi.org/10.1111/j.0014-3820.2001.tb01300.x
  • Berrebi, P., Barucchi, V.C., Splendiani, A., Muracciole, S., Sabatini, A., Palmas, F., Tougard, C., Arculeo, M., & Marić, S. (2019). Brown trout (Salmo trutta L.) high genetic diversity around the Tyrrhenian Sea as revealed by nuclear and mitochondrial markers. Hydrobiologia, 826(1), 209-231. https://doi.org/10.1007/s10750-018-3734-5
  • Bourehail, N., Morat, F., Lecomte-Finiger, R., & Kara, M. H. (2015). Using otolith shape analysis to distinguish barracudas Sphyraena sphyraena and Sphyraena viridensis from the Algerian coast. Cybium, 39(4), 271-278.
  • Campana, S.E., & Casselman, J.M. (1993). Stock discrimination using otolith shape analysis, Canadian Journal of Fisheries and Aquatic Science, 50(5), 1062–1083. https://doi.org/10.1139/f93-123
  • Çöl, O., & Yilmaz, S. (2022). The effect of ontogenetic diet shifts on sagittal otolith shape of European perch, Perca fluviatilis (Actinopterygii: Percidae) from Lake Ladik, Turkey. Turkish Journal of Zoology, 46(4), 385-396. https://doi.org/10.55730/1300-0179.3090
  • Crampton, J.S. (1995). Elliptic Fourier shape analysis of fossil bivalves, practical consideration. Lethaia, 28, 179-186. https://doi.org/10.1111/j.1502-3931.1995.tb01611.x
  • D’Iglio, C., Natale, S., Albano, M., Savoca, S., Famulari, S., Gervasi, C., Lanteri, G., Panarello, G., Spanò, N., & Capillo, G. (2022). Otolith analyses highlight morpho-functional differences of three species of mullet (Mugilidae) from transitional water. Sustainability, 14, 398. https://doi.org/10.3390/su140103988
  • Delling, B., Sabatini, A., Muracciole, S., Tougard, C., & Berrebi, P. (2020). Morphologic and genetic characterization of Corsican and Sardinian trout with comments on Salmo taxonomy. Knowledge and Management of Aquatic Ecosystems, 421(21). https://doi.org/10.1051/kmae/2020013
  • Elliott, N.G., Haskard, K., & Koslow, J.A. (1995). Morphometric analysis of orange roughy (Hoplostethus atlanticus) off the continental slope of southern Australia. Journal of Fish Biology, 46(2), 202–220. https://doi.org/10.1111/j.1095-8649.1995.tb05962.x
  • Friedland, K. D., & Reddin, D. G. (1994). Use of otolith morphology in stock discriminations of Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences, 51(1), 91-98. https://doi.org/10.1139/f94-011
  • Guinand, B., Oral, M., & Tougard, C. (2021). Brown trout phylogenetics: A persistent mirage towards (too) many species. Journal of Fish Biology, 99(2), 298-307. https://doi.org/10.1111/jfb.14686
  • Hammer, Ø., Harper, D.A., & Ryan, P.D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 1-9.
  • Hutchings, J.A. (2004). Norm of Reaction and Phenotypic Plasticity in Salmonid Life Histories. In: A. Hendry, S. Stearns (Eds.), Evolution Illuminated: Salmon and Their Relatives, Oxford University Press, Oxford, pp 154–174.
  • Iwata, H., & Ukai, Y. (2002). SHAPE: a computer program package for quantitative evaluation of biological shapes based on elliptic Fourier descriptors. Journal of Heredity, 93, 384 385. https://doi.org/10.1093/jhered/93.5.384
  • Jawad, L. A., Shamsan, E. F., Aguilar, G., & Hoedemakers, K. (2022). Scanning electron microscopy and morphological analysis reveal differences in the otolith morphology of three species of the family Lethrinidae (Teleostei: Perciformes) from Yemen. The Anatomical Record. https://doi.org/10.1002/ar.25115
  • Karakousis, Y., Triantaphyllidis, C., & Economidis, P. S. (1991). Morphological variability among seven populations of brown trout, Salmo trutta L., in Greece. Journal of Fish Biology, 38(6), 807-817. https://doi.org/10.1111/j.1095-8649.1991.tb03620.x
  • Kikuchi, E., Cardoso, L.G., Canel, D., Timi, J.T., & Haimovici, M. (2021). Using growth rates and otolith shape to identify the population structure of Umbrina canosai (Sciaenidae) from the Southwestern Atlantic. Marine Biology Research, 17(3), 272 285. https://doi.org/10.1080/17451000.2021.1938131
  • Koeberle, A. L., Arismendi, I., Crittenden, W., Di Prinzio, C., Gomez-Uchida, D., Noakes, D. L., & Richardson, S. (2020). Otolith shape as a classification tool for Chinook salmon (Oncorhynchus tshawytscha) discrimination in native and introduced systems. Canadian Journal of Fisheries and Aquatic Sciences, 77(7), 1172 1188. https://doi.org/10.1139/cjfas-2019-0280
  • Kontaş, S., Yedier, S., & Bostancı, D. (2020). Otolith and scale morphology of endemic fish Cyprinion macrostomum in Tigris–Euphrates Basin. Journal of Ichthyology, 60(4), 562 569. https://doi.org/10.1134/S0032945220040086
  • Kottelat, M. (1997). European freshwater fishes: a heuristic checklist of the freshwater fishes of Europe (exclusive of former USSR), with an introduction for non-systematists and comments on nomenclature and conservation. Biologia, 52, 1-271.
  • L'Abée-Lund, J. H., & Jensen, A. J. (1993). Otoliths as natural tags in the systematics of salmonids. Environmental Biology of Fishes, 36(4), 389-393. https://doi.org/10.1007/BF00012418
  • Libungan, L.A., Óskarsson, G.J., Slotte, A., Jacobsen, J.A., & Pálsson, S. (2015). Otolith shape: A population marker for Atlantic herring Clupea harengus. Journal of Fish Biology, 86(4), 1377 1395. https://doi.org/10.1111/jfb.12647
  • Lin, C.H., & Chang, C. W. (2012). Otolith Atlas of Taiwan Fishes. National Museum of Marine Biology & Aquarium.
  • Lleonart, J., Salat, J., & Torres, G.J. (2000). Removing allometric effects of body size in morphological analysis. Journal of Theoretical Biology, 205, 85–93. https://doi.org/10.1006/jtbi.2000.2043
  • Lombarte, A., Chic, O., Parisi-Baradad, V., Olivella, R., Piera, J., &. García-Ladona, E. (2006). A web-based environment from shape analysis of fish otoliths. The AFORO database. Scientia Marina, 70, 147-152. https://doi.org/10.3989/scimar.2006.70n1147
  • Lombarte, A., & Tuset, V. (2015). Morfometria de otólitos. Métodos de estudo com otólitos: princípios e aplicações. Buenos Aires: CAFP-BA-PIESCI, 269-302.
  • Mahé, K., MacKenzie, K., Ider, D., Massaro, A., Hamed, O., Jurado-Ruzafa, A., Gonçalves., O., Anastasopoulou, A., Jadaud, A., Mytilineou, C., Randon, M., Elleboode, R., Morell, A., Ramdane, Z., Simith, J., Bekaert, K., Amara, R., de Pantual, H., & Ernande, B. (2021). Directional bilateral asymmetry in fish otolith: A potential tool to evaluate stock boundaries? Symmetry, 13(6), 987. https://doi.org/10.3390/sym13060987
  • Mallat, S. (1991). Zero crossings of a wavelet transform. IEEE Transactions on Information Theory, 37, 1019 1033. https://doi.org/10.1109/18.86995
  • Mejri, M., Bakkari, W., Tazarki, M., Mili, S., Chalh, A., Shahin, A.A.B., Quignard, J.P., Trabelsi, M., & Ben Faleh, A. R. (2022). Discriminant geographic variation of saccular otolith shape and size in the common pandora, Pagellus erythrinus (Sparidae) across the Gulf of Gabes, Tunisia. Journal of Ichthyology, 62(6), 1053 1066. https://doi.org/10.1134/S0032945222060169
  • Mejri, M., Trojette, M., Allaya, H., Faleh, A. B., Jmil, I., Chalh, A., & Trabelsi, M. (2018). Use of otolith shape to differentiate two lagoon populations of Pagellus erythrinus (Actinopterygii: Perciformes: Sparidae) in Tunisian waters. Acta Ichthyologica et Piscatoria, 48(2), 153-161. https://doi.org/10.3750/AIEP/2376
  • Mille, T., Mahe, K., Villanueva, M.C., De Pontual, H., & Ernande, B. (2015). Sagittal otolith morphogenesis asymmetry in marine fishes. Journal of Fish Biology, 87(3), 646-663. https://doi.org/10.1111./jfb.12746
  • Morat, F., Betoulle, S., Robert, M., Thailly, A. F., Biagianti‐Risbourg, S., & Lecomte‐Finiger, R. (2008). What can otolith examination tell us about the level of perturbations of Salmonid fish from the Kerguelen Islands? Ecology of Freshwater Fish, 17(4), 617 627. https://doi.org/10.1111/j.1600-0633.2008.00313.x
  • Ozpiçak, M., Saygın, S., Aydın, A., Hançer, E., Yılmaz, S., & Polat, N. (2018). Otolith shape analyses of Squalius cephalus (Linnaeus, 1758) (Actinopterygii: Cyprinidae) inhabiting four inland water bodies of the middle Black Sea region, Turkey. Iranian Journal of Ichthyology, 5(4), 293-302. https://doi.org/10.22034/iji.v5i4.311
  • Parisi-Baradad, V., Lombarte, A., Garcia-Ladona, E., Cabestany, J., Piera, J., & Chic, Ò. (2005). Otolith shape contour analysis using affine transformation invariant wavelet transforms and curvature scale space representation. Marine and Freshwater Research, 56, 795–804. https://doi.org/10.1071/MF04162
  • Parisi-Baradad, V., Manjabacas, A., Lombarte, A., Olivella, R., Chic, Ṍ., Piera, J., & Garcia-Ladona E. (2010). Automated Taxon Identification of Teleost fishes using an otolith online database- AFORO. Fisheries Research, 105, 13–20. https://doi.org/10.1016/j.fishres.2010.02.005
  • Pavlov, D.A. (2022). Otolith morphology in gibel carp Carassius gibelio and crucian carp C. carassius (Cyprinidae). Journal of Ichthyology, 62, 1067–1080. https://doi.org/10.1134/S0032945222060200
  • Pavlov, D.A., & Osinov, A.G. (2023). Differentiation of Arctic Charr Salvelinus alpinus complex (Salmonidae) in lakes Lama and Kapchuk (Taimyr) based on genetic analysis, external morphology, and otolith shape. Journal of Ichthyology, 1 19. https://doi.org/10.1134/S0032945223010101
  • Pavlov, D.S., & Savvaitova, K.A. (2008). On the problem of ratio of anadromy and residence in salmonids (Salmonidae). Journal of Ichthyology, 48(9), 778 791. https://doi.org/10.1134/S0032945208090099
  • Pavlov, D.S., Savvaitova, K.A., & Kuzishchin, K.V. (1999). On the problem of formation of epigenetic variations of the life strategy in the species of the Red Data Book—Kamchatka Mykiss Parasalmo mykiss. Dokl. Ross. Akad. Nauk. Obshch. Biol. 367 (5), 709–713.
  • Ponton, D. (2006). Is geometric morphometrics efficient for comparing otolith shape of different fish species? Journal of Morphology, 267(6), 750-757. https://doi.org/10.1002/jmor.10439
  • Sadeghi, R., Esmaeili, H. R., Zarei, F., & Reichenbacher, B. (2020). Population structure of the ornate goby, Istigobius ornatus (Teleostei: Gobiidae), in the Persian Gulf and Oman Sea as determined by otolith shape variation using ShapeR. Environmental Biology of Fishes, 103(10), 1217-1230. https://doi.org/10.1007/s10641-020-01015-1
  • Sadighzadeh, Z., Valinassab, T., Vosugi, G., Motallebi, A. A., Fatemi, M. R., Lombarte, A., & Tuset, V. M. (2014). Use of otolith shape for stock identification of John's snapper, Lutjanus johnii (Pisces: Lutjanidae), from the Persian Gulf and the Oman Sea. Fisheries Research, 155, 59-63. https://doi.org/10.1016/j.fishres.2014.02.024
  • Savvaitova, K. A. (1989). Arctic chars (structure of population systems and perspectives of commercial use) (Agropromizdat, Moscow, 1989) [in Russian].
  • Schulz-Mirbach, T., Ladich, F., Plath, M., & Heß, M. (2019). Enigmatic ear stones: What we know about the functional role and evolution of fish otoliths. Biological Reviews, 94, 457 482. https://doi.org/10.1111/brv.12463
  • Song, J., Zhao, B., Liu, J., Cao, L., & Dou, S. (2018). Comparison of otolith shape descriptors and morphometrics for stock discrimination of yellow croaker along the Chinese coast. Journal of Oceanology and Limnology, 36(5), 1870-1879. https://doi.org/10.1007/s00343-018-7228-0
  • Thorpe, J. E. (1994). Reproductive Strategies in Atlantic Salmon Salmo salar. Aquaculture Research, 25, 77–87. https://doi.org/10.1111/j.1365-2109.1994.tb00668.x
  • Turan, D., & Aksu, S. (2021). A new trout species from southern Marmara Sea drainages (Teleostei: Salmonidae). Journal of Anatolian Environmental and Animal Sciences, 6(2), 232-239. https://doi.org/10.35229/jaes.903810
  • Turan, D., Aksu, İ., Oral, M., Kaya, C., & Bayçelebi, E. (2021). Contribution to the trout of Euphrates River, with description of a new species, and range extension of Salmo munzuricus (Salmoniformes, Salmonidae). Zoosystematics and Evolution, 97, 471. https://doi.org/10.3897/zse.97.72181
  • Turan, D., Dogan, E., Kaya, C. & Kanyılmaz, M. (2014a). Salmo kottelati, a new species of trout from Alakır stream, draining to the Mediterranean in Southern Anatolia, Turkey (Teleostei, Salmonidae). Zookeys, 462, 135-151. https://doi.org/10.3897/zookeys.462.8177
  • Turan, D., Kalaycι, G., Bektaş, Y., Kaya, C., Baycelebi, E. (2020). A new species of trout from the northern drainages of Euphrates River, Turkey (Salmoniformes: Salmonidae). Journal of Fish Biology, 96, 1454-1462. https://doi.org/10.1111/jfb.14321
  • Turan, D., Kottelat, M., & Engin, S. (2009). Two new species of trouts, resident and migratory, sympatric in streams of northern Anatolia (Salmoniformes: Salmonidae). Ichthyological Exploration of Freshwaters, 20(4), 333-364.
  • Turan, D., Kottelat, M. & Engin, S. (2014b). Two new species of trouts from the Euphrates drainage, Turkey (Teleostei: Salmonidae). Ichthyological Exploration of Freshwaters, 24(3), 275-287.
  • Tuset, V.M., Lombarte, A., & Assis, C.A. (2008). Otolith atlas for the western Mediterranean, north and central eastern Atlantic. Scientia Marina, 72, 7–198. https://doi.org/10.3989/scimar.2008.72s17
  • Tuset, V.M., Lozano, I.J., González, J.A., Pertusa, J. F., & García‐Díaz, M. M. (2003). Shape indices to identify regional differences in otolith morphology of comber, Serranus cabrilla (L., 1758). Journal of Applied Ichthyology, 19(2), 88 93. https://doi.org/10.1046/j.1439 0426.2003.00344.x
  • Tuset, V.M., Otero-Ferrer, J. L., Siliprandi, C., Manjabacas, A., Marti-Puig, P., & Lombarte, A. (2021). Paradox of otolith shape indices: routine but overestimated use. Canadian Journal of Fisheries and Aquatic Sciences, 78(6), 681-692. https://doi.org/10.1139/cjfas-2020-0369 Ichthyology, 19(2), 88 93. https://doi.org/10.1046/j.1439 0426.2003.00344.x
  • Wiff, R., Flores, A., Segura, A. M., Barrientos, M. A., & Ojeda, V. (2020). Otolith shape as a stock discrimination tool for ling (Genypterus blacodes) in the fjords of Chilean Patagonia. New Zealand Journal of Marine and Freshwater Research, 54(2), 218-232. https://doi.org/10.1080/00288330.2019.1701047
  • Yedier, S. (2021). Otolith shape analysis and relationships between total length and otolith dimensions of European barracuda, Sphyraena sphyraena in the Mediterranean Sea. Iranian Journal of Fisheries Sciences, 20(4), 1080-1096. https://doi.org/10.22092/ijfs.2021.124429
  • Yıldız, R., & Yılmaz, S. (2021). Morphometric Analysis of Sagittal Otoliths in Coruh Trout (Salmo coruhensis Turan, Kottelat & Engin, 2010). Journal of Anatolian Environmental and Animal Sciences, 6(2), 270-277. https://doi.org/10.35229/jaes.913183
  • Yilmaz, S., Ozpicak, M., Saygin, S. & Polat, N. (2021). Determination of morphometric and genetic structure in Salmo Populations inhabiting Samsun province: A new record for Black Sea region. Journal of Anatolian Environment and Animal Sciences, 6(4), 765-773. https://doi.org/10.35229/jaes.1008194

Comparative otolith morphology in two species of Salmo genus from Türkiye

Year 2024, Volume: 41 Issue: 1, 8 - 15, 15.03.2024
https://doi.org/10.12714/egejfas.41.1.02

Abstract

In this study, the morphology of the sagittal otolith of Salmo coruhensis Turan, Kottelat & Engin, 2010 and Salmo fahrettini Turan, Kalayci, Bektaş, Kaya & Bayçelebi, 2020 from Çam Stream (Artvin) and Terme Stream (Samsun) was described by images of scanning electron microscopy. Its shape and contour were also analyzed with shape indices, elliptic Fourier coefficients and wavelet transforms. As the study material, a total of 30 S. coruhensis sample and 20 S. fahrettini sample were obtained. Interspecies differences in otolith shape and morphometry were evaluated by principal components analysis, canonical discrimination analysis, and permutational multivariate analysis of variance. The two salmonid species studied were distinguished by both morphometric and shape analysis methods. However, wavelet transform was found to be more effective than shape indices and elliptic Fourier coefficients in species discrimination, with an overall classification success rate of 80%. Our results showed that saccular otolith morphology could be an additional diagnostic character for trout species differentiation.

Ethical Statement

The care and use of experimental animals, sampling and analysis techniques used in this work are approved by Ondokuz Mayıs University Animal Experiments Local Ethics Committee with decree no “2017/38”

Thanks

The authors are thankful to Recep YILDIZ for sampling S. coruhensis individuals.

References

  • Akbay, R., Yilmaz, S., Ozpicak, M., Saygin, S., & Polat, N. (2022). Lagenar otolith morphometry of gibel carp, Carassius gibelio (Cyprinidae): Comparisons among four populations in Samsun Province (Turkey). Journal of Ichthyology, 62, 770 776. https://doi.org/10.1134/S0032945222050022
  • Anderson, M.J. (2001). A new method for non‐parametric multivariate analysis of variance. Austral Ecology, 26, 32-46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x
  • Assis, I.O., da Silva, V.E., Souto-Vieira, D., Lozano, A.P., Volpedo, A. V., & Fabré, N.N. (2020). Ecomorphological patterns in otoliths of tropical fishes: assessing trophic groups and depth strata preference by shape. Environmental Biology of Fishes, 103(4), 349-361. https://doi.org/10.1007/s10641-020-00961-0
  • Bardakci, F., Degerli, N., Ozdemir, O., & Basibuyuk, H.H. (2006). Phylogeography of the Turkish brown trout Salmo trutta L.: mitochondrial DNA PCR‐RFLP variation. Journal of Fish Biology, 68(A), 36-55. https://doi.org/10.1111/j.0022-1112.2006.00948.x
  • Bardakci, F., Tanyolac, J., Akpinar, M.A., & Erdem, U. (1994). Morphological comparison of trout (Salmo trutta L., 1766) populations caught from streams in Sivas. Turkish Journal of Zoology, 18, 1-6.
  • Bernatchez, L. (2001). The evolutionary history of brown trout (Salmo trutta L.) inferred from phylogeographic, nested clade, and mismatch analyses of mitochondrial DNA variation. Evolution, 55, 351-379. https://doi.org/10.1111/j.0014-3820.2001.tb01300.x
  • Berrebi, P., Barucchi, V.C., Splendiani, A., Muracciole, S., Sabatini, A., Palmas, F., Tougard, C., Arculeo, M., & Marić, S. (2019). Brown trout (Salmo trutta L.) high genetic diversity around the Tyrrhenian Sea as revealed by nuclear and mitochondrial markers. Hydrobiologia, 826(1), 209-231. https://doi.org/10.1007/s10750-018-3734-5
  • Bourehail, N., Morat, F., Lecomte-Finiger, R., & Kara, M. H. (2015). Using otolith shape analysis to distinguish barracudas Sphyraena sphyraena and Sphyraena viridensis from the Algerian coast. Cybium, 39(4), 271-278.
  • Campana, S.E., & Casselman, J.M. (1993). Stock discrimination using otolith shape analysis, Canadian Journal of Fisheries and Aquatic Science, 50(5), 1062–1083. https://doi.org/10.1139/f93-123
  • Çöl, O., & Yilmaz, S. (2022). The effect of ontogenetic diet shifts on sagittal otolith shape of European perch, Perca fluviatilis (Actinopterygii: Percidae) from Lake Ladik, Turkey. Turkish Journal of Zoology, 46(4), 385-396. https://doi.org/10.55730/1300-0179.3090
  • Crampton, J.S. (1995). Elliptic Fourier shape analysis of fossil bivalves, practical consideration. Lethaia, 28, 179-186. https://doi.org/10.1111/j.1502-3931.1995.tb01611.x
  • D’Iglio, C., Natale, S., Albano, M., Savoca, S., Famulari, S., Gervasi, C., Lanteri, G., Panarello, G., Spanò, N., & Capillo, G. (2022). Otolith analyses highlight morpho-functional differences of three species of mullet (Mugilidae) from transitional water. Sustainability, 14, 398. https://doi.org/10.3390/su140103988
  • Delling, B., Sabatini, A., Muracciole, S., Tougard, C., & Berrebi, P. (2020). Morphologic and genetic characterization of Corsican and Sardinian trout with comments on Salmo taxonomy. Knowledge and Management of Aquatic Ecosystems, 421(21). https://doi.org/10.1051/kmae/2020013
  • Elliott, N.G., Haskard, K., & Koslow, J.A. (1995). Morphometric analysis of orange roughy (Hoplostethus atlanticus) off the continental slope of southern Australia. Journal of Fish Biology, 46(2), 202–220. https://doi.org/10.1111/j.1095-8649.1995.tb05962.x
  • Friedland, K. D., & Reddin, D. G. (1994). Use of otolith morphology in stock discriminations of Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences, 51(1), 91-98. https://doi.org/10.1139/f94-011
  • Guinand, B., Oral, M., & Tougard, C. (2021). Brown trout phylogenetics: A persistent mirage towards (too) many species. Journal of Fish Biology, 99(2), 298-307. https://doi.org/10.1111/jfb.14686
  • Hammer, Ø., Harper, D.A., & Ryan, P.D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 1-9.
  • Hutchings, J.A. (2004). Norm of Reaction and Phenotypic Plasticity in Salmonid Life Histories. In: A. Hendry, S. Stearns (Eds.), Evolution Illuminated: Salmon and Their Relatives, Oxford University Press, Oxford, pp 154–174.
  • Iwata, H., & Ukai, Y. (2002). SHAPE: a computer program package for quantitative evaluation of biological shapes based on elliptic Fourier descriptors. Journal of Heredity, 93, 384 385. https://doi.org/10.1093/jhered/93.5.384
  • Jawad, L. A., Shamsan, E. F., Aguilar, G., & Hoedemakers, K. (2022). Scanning electron microscopy and morphological analysis reveal differences in the otolith morphology of three species of the family Lethrinidae (Teleostei: Perciformes) from Yemen. The Anatomical Record. https://doi.org/10.1002/ar.25115
  • Karakousis, Y., Triantaphyllidis, C., & Economidis, P. S. (1991). Morphological variability among seven populations of brown trout, Salmo trutta L., in Greece. Journal of Fish Biology, 38(6), 807-817. https://doi.org/10.1111/j.1095-8649.1991.tb03620.x
  • Kikuchi, E., Cardoso, L.G., Canel, D., Timi, J.T., & Haimovici, M. (2021). Using growth rates and otolith shape to identify the population structure of Umbrina canosai (Sciaenidae) from the Southwestern Atlantic. Marine Biology Research, 17(3), 272 285. https://doi.org/10.1080/17451000.2021.1938131
  • Koeberle, A. L., Arismendi, I., Crittenden, W., Di Prinzio, C., Gomez-Uchida, D., Noakes, D. L., & Richardson, S. (2020). Otolith shape as a classification tool for Chinook salmon (Oncorhynchus tshawytscha) discrimination in native and introduced systems. Canadian Journal of Fisheries and Aquatic Sciences, 77(7), 1172 1188. https://doi.org/10.1139/cjfas-2019-0280
  • Kontaş, S., Yedier, S., & Bostancı, D. (2020). Otolith and scale morphology of endemic fish Cyprinion macrostomum in Tigris–Euphrates Basin. Journal of Ichthyology, 60(4), 562 569. https://doi.org/10.1134/S0032945220040086
  • Kottelat, M. (1997). European freshwater fishes: a heuristic checklist of the freshwater fishes of Europe (exclusive of former USSR), with an introduction for non-systematists and comments on nomenclature and conservation. Biologia, 52, 1-271.
  • L'Abée-Lund, J. H., & Jensen, A. J. (1993). Otoliths as natural tags in the systematics of salmonids. Environmental Biology of Fishes, 36(4), 389-393. https://doi.org/10.1007/BF00012418
  • Libungan, L.A., Óskarsson, G.J., Slotte, A., Jacobsen, J.A., & Pálsson, S. (2015). Otolith shape: A population marker for Atlantic herring Clupea harengus. Journal of Fish Biology, 86(4), 1377 1395. https://doi.org/10.1111/jfb.12647
  • Lin, C.H., & Chang, C. W. (2012). Otolith Atlas of Taiwan Fishes. National Museum of Marine Biology & Aquarium.
  • Lleonart, J., Salat, J., & Torres, G.J. (2000). Removing allometric effects of body size in morphological analysis. Journal of Theoretical Biology, 205, 85–93. https://doi.org/10.1006/jtbi.2000.2043
  • Lombarte, A., Chic, O., Parisi-Baradad, V., Olivella, R., Piera, J., &. García-Ladona, E. (2006). A web-based environment from shape analysis of fish otoliths. The AFORO database. Scientia Marina, 70, 147-152. https://doi.org/10.3989/scimar.2006.70n1147
  • Lombarte, A., & Tuset, V. (2015). Morfometria de otólitos. Métodos de estudo com otólitos: princípios e aplicações. Buenos Aires: CAFP-BA-PIESCI, 269-302.
  • Mahé, K., MacKenzie, K., Ider, D., Massaro, A., Hamed, O., Jurado-Ruzafa, A., Gonçalves., O., Anastasopoulou, A., Jadaud, A., Mytilineou, C., Randon, M., Elleboode, R., Morell, A., Ramdane, Z., Simith, J., Bekaert, K., Amara, R., de Pantual, H., & Ernande, B. (2021). Directional bilateral asymmetry in fish otolith: A potential tool to evaluate stock boundaries? Symmetry, 13(6), 987. https://doi.org/10.3390/sym13060987
  • Mallat, S. (1991). Zero crossings of a wavelet transform. IEEE Transactions on Information Theory, 37, 1019 1033. https://doi.org/10.1109/18.86995
  • Mejri, M., Bakkari, W., Tazarki, M., Mili, S., Chalh, A., Shahin, A.A.B., Quignard, J.P., Trabelsi, M., & Ben Faleh, A. R. (2022). Discriminant geographic variation of saccular otolith shape and size in the common pandora, Pagellus erythrinus (Sparidae) across the Gulf of Gabes, Tunisia. Journal of Ichthyology, 62(6), 1053 1066. https://doi.org/10.1134/S0032945222060169
  • Mejri, M., Trojette, M., Allaya, H., Faleh, A. B., Jmil, I., Chalh, A., & Trabelsi, M. (2018). Use of otolith shape to differentiate two lagoon populations of Pagellus erythrinus (Actinopterygii: Perciformes: Sparidae) in Tunisian waters. Acta Ichthyologica et Piscatoria, 48(2), 153-161. https://doi.org/10.3750/AIEP/2376
  • Mille, T., Mahe, K., Villanueva, M.C., De Pontual, H., & Ernande, B. (2015). Sagittal otolith morphogenesis asymmetry in marine fishes. Journal of Fish Biology, 87(3), 646-663. https://doi.org/10.1111./jfb.12746
  • Morat, F., Betoulle, S., Robert, M., Thailly, A. F., Biagianti‐Risbourg, S., & Lecomte‐Finiger, R. (2008). What can otolith examination tell us about the level of perturbations of Salmonid fish from the Kerguelen Islands? Ecology of Freshwater Fish, 17(4), 617 627. https://doi.org/10.1111/j.1600-0633.2008.00313.x
  • Ozpiçak, M., Saygın, S., Aydın, A., Hançer, E., Yılmaz, S., & Polat, N. (2018). Otolith shape analyses of Squalius cephalus (Linnaeus, 1758) (Actinopterygii: Cyprinidae) inhabiting four inland water bodies of the middle Black Sea region, Turkey. Iranian Journal of Ichthyology, 5(4), 293-302. https://doi.org/10.22034/iji.v5i4.311
  • Parisi-Baradad, V., Lombarte, A., Garcia-Ladona, E., Cabestany, J., Piera, J., & Chic, Ò. (2005). Otolith shape contour analysis using affine transformation invariant wavelet transforms and curvature scale space representation. Marine and Freshwater Research, 56, 795–804. https://doi.org/10.1071/MF04162
  • Parisi-Baradad, V., Manjabacas, A., Lombarte, A., Olivella, R., Chic, Ṍ., Piera, J., & Garcia-Ladona E. (2010). Automated Taxon Identification of Teleost fishes using an otolith online database- AFORO. Fisheries Research, 105, 13–20. https://doi.org/10.1016/j.fishres.2010.02.005
  • Pavlov, D.A. (2022). Otolith morphology in gibel carp Carassius gibelio and crucian carp C. carassius (Cyprinidae). Journal of Ichthyology, 62, 1067–1080. https://doi.org/10.1134/S0032945222060200
  • Pavlov, D.A., & Osinov, A.G. (2023). Differentiation of Arctic Charr Salvelinus alpinus complex (Salmonidae) in lakes Lama and Kapchuk (Taimyr) based on genetic analysis, external morphology, and otolith shape. Journal of Ichthyology, 1 19. https://doi.org/10.1134/S0032945223010101
  • Pavlov, D.S., & Savvaitova, K.A. (2008). On the problem of ratio of anadromy and residence in salmonids (Salmonidae). Journal of Ichthyology, 48(9), 778 791. https://doi.org/10.1134/S0032945208090099
  • Pavlov, D.S., Savvaitova, K.A., & Kuzishchin, K.V. (1999). On the problem of formation of epigenetic variations of the life strategy in the species of the Red Data Book—Kamchatka Mykiss Parasalmo mykiss. Dokl. Ross. Akad. Nauk. Obshch. Biol. 367 (5), 709–713.
  • Ponton, D. (2006). Is geometric morphometrics efficient for comparing otolith shape of different fish species? Journal of Morphology, 267(6), 750-757. https://doi.org/10.1002/jmor.10439
  • Sadeghi, R., Esmaeili, H. R., Zarei, F., & Reichenbacher, B. (2020). Population structure of the ornate goby, Istigobius ornatus (Teleostei: Gobiidae), in the Persian Gulf and Oman Sea as determined by otolith shape variation using ShapeR. Environmental Biology of Fishes, 103(10), 1217-1230. https://doi.org/10.1007/s10641-020-01015-1
  • Sadighzadeh, Z., Valinassab, T., Vosugi, G., Motallebi, A. A., Fatemi, M. R., Lombarte, A., & Tuset, V. M. (2014). Use of otolith shape for stock identification of John's snapper, Lutjanus johnii (Pisces: Lutjanidae), from the Persian Gulf and the Oman Sea. Fisheries Research, 155, 59-63. https://doi.org/10.1016/j.fishres.2014.02.024
  • Savvaitova, K. A. (1989). Arctic chars (structure of population systems and perspectives of commercial use) (Agropromizdat, Moscow, 1989) [in Russian].
  • Schulz-Mirbach, T., Ladich, F., Plath, M., & Heß, M. (2019). Enigmatic ear stones: What we know about the functional role and evolution of fish otoliths. Biological Reviews, 94, 457 482. https://doi.org/10.1111/brv.12463
  • Song, J., Zhao, B., Liu, J., Cao, L., & Dou, S. (2018). Comparison of otolith shape descriptors and morphometrics for stock discrimination of yellow croaker along the Chinese coast. Journal of Oceanology and Limnology, 36(5), 1870-1879. https://doi.org/10.1007/s00343-018-7228-0
  • Thorpe, J. E. (1994). Reproductive Strategies in Atlantic Salmon Salmo salar. Aquaculture Research, 25, 77–87. https://doi.org/10.1111/j.1365-2109.1994.tb00668.x
  • Turan, D., & Aksu, S. (2021). A new trout species from southern Marmara Sea drainages (Teleostei: Salmonidae). Journal of Anatolian Environmental and Animal Sciences, 6(2), 232-239. https://doi.org/10.35229/jaes.903810
  • Turan, D., Aksu, İ., Oral, M., Kaya, C., & Bayçelebi, E. (2021). Contribution to the trout of Euphrates River, with description of a new species, and range extension of Salmo munzuricus (Salmoniformes, Salmonidae). Zoosystematics and Evolution, 97, 471. https://doi.org/10.3897/zse.97.72181
  • Turan, D., Dogan, E., Kaya, C. & Kanyılmaz, M. (2014a). Salmo kottelati, a new species of trout from Alakır stream, draining to the Mediterranean in Southern Anatolia, Turkey (Teleostei, Salmonidae). Zookeys, 462, 135-151. https://doi.org/10.3897/zookeys.462.8177
  • Turan, D., Kalaycι, G., Bektaş, Y., Kaya, C., Baycelebi, E. (2020). A new species of trout from the northern drainages of Euphrates River, Turkey (Salmoniformes: Salmonidae). Journal of Fish Biology, 96, 1454-1462. https://doi.org/10.1111/jfb.14321
  • Turan, D., Kottelat, M., & Engin, S. (2009). Two new species of trouts, resident and migratory, sympatric in streams of northern Anatolia (Salmoniformes: Salmonidae). Ichthyological Exploration of Freshwaters, 20(4), 333-364.
  • Turan, D., Kottelat, M. & Engin, S. (2014b). Two new species of trouts from the Euphrates drainage, Turkey (Teleostei: Salmonidae). Ichthyological Exploration of Freshwaters, 24(3), 275-287.
  • Tuset, V.M., Lombarte, A., & Assis, C.A. (2008). Otolith atlas for the western Mediterranean, north and central eastern Atlantic. Scientia Marina, 72, 7–198. https://doi.org/10.3989/scimar.2008.72s17
  • Tuset, V.M., Lozano, I.J., González, J.A., Pertusa, J. F., & García‐Díaz, M. M. (2003). Shape indices to identify regional differences in otolith morphology of comber, Serranus cabrilla (L., 1758). Journal of Applied Ichthyology, 19(2), 88 93. https://doi.org/10.1046/j.1439 0426.2003.00344.x
  • Tuset, V.M., Otero-Ferrer, J. L., Siliprandi, C., Manjabacas, A., Marti-Puig, P., & Lombarte, A. (2021). Paradox of otolith shape indices: routine but overestimated use. Canadian Journal of Fisheries and Aquatic Sciences, 78(6), 681-692. https://doi.org/10.1139/cjfas-2020-0369 Ichthyology, 19(2), 88 93. https://doi.org/10.1046/j.1439 0426.2003.00344.x
  • Wiff, R., Flores, A., Segura, A. M., Barrientos, M. A., & Ojeda, V. (2020). Otolith shape as a stock discrimination tool for ling (Genypterus blacodes) in the fjords of Chilean Patagonia. New Zealand Journal of Marine and Freshwater Research, 54(2), 218-232. https://doi.org/10.1080/00288330.2019.1701047
  • Yedier, S. (2021). Otolith shape analysis and relationships between total length and otolith dimensions of European barracuda, Sphyraena sphyraena in the Mediterranean Sea. Iranian Journal of Fisheries Sciences, 20(4), 1080-1096. https://doi.org/10.22092/ijfs.2021.124429
  • Yıldız, R., & Yılmaz, S. (2021). Morphometric Analysis of Sagittal Otoliths in Coruh Trout (Salmo coruhensis Turan, Kottelat & Engin, 2010). Journal of Anatolian Environmental and Animal Sciences, 6(2), 270-277. https://doi.org/10.35229/jaes.913183
  • Yilmaz, S., Ozpicak, M., Saygin, S. & Polat, N. (2021). Determination of morphometric and genetic structure in Salmo Populations inhabiting Samsun province: A new record for Black Sea region. Journal of Anatolian Environment and Animal Sciences, 6(4), 765-773. https://doi.org/10.35229/jaes.1008194
There are 64 citations in total.

Details

Primary Language English
Subjects Hydrobiology
Journal Section Articles
Authors

Melek Özpiçak 0000-0003-3506-4242

Semra Saygın 0000-0002-3249-5074

Savaş Yılmaz 0000-0003-2859-4886

Early Pub Date March 11, 2024
Publication Date March 15, 2024
Submission Date October 26, 2023
Acceptance Date December 25, 2023
Published in Issue Year 2024Volume: 41 Issue: 1

Cite

APA Özpiçak, M., Saygın, S., & Yılmaz, S. (2024). Comparative otolith morphology in two species of Salmo genus from Türkiye. Ege Journal of Fisheries and Aquatic Sciences, 41(1), 8-15. https://doi.org/10.12714/egejfas.41.1.02