Research Article
BibTex RIS Cite

The Effect of Nisin and Chloramphenicol Combinationon Staphylococcus aureus ATCC 6538 Biofilm Structure

Year 2022, Volume: 9 Issue: 2, 713 - 720, 31.12.2022
https://doi.org/10.35193/bseufbd.1058558

Abstract

Nowadays, due to the rapid spread of antibiotic resistance and the difficulty of discovering new antimicrobial agents, the reuse and combinational strategies of old antibiotics have come to the fore. In this study, we investigated the combinational efficacy of nisin and chloramphenicol against the ATCC 6538 strain of Staphylococcus aureus. The MIC values of nisin and chloramphenicol were >64 and 32 µg/mL, respectively. The checkerboard assay was carried out for the inspection of synergism between nisin and chloramphenicol. Furthermore, the crystal violet assay was employed to assess antibiofilm effects. Additionally, the expressions of various virulence genes (agrA, spa, icaA and saeR) were investigated using the colony biofilm assay and qRT-PCR methods. In combination application, MIC values of nisin and chloramphenicol was decreased. In addition, biofilm formation was decreased.It was shown that the expression level of the agrA gene decreased compared to the control in the nisin, chloramphenicol and combinational applications. The expression levels of other genes were increased compared to the control. The results showed that the activities of nisin and chloramphenicol combinations had synergistic and antibiofilm activity. This study sheds light on the combinatorial use of older antibiotics.

References

  • Cascioferro, S., Carbone, D., Parrino, B., Pecoraro, C., Giovannetti, E., Cirrincione, G., & Diana, P. (2021). Therapeutic Strategies to Counteract Antibiotic Resistance in MRSA Biofilm‐Associated Infections. Chemmedchem, 16(1), 65-80.
  • Kakoullis, L., Papachristodoulou, E., Chra, P., & Panos, G. (2021). Mechanisms of Antibiotic Resistance In Important Gram-Positive And Gram-Negative Pathogens And Novel Antibiotic Solutions. Antibiotics, 10(4), 415.
  • Seethalakshmi, P. S., Rajeev, R., Kiran, G. S., & Selvin, J. (2020). Promising Treatment Strategies To Combat Staphylococcus Aureus Biofilm Infections: An Updated Review. Biofouling, 36(10), 1159-1181.
  • Worthington, R. J., & Melander, C. (2013). Combination Approaches To Combat Multidrug-Resistant Bacteria. Trends In Biotechnology, 31(3), 177-184.
  • Angst, D. C., Tepekule, B., Sun, L., Bogos, B., & Bonhoeffer, S. (2021). Comparing Treatment Strategies To Reduce Antibiotic Resistance In An In Vitro Epidemiological Setting. Proceedings of the National Academy of Sciences, 118(13), E2023467118.
  • Annunziato, G. (2019). Strategies To Overcome Antimicrobial Resistance (AMR) Making Use Of Non-Essential Target Inhibitors: A Review. International Journal Of Molecular Sciences, 20(23), 5844.
  • De Freire Bastos, M. D. C., & Ceotto, H. (2011). Bacterial Antimicrobial Peptides and Food Preservation. Natural Antimicrobials In Food Safety And Quality, 62.
  • Chung, K. T., Dickson, J. S., & Crouse, J. D. (1989). Effects Of Nisin On Growth Of Bacteria Attached To Meat. Applied and Environmental Microbiology, 55(6), 1329-1333.
  • Punyauppa-Path, S., Phumkhachorn, P., & Rattanachaikunsopon, P. (2015). Nisin: Production And Mechanism Of Antimicrobial Action. International Journal Of Current Research And Review, 7(2), 47.
  • Tevyashova, A. N. (2021). Recent Trends In Synthesis Of Chloramphenicol New Derivatives. Antibiotics, 10(4), 370.
  • Schlünzen, F., Zarivach, R., Harms, J., Bashan, A., Tocilj, A., Albrecht, R., ... & Franceschi, F. (2001). Structural Basis For The Interaction Of Antibiotics With The Peptidyl Transferase Centre In Eubacteria. Nature, 413(6858), 814-821.
  • Andrews, J. M. (2001). Determination Of Minimum Inhibitory Concentrations. Journal Of Antimicrobial Chemotherapy, 48(Suppl_1), 5-16.
  • Yazici, A., Örtücü, S., & Taşkin, M. (2021). Screening And Characterization Of A Novel Antibiofilm Polypeptide Derived From Filamentous Fungi. Journal Of Proteomics, 233, 104075.
  • Nagarajan, D., Roy, N., Kulkarni, O., Nanajkar, N., Datey, A., Ravichandran, S., & Chandra, N. (2019). Ω76: A Designed Antimicrobial Peptide to Combat Carbapenem-And Tigecycline-Resistant Acinetobacter Baumannii. Science Advances, 5(7), Eaax1946.
  • Merritt, J. H., Kadouri, D. E., & O’Toole, G. A. (2005). Growing And Analyzing Static Biofilms. Curr. 852 Protoc. Microbiol. Chapter 1. Unit 1B, 1, 853.
  • Hodille, E., Rose, W., Diep, B. A., Goutelle, S., Lina, G., & Dumitrescu, O. (2017). The Role of Antibiotics In Modulating Virulence In Staphylococcus Aureus. Clinical Microbiology Reviews, 30(4), 887-917.
  • Abbas, H. A., Elsherbini, A. M., & Shaldam, M. A. (2019). Glyceryl Trinitrate Blocks Staphyloxanthin and Biofilm Formation In Staphylococcus Aureus. African Health Sciences, 19(1), 1376-1384.
  • Chen, Q., Xie, S., Lou, X., Cheng, S., Liu, X., Zheng, W., ... & Wang, H. (2020). Biofilm Formation and Prevalence Of Adhesion Genes Among Staphylococcus Aureus Isolates From Different Food Sources. Microbiologyopen, 9(1), E00946.
  • Tong, Z., Ni, L., & Ling, J. (2014). Antibacterial Peptide Nisin: A Potential Role In The Inhibition Of Oral Pathogenic Bacteria. Peptides, 60, 32-40.
  • Dinos, G. P., Athanassopoulos, C. M., Missiri, D. A., Giannopoulou, P. C., Vlachogiannis, I. A., Papadopoulos, G. E., ... & Kalpaxis, D. L. (2016). Chloramphenicol Derivatives As Antibacterial And Anticancer Agents: Historic Problems And Current Solutions. Antibiotics, 5(2), 20.
  • Meletiadis, J., Pournaras, S., Roilides, E., & Walsh, T. J. (2010). Defining Fractional Inhibitory Concentration Index Cutoffs For Additive Interactions Based On Self-Drug Additive Combinations, Monte Carlo Simulation Analysis, And In Vitro-In Vivo Correlation Data For Antifungal Drug Combinations Against Aspergillus Fumigatus. Antimicrobial Agents And Chemotherapy, 54(2), 602-609.
  • Brumfitt, W., Salton, M. R., & Hamilton-Miller, J. M. (2002). Nisin, Alone And Combined With Peptidoglycan-Modulating Antibiotics: Activity Against Methicillin-Resistant Staphylococcus Aureus And Vancomycin-Resistant Enterococci. Journal Of Antimicrobial Chemotherapy, 50(5), 731-734.
  • Tong, Z., Zhang, Y., Ling, J., Ma, J., Huang, L., & Zhang, L. (2014). An In Vitro Study On The Effects Of Nisin On The Antibacterial Activities Of 18 Antibiotics Against Enterococcus Faecalis. Plos One, 9(2), E89209.
  • Lister, J. L., & Horswill, A. R. (2014). Staphylococcus Aureus Biofilms: Recent Developments In Biofilm Dispersal. Frontiers In Cellular And Infection Microbiology, 4, 178.
  • Moormeier, D. E., & Bayles, K. W. (2017). Staphylococcus Aureus Biofilm: A Complex Developmental Organism. Molecular Microbiology, 104(3), 365-376.
  • Jenul, C., & Horswill, A. R. (2019). Regulation Of Staphylococcus Aureus Virulence. Microbiology Spectrum, 7(2), 7-2.
  • Painter, K. L., Krishna, A., Wigneshweraraj, S., & Edwards, A. M. (2014). What Role Does The Quorum-Sensing Accessory Gene Regulator System Play During Staphylococcus Aureus Bacteremia?. Trends In Microbiology, 22(12), 676-685.
  • Singh, R., & Ray, P. (2014). Quorum Sensing-Mediated Regulation Of Staphylococcal Virulence And Antibiotic Resistance. Future Microbiology, 9(5), 669-681.
  • Cheung, G. Y., Wang, R., Khan, B. A., Sturdevant, D. E., & Otto, M. (2011). Role Of The Accessory Gene Regulator Agr In Community-Associated Methicillin-Resistant Staphylococcus Aureus Pathogenesis. Infection And Immunity, 79(5), 1927-1935.
  • Cheung, A. L., Schmidt, K., Bateman, B., & Manna, A. C. (2001). Sars, A Sara Homolog Repressible By Agr, Is An Activator Of Protein A Synthesis In Staphylococcus Aureus. Infection And Immunity, 69(4), 2448-2455.
  • O'Gara, J. P. (2007). Ica And Beyond: Biofilm Mechanisms And Regulation In Staphylococcus Epidermidis And Staphylococcus Aureus. FEMS Microbiology Letters, 270(2), 179-188.
  • Rachid, S., Ohlsen, K., Witte, W., Hacker, J., & Ziebuhr, W. (2000). Effect Of Subinhibitory Antibiotic Concentrations On Polysaccharide Intercellular Adhesin Expression In Biofilm-Forming Staphylococcus Epidermidis. Antimicrobial Agents And Chemotherapy, 44(12), 3357-3363.

Nisin ve Kloramfenikol Kombinasyonunun Staphylococcus aureus ATCC 6538 Biyofilmi Üzerindeki Etkileri

Year 2022, Volume: 9 Issue: 2, 713 - 720, 31.12.2022
https://doi.org/10.35193/bseufbd.1058558

Abstract

Günümüzde antibiyotik direncinin hızla yayılması ve yeni antimikrobiyal ajanların keşfedilmesinin zorluğu nedeniyle eski antibiyotiklerin yeniden kullanımı ve kombinasyon stratejileri ön plana çıkmıştır. Bu çalışmada, Staphylococcus aureus'un ATCC 6538 suşuna karşı nisin ve kloramfenikolün kombinasyonel etkinliğini araştırdık. Nisin ve kloramfenikolün MİK değerleri sırasıyla >64 ve 32 µg/mL olarak bulundu. Nisin ve kloramfenikol arasındaki sinerjizmin incelenmesi için dama tahtası (Checkerboard) testi yapıldı. Ayrıca, antibiyofilm etkilerini değerlendirmek için kristal viole testi kullanıldı. Koloni biyofilm testi ve qRT-PCR yöntemleri kullanılarak çeşitli virülans genlerinin (agrA,spa, icaA ve saeR) ekspresyonları araştırıldı. Kombinasyonel uygulamada, nisin ve kloramfenikolün MİK değerlerinde azalma gözlendi. Ayrıca, kombinasyonel uygulamada, biyofilm oluşumu azalma gösterdi. Nisin, kloramfenikol ve kombinasyon uygulamalarında agrA geninin ekspresyon seviyesinin kontrole göre azaldığı gösterilmiştir. Diğer genlerin ekspresyon seviyeleri ise kontrole göre artış göstermiştir. Sonuçlarımız, nisin ve kloramfenikol kombinasyonlarının aktivitelerinin sinerjistik ve antibiyofilm aktiviteye sahip olduğunu göstermiştir. Bu çalışma, eski antibiyotiklerin kombinasyonel kullanımının önemine ışık tutmaktadır.

References

  • Cascioferro, S., Carbone, D., Parrino, B., Pecoraro, C., Giovannetti, E., Cirrincione, G., & Diana, P. (2021). Therapeutic Strategies to Counteract Antibiotic Resistance in MRSA Biofilm‐Associated Infections. Chemmedchem, 16(1), 65-80.
  • Kakoullis, L., Papachristodoulou, E., Chra, P., & Panos, G. (2021). Mechanisms of Antibiotic Resistance In Important Gram-Positive And Gram-Negative Pathogens And Novel Antibiotic Solutions. Antibiotics, 10(4), 415.
  • Seethalakshmi, P. S., Rajeev, R., Kiran, G. S., & Selvin, J. (2020). Promising Treatment Strategies To Combat Staphylococcus Aureus Biofilm Infections: An Updated Review. Biofouling, 36(10), 1159-1181.
  • Worthington, R. J., & Melander, C. (2013). Combination Approaches To Combat Multidrug-Resistant Bacteria. Trends In Biotechnology, 31(3), 177-184.
  • Angst, D. C., Tepekule, B., Sun, L., Bogos, B., & Bonhoeffer, S. (2021). Comparing Treatment Strategies To Reduce Antibiotic Resistance In An In Vitro Epidemiological Setting. Proceedings of the National Academy of Sciences, 118(13), E2023467118.
  • Annunziato, G. (2019). Strategies To Overcome Antimicrobial Resistance (AMR) Making Use Of Non-Essential Target Inhibitors: A Review. International Journal Of Molecular Sciences, 20(23), 5844.
  • De Freire Bastos, M. D. C., & Ceotto, H. (2011). Bacterial Antimicrobial Peptides and Food Preservation. Natural Antimicrobials In Food Safety And Quality, 62.
  • Chung, K. T., Dickson, J. S., & Crouse, J. D. (1989). Effects Of Nisin On Growth Of Bacteria Attached To Meat. Applied and Environmental Microbiology, 55(6), 1329-1333.
  • Punyauppa-Path, S., Phumkhachorn, P., & Rattanachaikunsopon, P. (2015). Nisin: Production And Mechanism Of Antimicrobial Action. International Journal Of Current Research And Review, 7(2), 47.
  • Tevyashova, A. N. (2021). Recent Trends In Synthesis Of Chloramphenicol New Derivatives. Antibiotics, 10(4), 370.
  • Schlünzen, F., Zarivach, R., Harms, J., Bashan, A., Tocilj, A., Albrecht, R., ... & Franceschi, F. (2001). Structural Basis For The Interaction Of Antibiotics With The Peptidyl Transferase Centre In Eubacteria. Nature, 413(6858), 814-821.
  • Andrews, J. M. (2001). Determination Of Minimum Inhibitory Concentrations. Journal Of Antimicrobial Chemotherapy, 48(Suppl_1), 5-16.
  • Yazici, A., Örtücü, S., & Taşkin, M. (2021). Screening And Characterization Of A Novel Antibiofilm Polypeptide Derived From Filamentous Fungi. Journal Of Proteomics, 233, 104075.
  • Nagarajan, D., Roy, N., Kulkarni, O., Nanajkar, N., Datey, A., Ravichandran, S., & Chandra, N. (2019). Ω76: A Designed Antimicrobial Peptide to Combat Carbapenem-And Tigecycline-Resistant Acinetobacter Baumannii. Science Advances, 5(7), Eaax1946.
  • Merritt, J. H., Kadouri, D. E., & O’Toole, G. A. (2005). Growing And Analyzing Static Biofilms. Curr. 852 Protoc. Microbiol. Chapter 1. Unit 1B, 1, 853.
  • Hodille, E., Rose, W., Diep, B. A., Goutelle, S., Lina, G., & Dumitrescu, O. (2017). The Role of Antibiotics In Modulating Virulence In Staphylococcus Aureus. Clinical Microbiology Reviews, 30(4), 887-917.
  • Abbas, H. A., Elsherbini, A. M., & Shaldam, M. A. (2019). Glyceryl Trinitrate Blocks Staphyloxanthin and Biofilm Formation In Staphylococcus Aureus. African Health Sciences, 19(1), 1376-1384.
  • Chen, Q., Xie, S., Lou, X., Cheng, S., Liu, X., Zheng, W., ... & Wang, H. (2020). Biofilm Formation and Prevalence Of Adhesion Genes Among Staphylococcus Aureus Isolates From Different Food Sources. Microbiologyopen, 9(1), E00946.
  • Tong, Z., Ni, L., & Ling, J. (2014). Antibacterial Peptide Nisin: A Potential Role In The Inhibition Of Oral Pathogenic Bacteria. Peptides, 60, 32-40.
  • Dinos, G. P., Athanassopoulos, C. M., Missiri, D. A., Giannopoulou, P. C., Vlachogiannis, I. A., Papadopoulos, G. E., ... & Kalpaxis, D. L. (2016). Chloramphenicol Derivatives As Antibacterial And Anticancer Agents: Historic Problems And Current Solutions. Antibiotics, 5(2), 20.
  • Meletiadis, J., Pournaras, S., Roilides, E., & Walsh, T. J. (2010). Defining Fractional Inhibitory Concentration Index Cutoffs For Additive Interactions Based On Self-Drug Additive Combinations, Monte Carlo Simulation Analysis, And In Vitro-In Vivo Correlation Data For Antifungal Drug Combinations Against Aspergillus Fumigatus. Antimicrobial Agents And Chemotherapy, 54(2), 602-609.
  • Brumfitt, W., Salton, M. R., & Hamilton-Miller, J. M. (2002). Nisin, Alone And Combined With Peptidoglycan-Modulating Antibiotics: Activity Against Methicillin-Resistant Staphylococcus Aureus And Vancomycin-Resistant Enterococci. Journal Of Antimicrobial Chemotherapy, 50(5), 731-734.
  • Tong, Z., Zhang, Y., Ling, J., Ma, J., Huang, L., & Zhang, L. (2014). An In Vitro Study On The Effects Of Nisin On The Antibacterial Activities Of 18 Antibiotics Against Enterococcus Faecalis. Plos One, 9(2), E89209.
  • Lister, J. L., & Horswill, A. R. (2014). Staphylococcus Aureus Biofilms: Recent Developments In Biofilm Dispersal. Frontiers In Cellular And Infection Microbiology, 4, 178.
  • Moormeier, D. E., & Bayles, K. W. (2017). Staphylococcus Aureus Biofilm: A Complex Developmental Organism. Molecular Microbiology, 104(3), 365-376.
  • Jenul, C., & Horswill, A. R. (2019). Regulation Of Staphylococcus Aureus Virulence. Microbiology Spectrum, 7(2), 7-2.
  • Painter, K. L., Krishna, A., Wigneshweraraj, S., & Edwards, A. M. (2014). What Role Does The Quorum-Sensing Accessory Gene Regulator System Play During Staphylococcus Aureus Bacteremia?. Trends In Microbiology, 22(12), 676-685.
  • Singh, R., & Ray, P. (2014). Quorum Sensing-Mediated Regulation Of Staphylococcal Virulence And Antibiotic Resistance. Future Microbiology, 9(5), 669-681.
  • Cheung, G. Y., Wang, R., Khan, B. A., Sturdevant, D. E., & Otto, M. (2011). Role Of The Accessory Gene Regulator Agr In Community-Associated Methicillin-Resistant Staphylococcus Aureus Pathogenesis. Infection And Immunity, 79(5), 1927-1935.
  • Cheung, A. L., Schmidt, K., Bateman, B., & Manna, A. C. (2001). Sars, A Sara Homolog Repressible By Agr, Is An Activator Of Protein A Synthesis In Staphylococcus Aureus. Infection And Immunity, 69(4), 2448-2455.
  • O'Gara, J. P. (2007). Ica And Beyond: Biofilm Mechanisms And Regulation In Staphylococcus Epidermidis And Staphylococcus Aureus. FEMS Microbiology Letters, 270(2), 179-188.
  • Rachid, S., Ohlsen, K., Witte, W., Hacker, J., & Ziebuhr, W. (2000). Effect Of Subinhibitory Antibiotic Concentrations On Polysaccharide Intercellular Adhesin Expression In Biofilm-Forming Staphylococcus Epidermidis. Antimicrobial Agents And Chemotherapy, 44(12), 3357-3363.
There are 32 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Umut Çağrı Koçak This is me 0000-0003-3754-9753

Elif Arslan 0000-0001-7310-241X

Şeymanur Çobanoğlu 0000-0002-2805-0523

Muhammed Kürşad Coşkun This is me 0000-0002-7551-9523

Ayşenur Yazıcı 0000-0002-3369-6791

Serkan Örtucu 0000-0002-3180-0444

Publication Date December 31, 2022
Submission Date January 16, 2022
Acceptance Date November 21, 2022
Published in Issue Year 2022 Volume: 9 Issue: 2

Cite

APA Koçak, U. Ç., Arslan, E., Çobanoğlu, Ş., Coşkun, M. K., et al. (2022). The Effect of Nisin and Chloramphenicol Combinationon Staphylococcus aureus ATCC 6538 Biofilm Structure. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 9(2), 713-720. https://doi.org/10.35193/bseufbd.1058558