Research Article
BibTex RIS Cite

Elektrokimyasal İnceleme ve DFT Yaklaşımı: 2-izopropil-4-metil-1,3-tiyazol-5-karboksilik asidin Yumuşak Çeliğin Korozyonuna Karşı İnhibisyon Etkisi

Year 2022, Volume: 5 Issue: 1, 1 - 12, 30.06.2022
https://doi.org/10.55198/artibilimfen.1115419

Abstract

Bu çalışmada, 2-izopropil-4-metil-1,3-tiyazol-5-karboksilik asidin (2I4MTA5C) asidik ortamda yumuşak çelik korozyonuna karşı inhibitör özellikleri elektrokimyasal ve kuantum teorik yöntemlerle araştırılmıştır. 168 saatlik daldırma sırasında 0,5 M HCl içinde 5 mM 2I4MTA5C varlığında ve yokluğunda elektrokimyasal empedans spektroskopi ölçümleri ve polarizasyon eğrileri elde edildi ve adsorpsiyon izotermi sunuldu. Moleküler yapı ile elektrokimyasal davranış arasında bir ilişki kurmak ve derinlemesine araştırmak için deneysel sonuçlar kuantum teorik parametrelerle karşılaştırıldı. 168 saatlik daldırma süresi için elde edilen sonuçlara göre, MS için direnç değerleri 5 mM 2I4MTA5C yokluğunda 9.8 ve mevcudiyetinde 200 ohm.cm-2 idi. HCl ve 5 mM 2I4MTA5C + HCl solüsyonunda MS için hesaplanan korozyon akımı yoğunluğu değerleri sırasıyla 2.65 ve 0.13 mA.cm-2 idi. Teorik olarak hesaplanan HOMO ve LUMO değerleri -6.88 eV ve -1.80 eV idi. Elde edilen sonuçlara göre 2I4MTA5C'nin yumuşak çelik korozyonuna karşı %95,1 koruma ile uygun bir inhibitör adayı olduğunu söyleyebiliriz

References

  • Salcı A., Yüksel H., and Solmaz R., (2022). Experimental studies on the corrosion inhibition performance of 2-(2-aminophneyl)benzimidazole for mild steel protection in 1 M HCl solution, Journal of the Taiwan Institute of Chemical Engineers, 134. https://doi.org/10.1016/j.jtice.2022.104349.
  • Nayak P., Kumari P P., and Rao S. A., (2022). Electrochemical approach to interfacial adsorption and inhibitory performance of (2E)-2- [(IH-Imidazole 2yl) methylidene] Hydrazine1-carbothioamide for corrosion mitigation, Chemical Data Collections, 38. https://doi.org/10.1016/j.cdc.2021.100826.
  • Alamry K. A., Aslam R., Khan A., Hussein M. A., and Tashkandi N. Y., (2022). Evaluation of corrosion inhibition performance of thiazolidine-2,4-diones and its amino derivative: Gravimetric, electrochemical, spectroscopic, and surface morphological studies, Process Saf Environ Prot, 159, 178-197. https://doi.org/10.1016/j.psep.2021.12.061.
  • Ongun Yüce A., Doğru Mert B., Kardaş G., and Yazıcı B., (2014). Electrochemical and quantum chemical studies of 2-amino-4-methyl-thiazole as corrosion inhibitor for mild steel in HCl solution, Corros Sci, 83, 310-316. https://doi.org/10.1016/j.corsci.2014.02.029.
  • Abd El-Lateef H. M., Sayed A. R., and Shalabi K., (2022). Studying the effect of two isomer forms thiazole and thiadiazine on the inhibition of acidic chloride-induced steel corrosion: Empirical and Computer simulation explorations, Journal of Molecular Liquids, 356. https://doi.org/10.1016/j.molliq.2022.119044.
  • Hou Y., Zhu L., He K., Yang Z., Ma S., and Lei J., (2022). Synthesis of three imidazole derivatives and corrosion inhibition performance for copper, Journal of Molecular Liquids, 348. https://doi.org/10.1016/j.molliq.2021.118432.
  • Gong W., Xu B., Yin X., Liu Y., Chen Y., and Yang W., (2019). Halogen-substituted thiazole derivatives as corrosion inhibitors for mild steel in 0.5 M sulfuric acid at high temperature, Journal of the Taiwan Institute of Chemical Engineers, 97, 466-479. https://doi.org/10.1016/j.jtice.2019.02.018.
  • Farahati R., Ghaffarinejad A., Mousavi-Khoshdel S. M., Rezania J., Behzadi H., and Shockravi A., (2019). Synthesis and potential applications of some thiazoles as corrosion inhibitor of copper in 1 M HCl: Experimental and theoretical studies, Progress in Organic Coatings, 132, 417-428. https://doi.org/10.1016/j.porgcoat.2019.04.005.
  • Abd El-Fattah M., Abd El-Wahab H., Bashandy M. S., El-Eisawy R. A., Abd El-hai F., and Saeed M., (2017). Potential application of some coumarin derivatives incorporated thiazole ring as ecofriendly antimicrobial, flame retardant and corrosion inhibitor additives for polyurethane coating, Progress in Organic Coatings, 111, 57-66. https://doi.org/10.1016/j.porgcoat.2017.05.005.
  • Zhang J. et al., (2021). Combining experiment and theory researches to insight into anti-corrosion nature of a novel thiazole derivatives, Journal of the Taiwan Institute of Chemical Engineers, 122, 190-200. https://doi.org/10.1016/j.jtice.2021.04.035.
  • Oubaaqa M. et al., (2021). Insight into the corrosion inhibition of new amino-acids as efficient inhibitors for mild steel in HCl solution: Experimental studies and theoretical calculations, Journal of Molecular Liquids, 334. https://doi.org/10.1016/j.molliq.2021.116520.
  • Manivel A., Ramkumar S., Wu J. J., Asiri A. M., and Anandan S., (2014). Exploration of (S)-4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine as feasible corrosion inhibitor for mild steel in acidic media, Journal of Environmental Chemical Engineering, 2, 463-470. https://doi.org/10.1016/j.jece.2014.01.018.
  • Gong W., Yin X., Liu Y., Chen Y., and Yang W., (2019). 2-Amino-4-(4-methoxyphenyl)-thiazole as a novel corrosion inhibitor for mild steel in acidic medium, Progress in Organic Coatings, 126, 150-161. https://doi.org/10.1016/j.porgcoat.2018.10.001.
  • El aoufir Y. et al., (2020). Evaluation of inhibitive and adsorption behavior of thiazole-4-carboxylates on mild steel corrosion in HCl, Colloids Surf Physicochem Eng Aspects, 606. https://doi.org/10.1016/j.colsurfa.2020.125351.
  • Chaitra T. K., Mohana K. N., Gurudatt D. M., and Tandon H. C., (2016). Inhibition activity of new thiazole hydrazones towards mild steel corrosion in acid media by thermodynamic, electrochemical and quantum chemical methods, Journal of the Taiwan Institute of Chemical Engineers, 67, 521-531. https://doi.org/10.1016/j.jtice.2016.08.013.
  • Basik M. and Mobin M., (2020). Chondroitin sulfate as potent green corrosion inhibitor for mild steel in 1 M HCl, Journal of Molecular Structure, 1214. https://doi.org/10.1016/j.molstruc.2020.128231.
  • Fattah-alhosseini A. and Noori M., (2016). Corrosion inhibition of SAE 1018 carbon steel in H2S and HCl solutions by lemon verbena leaves extract, Measurement, 94, 787-793. https://doi.org/10.1016/j.measurement.2016.09.029.
  • Deyab M. A., (2016). Inhibition activity of Seaweed extract for mild carbon steel corrosion in saline formation water, Desalination, 384, 60-67. https://doi.org/10.1016/j.desal.2016.02.001.
  • Pal S., Ji G., Lgaz H., Chung I.-M., and Prakash R., (2020). Lemon seeds as green coating material for mitigation of mild steel corrosion in acid media: Molecular dynamics simulations, quantum chemical calculations and electrochemical studies, Journal of Molecular Liquids, 316. https://doi.org/10.1016/j.molliq.2020.113797.
  • Chaubey N., Singh V. K., and Quraishi M. A., (2018). Papaya peel extract as potential corrosion inhibitor for Aluminium alloy in 1 M HCl: Electrochemical and quantum chemical study, Ain Shams Engineering Journal, 9, 1131-1140. https://doi.org/10.1016/j.asej.2016.04.010.
  • Rodrigues F. A. d. S., Gonçalves Y. M. H., Horta B. A. C., Santos I. d. S., Silva B. V., and D'Elia E., (2021). Experimental and theoretical studies of isonitrosoacetanilides derivatives as corrosion inhibitors for mild steel in 1 mol L−1 HCl, Journal of Molecular Structure, 1245. https://doi.org/10.1016/j.molstruc.2021.131256.
  • Wen J., Zhang X., Chen J., Liu T., Zhou Y., and Li L., (2022). Synthesis of 1, 4, 7-triazaheptane derivative and its corrosion inhibition for mild steel in the hydrochloric medium, J. Ind. Eng. Chem, 107, 333-345. https://doi.org/10.1016/j.jiec.2021.12.002.
  • Bhawsar J., Jain P. K., and Jain P., (2015). Experimental and computational studies of Nicotiana tabacum leaves extract as green corrosion inhibitor for mild steel in acidic medium, Alexandria Engineering Journal, 54, 769-775. https://doi.org/10.1016/j.aej.2015.03.022.
  • Zakaria F. A., Hamidon T. S., and Hussin M. H., (2022). Applicability of winged bean extracts as organic corrosion inhibitors for reinforced steel in 0.5 M HCl electrolyte, J Indian Chem Soc, 99, 100329. https://doi.org/10.1016/j.jics.2021.100329.
  • Zaher A. et al., (2022). A combined computational & electrochemical exploration of the Ammi visnaga L. extract as a green corrosion inhibitor for carbon steel in HCl solution, Arab. J. Chem., 15, 103573. https://doi.org/10.1016/j.arabjc.2021.103573.
  • El Ibrahimi B., Baddouh A., Oukhrib R., El Issami S., Hafidi Z., and Bazzi L., (2021). Electrochemical and in silico investigations into the corrosion inhibition of cyclic amino acids on tin metal in the saline environment, Surfaces and Interfaces, 23. https://doi.org/10.1016/j.surfin.2021.100966.
  • Arrousse N. et al., (2020). The inhibition behavior of two pyrimidine-pyrazole derivatives against corrosion in hydrochloric solution: Experimental, surface analysis and in silico approach studies, Arabian Journal of Chemistry, 13, 5949-5965. https://doi.org/10.1016/j.arabjc.2020.04.030.
  • Lgaz H. et al., (2020). Assessing corrosion inhibition characteristics of hydrazone derivatives on mild steel in HCl: Insights from electronic-scale DFT and atomic-scale molecular dynamics, Journal of Molecular Liquids, 308. https://doi.org/10.1016/j.molliq.2020.112998.

Electrochemical Investigation and DFT Approach: The Inhibition Effect of 2-isopropyl-4-methyl-1,3-thiazole-5-carboxylic acid Against Mild Steel Corrosion

Year 2022, Volume: 5 Issue: 1, 1 - 12, 30.06.2022
https://doi.org/10.55198/artibilimfen.1115419

Abstract

In this study, the inhibitory properties of 2-isopropyl-4-methyl-1,3-thiazole-5-carboxylic acid (2I4MTA5C) against mild steel corrosion in acidic medium were investigated by electrochemical and quantum theoretical methods. Electrochemical impedance spectroscopy measurements and polarization curves were obtained in the presence and absence of 5 mM 2I4MTA5C in 0.5 M HCl during 168 hours of immersion, and the adsorption isotherm is presented. Experimental results were compared with quantum theoretical parameters in order to establish a relationship between molecular structure and electrochemical behavior and to investigate it in depth. According to the results obtained for the 168 hour immersion time, the resistance values for MS were 9.8 in the absence of 5 mM 2I4MTA5C and 200 ohm.cm-2 in the presence. The calculated corrosion current density values were 2.65 and 0.13 mA.cm-2 for MS in HCl and 5 mM 2I4MTA5C + HCl solution, respectively. The theoretically calculated HOMO and LUMO values were -6.88 eV and -1.80 eV. According to the results obtained, we can say that 2I4MTA5C is a suitable inhibitor candidate with 95.1% protection against mild steel corrosion.

References

  • Salcı A., Yüksel H., and Solmaz R., (2022). Experimental studies on the corrosion inhibition performance of 2-(2-aminophneyl)benzimidazole for mild steel protection in 1 M HCl solution, Journal of the Taiwan Institute of Chemical Engineers, 134. https://doi.org/10.1016/j.jtice.2022.104349.
  • Nayak P., Kumari P P., and Rao S. A., (2022). Electrochemical approach to interfacial adsorption and inhibitory performance of (2E)-2- [(IH-Imidazole 2yl) methylidene] Hydrazine1-carbothioamide for corrosion mitigation, Chemical Data Collections, 38. https://doi.org/10.1016/j.cdc.2021.100826.
  • Alamry K. A., Aslam R., Khan A., Hussein M. A., and Tashkandi N. Y., (2022). Evaluation of corrosion inhibition performance of thiazolidine-2,4-diones and its amino derivative: Gravimetric, electrochemical, spectroscopic, and surface morphological studies, Process Saf Environ Prot, 159, 178-197. https://doi.org/10.1016/j.psep.2021.12.061.
  • Ongun Yüce A., Doğru Mert B., Kardaş G., and Yazıcı B., (2014). Electrochemical and quantum chemical studies of 2-amino-4-methyl-thiazole as corrosion inhibitor for mild steel in HCl solution, Corros Sci, 83, 310-316. https://doi.org/10.1016/j.corsci.2014.02.029.
  • Abd El-Lateef H. M., Sayed A. R., and Shalabi K., (2022). Studying the effect of two isomer forms thiazole and thiadiazine on the inhibition of acidic chloride-induced steel corrosion: Empirical and Computer simulation explorations, Journal of Molecular Liquids, 356. https://doi.org/10.1016/j.molliq.2022.119044.
  • Hou Y., Zhu L., He K., Yang Z., Ma S., and Lei J., (2022). Synthesis of three imidazole derivatives and corrosion inhibition performance for copper, Journal of Molecular Liquids, 348. https://doi.org/10.1016/j.molliq.2021.118432.
  • Gong W., Xu B., Yin X., Liu Y., Chen Y., and Yang W., (2019). Halogen-substituted thiazole derivatives as corrosion inhibitors for mild steel in 0.5 M sulfuric acid at high temperature, Journal of the Taiwan Institute of Chemical Engineers, 97, 466-479. https://doi.org/10.1016/j.jtice.2019.02.018.
  • Farahati R., Ghaffarinejad A., Mousavi-Khoshdel S. M., Rezania J., Behzadi H., and Shockravi A., (2019). Synthesis and potential applications of some thiazoles as corrosion inhibitor of copper in 1 M HCl: Experimental and theoretical studies, Progress in Organic Coatings, 132, 417-428. https://doi.org/10.1016/j.porgcoat.2019.04.005.
  • Abd El-Fattah M., Abd El-Wahab H., Bashandy M. S., El-Eisawy R. A., Abd El-hai F., and Saeed M., (2017). Potential application of some coumarin derivatives incorporated thiazole ring as ecofriendly antimicrobial, flame retardant and corrosion inhibitor additives for polyurethane coating, Progress in Organic Coatings, 111, 57-66. https://doi.org/10.1016/j.porgcoat.2017.05.005.
  • Zhang J. et al., (2021). Combining experiment and theory researches to insight into anti-corrosion nature of a novel thiazole derivatives, Journal of the Taiwan Institute of Chemical Engineers, 122, 190-200. https://doi.org/10.1016/j.jtice.2021.04.035.
  • Oubaaqa M. et al., (2021). Insight into the corrosion inhibition of new amino-acids as efficient inhibitors for mild steel in HCl solution: Experimental studies and theoretical calculations, Journal of Molecular Liquids, 334. https://doi.org/10.1016/j.molliq.2021.116520.
  • Manivel A., Ramkumar S., Wu J. J., Asiri A. M., and Anandan S., (2014). Exploration of (S)-4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine as feasible corrosion inhibitor for mild steel in acidic media, Journal of Environmental Chemical Engineering, 2, 463-470. https://doi.org/10.1016/j.jece.2014.01.018.
  • Gong W., Yin X., Liu Y., Chen Y., and Yang W., (2019). 2-Amino-4-(4-methoxyphenyl)-thiazole as a novel corrosion inhibitor for mild steel in acidic medium, Progress in Organic Coatings, 126, 150-161. https://doi.org/10.1016/j.porgcoat.2018.10.001.
  • El aoufir Y. et al., (2020). Evaluation of inhibitive and adsorption behavior of thiazole-4-carboxylates on mild steel corrosion in HCl, Colloids Surf Physicochem Eng Aspects, 606. https://doi.org/10.1016/j.colsurfa.2020.125351.
  • Chaitra T. K., Mohana K. N., Gurudatt D. M., and Tandon H. C., (2016). Inhibition activity of new thiazole hydrazones towards mild steel corrosion in acid media by thermodynamic, electrochemical and quantum chemical methods, Journal of the Taiwan Institute of Chemical Engineers, 67, 521-531. https://doi.org/10.1016/j.jtice.2016.08.013.
  • Basik M. and Mobin M., (2020). Chondroitin sulfate as potent green corrosion inhibitor for mild steel in 1 M HCl, Journal of Molecular Structure, 1214. https://doi.org/10.1016/j.molstruc.2020.128231.
  • Fattah-alhosseini A. and Noori M., (2016). Corrosion inhibition of SAE 1018 carbon steel in H2S and HCl solutions by lemon verbena leaves extract, Measurement, 94, 787-793. https://doi.org/10.1016/j.measurement.2016.09.029.
  • Deyab M. A., (2016). Inhibition activity of Seaweed extract for mild carbon steel corrosion in saline formation water, Desalination, 384, 60-67. https://doi.org/10.1016/j.desal.2016.02.001.
  • Pal S., Ji G., Lgaz H., Chung I.-M., and Prakash R., (2020). Lemon seeds as green coating material for mitigation of mild steel corrosion in acid media: Molecular dynamics simulations, quantum chemical calculations and electrochemical studies, Journal of Molecular Liquids, 316. https://doi.org/10.1016/j.molliq.2020.113797.
  • Chaubey N., Singh V. K., and Quraishi M. A., (2018). Papaya peel extract as potential corrosion inhibitor for Aluminium alloy in 1 M HCl: Electrochemical and quantum chemical study, Ain Shams Engineering Journal, 9, 1131-1140. https://doi.org/10.1016/j.asej.2016.04.010.
  • Rodrigues F. A. d. S., Gonçalves Y. M. H., Horta B. A. C., Santos I. d. S., Silva B. V., and D'Elia E., (2021). Experimental and theoretical studies of isonitrosoacetanilides derivatives as corrosion inhibitors for mild steel in 1 mol L−1 HCl, Journal of Molecular Structure, 1245. https://doi.org/10.1016/j.molstruc.2021.131256.
  • Wen J., Zhang X., Chen J., Liu T., Zhou Y., and Li L., (2022). Synthesis of 1, 4, 7-triazaheptane derivative and its corrosion inhibition for mild steel in the hydrochloric medium, J. Ind. Eng. Chem, 107, 333-345. https://doi.org/10.1016/j.jiec.2021.12.002.
  • Bhawsar J., Jain P. K., and Jain P., (2015). Experimental and computational studies of Nicotiana tabacum leaves extract as green corrosion inhibitor for mild steel in acidic medium, Alexandria Engineering Journal, 54, 769-775. https://doi.org/10.1016/j.aej.2015.03.022.
  • Zakaria F. A., Hamidon T. S., and Hussin M. H., (2022). Applicability of winged bean extracts as organic corrosion inhibitors for reinforced steel in 0.5 M HCl electrolyte, J Indian Chem Soc, 99, 100329. https://doi.org/10.1016/j.jics.2021.100329.
  • Zaher A. et al., (2022). A combined computational & electrochemical exploration of the Ammi visnaga L. extract as a green corrosion inhibitor for carbon steel in HCl solution, Arab. J. Chem., 15, 103573. https://doi.org/10.1016/j.arabjc.2021.103573.
  • El Ibrahimi B., Baddouh A., Oukhrib R., El Issami S., Hafidi Z., and Bazzi L., (2021). Electrochemical and in silico investigations into the corrosion inhibition of cyclic amino acids on tin metal in the saline environment, Surfaces and Interfaces, 23. https://doi.org/10.1016/j.surfin.2021.100966.
  • Arrousse N. et al., (2020). The inhibition behavior of two pyrimidine-pyrazole derivatives against corrosion in hydrochloric solution: Experimental, surface analysis and in silico approach studies, Arabian Journal of Chemistry, 13, 5949-5965. https://doi.org/10.1016/j.arabjc.2020.04.030.
  • Lgaz H. et al., (2020). Assessing corrosion inhibition characteristics of hydrazone derivatives on mild steel in HCl: Insights from electronic-scale DFT and atomic-scale molecular dynamics, Journal of Molecular Liquids, 308. https://doi.org/10.1016/j.molliq.2020.112998.
There are 28 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Mehmet Erman Mert 0000-0002-0114-8707

Başak Doğru Mert 0000-0002-2270-9032

Tolga Karazehir 0000-0002-2795-3675

Publication Date June 30, 2022
Published in Issue Year 2022 Volume: 5 Issue: 1

Cite

APA Mert, M. E., Doğru Mert, B., & Karazehir, T. (2022). Electrochemical Investigation and DFT Approach: The Inhibition Effect of 2-isopropyl-4-methyl-1,3-thiazole-5-carboxylic acid Against Mild Steel Corrosion. Artıbilim: Adana Alparslan Türkeş Bilim Ve Teknoloji Üniversitesi Fen Bilimleri Dergisi, 5(1), 1-12. https://doi.org/10.55198/artibilimfen.1115419
AMA Mert ME, Doğru Mert B, Karazehir T. Electrochemical Investigation and DFT Approach: The Inhibition Effect of 2-isopropyl-4-methyl-1,3-thiazole-5-carboxylic acid Against Mild Steel Corrosion. Artıbilim: Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi. June 2022;5(1):1-12. doi:10.55198/artibilimfen.1115419
Chicago Mert, Mehmet Erman, Başak Doğru Mert, and Tolga Karazehir. “Electrochemical Investigation and DFT Approach: The Inhibition Effect of 2-Isopropyl-4-Methyl-1,3-Thiazole-5-Carboxylic Acid Against Mild Steel Corrosion”. Artıbilim: Adana Alparslan Türkeş Bilim Ve Teknoloji Üniversitesi Fen Bilimleri Dergisi 5, no. 1 (June 2022): 1-12. https://doi.org/10.55198/artibilimfen.1115419.
EndNote Mert ME, Doğru Mert B, Karazehir T (June 1, 2022) Electrochemical Investigation and DFT Approach: The Inhibition Effect of 2-isopropyl-4-methyl-1,3-thiazole-5-carboxylic acid Against Mild Steel Corrosion. Artıbilim: Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi 5 1 1–12.
IEEE M. E. Mert, B. Doğru Mert, and T. Karazehir, “Electrochemical Investigation and DFT Approach: The Inhibition Effect of 2-isopropyl-4-methyl-1,3-thiazole-5-carboxylic acid Against Mild Steel Corrosion”, Artıbilim: Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi, vol. 5, no. 1, pp. 1–12, 2022, doi: 10.55198/artibilimfen.1115419.
ISNAD Mert, Mehmet Erman et al. “Electrochemical Investigation and DFT Approach: The Inhibition Effect of 2-Isopropyl-4-Methyl-1,3-Thiazole-5-Carboxylic Acid Against Mild Steel Corrosion”. Artıbilim: Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi 5/1 (June 2022), 1-12. https://doi.org/10.55198/artibilimfen.1115419.
JAMA Mert ME, Doğru Mert B, Karazehir T. Electrochemical Investigation and DFT Approach: The Inhibition Effect of 2-isopropyl-4-methyl-1,3-thiazole-5-carboxylic acid Against Mild Steel Corrosion. Artıbilim: Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi. 2022;5:1–12.
MLA Mert, Mehmet Erman et al. “Electrochemical Investigation and DFT Approach: The Inhibition Effect of 2-Isopropyl-4-Methyl-1,3-Thiazole-5-Carboxylic Acid Against Mild Steel Corrosion”. Artıbilim: Adana Alparslan Türkeş Bilim Ve Teknoloji Üniversitesi Fen Bilimleri Dergisi, vol. 5, no. 1, 2022, pp. 1-12, doi:10.55198/artibilimfen.1115419.
Vancouver Mert ME, Doğru Mert B, Karazehir T. Electrochemical Investigation and DFT Approach: The Inhibition Effect of 2-isopropyl-4-methyl-1,3-thiazole-5-carboxylic acid Against Mild Steel Corrosion. Artıbilim: Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi. 2022;5(1):1-12.