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Abstract: In this study, activated carbon from pistachio shell has been successfully produced through 

carbonization and CO2 activation. The pistachio shell has been carbonized at 300, 400, 500, 600, 700, 800, 
900, and 1000 oC temperature, and 100 and 500 mL / min inert nitrogen atmosphere. Char, liquid and gas 
yields have been investigated during the carbonization process. In the carbonization, generally the solid 
yield decreases as the temperature increases, while the gas efficiency increases. The increase in liquid yield 
was lower than the gas yield. Carbonized samples were subjected to physical activation with carbon dioxide 
at a flow rate of 100 mL / min at 800 oC and 900 oC. As a result of carbon dioxide activation, BET surface 
area values were obtained in the range of 16.66-857.13 m2 / g. The highest surface area was obtained as 

857.13 m2 / g. at 600 oC carbonization temperature, 100 mL / min nitrogen flow rate and 800 oC activation 
temperature 100 mL / min carbon dioxide flow rate. The mean pore diameter values of the activated carbon 
samples were measured in the range of 2.07-4.06 nm. The average pore size distribution of some of the 
samples is in a relatively narrow range and is mostly of molecular sieve size in nano pore size. According 

to the XRD results, all samples were found to be amorphous. 
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INTRODUCTION 
 

Increasing industrialization brings the population 
to cities and as a result, it brings water and air 
pollution to a great extent. Due to the increase in 
the consumption of metropolises, the diversity of 
pollutants is greatly increasing. As a result of this 
increase, especially the contamination 

concentrations of the aqueous media are large. 

Pollution is in domestic and industrial wastewater, 
thrown into the environment by mixing with rain 
and snow water from the soil. Therefore, the 
treatment of water in the treatment plants alone 
cannot solve the pollution problem. The 
concentration of pollutants, especially drugs used 
for humans and animals, increases rapidly. Apart 

from this, in order to meet the increasing food 
needs of people, the use of pesticides as a result 
of agriculture is also an important pollution. The 
chemicals that are mixed in the soil, pollute the 
ground water from here and the underground 
waters reach the lakes and seas by the streams. 

The pesticide and herbicides used are halogen-

derived and the capacity to form a large number 
of new compounds in the natural environment 

increases the pollution (1). 
 
In addition to this pollution, air pollution, which is 
another problem of the increasing world 
population, is also important for years. In 
particular, the growth of cities and the 

advancement of industry have significantly 

increased air pollution. This pollution affects 
human life and affects many life forms and makes 
the world uninhabitable. At this point, air pollution 
should be considered besides water pollution (1, 
2).    
 
Adsorption is an important process widely used in 

both water and air pollution removal. Thanks to 
this process, the polluted water has been cleaned 
and re-used for many years, even the existing 
swamps and the water communities that cannot 
be used are reintroduced as drinking water. 
Activated carbon has an important role in the 

adsorbents used for this purpose. Activated 
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carbon is the most widely used in adsorbents due 

to its micro and meso pore structure with high 

surface area (1, 2). Activated carbon is generally 
derived from coal and biomass and in recent 
years it has been started to be obtained from 
waste polymers. The variety and amount of 
biomass has become important in the production 

of activated carbon. The need for annual global 
activated carbon needs of 3 million tons and a 7% 
growth each year led to the increase in raw 
material diversity and even the use of all carbon 
containing waste for this purpose. As a result, 
both waste materials will be freed and these 
substances will be evaluated and re-used. In 

addition, the synthesis methods developed by 
these sources are gaining importance in 
increasing both surface areas and pore sizes of 
the adsorbents obtained from these sources. 

Agricultural wastes, especially found in our 
country, are very suitable for active carbon 
synthesis (3-11). The reason for this is the high 

amount of agricultural waste used as raw material 
and the carbon content of these wastes is suitable 
for the production of activated carbon (12-14). 
 
Chemical and physical activation methods are 
generally used in the production of activated 

carbon (15, 16). In the physical activation, the 
carbonization process of the raw materials in 
different temperature ranges is found in the 
literature (17-19). The liquid and gas released 
during the process are used directly in the 
production of energy (20). The carbonized 
samples may be subjected to activation at 

different temperatures using steam and / or 

carbon dioxide. Changes in surface area can be 
seen depending on the activation method used 
(21-23).  
 

In this study, biomass pistachio shell was used as 

the raw material. Activation of carbon dioxide was 

carried out after carbonization and activated 
carbon was produced as molecular sieve. In the 
carbonization process, pyrolysis gas yield, 
condensable pyrolysis oil yield and solid (char) 
yield were calculated. The activated carbon yield 

was calculated after activation. Surface area of 
activated carbon, FTIR, XRD, SEM 
characterization was evaluated.  
 
EXPERIMENTAL AND THEORETICAL 
STUDIES 
 

100 kg of pistachio shell was taken without taking 
any action (original moisture weight 4.97 %) and 
it was used in the experiments. Carbonization was 
carried out using a cylindrical furnace with a 

temperature adjustment of three zones. The steel 
reactor has an internal diameter of 8.2 cm and is 
suitable for gas inlet and condensable liquid 

outlet. A liquid fraction was collected which could 
be condensed by attaching two coolers to the 
reactor outlet. Activation was performed in a 
separate three-zone cylindrical furnace in quartz 
glass tube (inner diameter: 4 cm). 
 

Surface area measurements of activated carbon 
samples were made by the Micromeritics TriStar 
3000 surface analyzer. The surface area was 
determined from isotherm using the BET method 
(SBET). Ash determination was made according to 
ASTM D2866-11 standard at 650oC. XRD 
measurements were made in Japanese Rigaku 

RadB-DMAX II (Cu K-alpha) system. 

 
RESULTS AND DISCUSSION 
 
Solid (char), liquid and gas yield results of 
carbonization samples is given in the Table 1. 

 

Table 1: Solid (char), liquid and gas yield results of carbonized samples. 

 
Temperature  

 
N2 Flowrate 

 
    Char Yield % 

 
  Liquid Yield % 

 
   Gas Yield % 

300 °C  100 mL / min 40.89 37.85 21.26 

400 °C  100 mL / min 29.63 43.94 26.43 
500 °C  100 mL / min 25.69 43.11 31.20 
600 °C  100 mL / min 24.05 48.04 27.91 
700 °C 100 mL / min 23.10 39.85 37.05 
800 °C  100 mL / min 23.30 36.90 39.80 
900 °C  100 mL / min 23.67 40.67 35.66 

1000 °C  100 mL / min 23.36 37.89 38.75 

1000 °C  500 mL / min 22.77 36.83 40.40 

 
As the temperature changes, the solid and liquid 
yield was varied. While this change is generally in 
the decrease in solid yield, decreases and 
increases in gas and liquid yield were observed. 

This situation can be explained by the 
deformation of the macromolecular structure with 
the effect of temperature. In addition, at high 

temperature (900 oC and above), the efficiency of 
the liquid decreases while the efficiency of the gas 
increases. Small groups are separated from the 
macromolecular structure at high temperature 

and passed to the gas phase. This reduces the 
liquid yield and increases the gas efficiency (24-
26). 
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Table 2: BET analysis results of samples. 

Carbonization Physical 

Activation 

Temperature 
°C 

N2 

Flowrate 

(mL/min) 

Temperature 
°C 

(100 mL/min 
CO2) 

SBET 

m2/g 
Smicro 

m2/g 
Smeso 

m2/g 
VT 

cm3/g 
Vmicro 

cm3/g 
Vmeso 

cm3/g 
dpa 

nm 

 

300 100 800 394.64 343.44 51.20 0.21 0.18 0.03 2.20 

300 100 900 530.57 439.81 90.76 0.28 0.23 0.05 2.18 

400 100 800 401.71 365.00 36.71 0.21 0.19 0.02 2.15 

500 100 800 759.74 12.76 746.98 0.75 0.04 0.71 4.06 

600 100 800 857.13 788.98 68.14 0.41 0.09 0.32 2.07 

700 100 900 473.93 413.38 60.55 0.24 0.21 0.03 2.04 

800 100 900 518.70 448.55 70.15 0.27 0.23 0.04 2.13 

900 100 800 179.62 179.62 - - 0.15 - - 

1000 500 800 16.66 16.66 - - 0.04 - - 

1000 500 900 295.40 295.40 - - 0.18 - - 

S: Surface area, V: volume dp: average pore diameter a: (4 V/A by BET) 
When the results in Table 2 were examined, the 
total pore volume (VT) was low at the low 
carbonization temperature while the micro pore 
surface area (Smicro) was maximum. The highest 

surface area was obtained for the sample 
synthesized at an activation temperature of 800 
oC and a carbonization temperature of 600 oC. 
The micro pore surface area of the sample covers 
92.04% of the total area. The average pore 
diameter is 2.04 nm and the pore size distribution 

is very narrow. As a result, carbonization and 

subsequent activation of carbon dioxide yielded 
molecular sieve activated carbon with nano-pore. 
DFT (Density Functional Theory) measurements 
of some activated carbons were obtained and as 

a result of these measurements, the presence of 
micropores in the structure was proven. The 
majority of the pore size are between 1-2 
nanometers. The some sample of pore size 
distribution graph is given in Figure 1. Figure 2 
shows the typical adsorption isotherm of N2 

 

Figure 1: Pore size distribution of activated carbon sample A. at 300 °C 100 ml / min N2 carbonization and 
at 800°C with 100 mL / min CO2 activation B. at 600 °C 100 mL / min N2 carbonization and  at 
800 °C with 100 mL / min CO2 activation. C. at 800 °C 100 mL / min N2 carbonization and at 
900 °C with 100 mL / min CO2 activation, D. at 900 °C 100 mL / min N2 carbonization and at 
800 °C with 100 mL / min CO2 activation. 
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Figure 2:  Adsorption isotherms of N2 A. Activated carbon sample at 600 °C 100 mL / min N2 

carbonization and at 800°C with 100 mL / min CO2 activation B. Activated carbon sample at 800 °C 100 
mL / min N2 carbonization and at 900 °C with 100 mL / min CO2 activation. C. Activated carbon sample 

at 300 °C 100 mL / min N2 carbonization and at 800 °C with 100 mL / min CO2 activation. 

 
When the adsorption isotherms were taken into 
consideration, it was determined that the samples 
obtained corresponded to the Type 1 isotherm 
(27-29). The general feature of the Type I 
isotherm is that it contains large amounts of 
micropores in the structure of the adsorbent. At 

low P / Po values, adsorption increased and then 
isotherm were on a flat plateau. As the P / Po 

value increases, the increase in adsorption is 
explained by the regularity of the pore size 
distribution (30-32). 
 

Figure 3 shows the FTIR spectrum of raw material 
and activated carbon samples. FTIR spectra seen 
around 3600 cm-1 seen from the peak cellulosic 
structure belong to O-H groups. As a result of the 
structural arrangement resulting from the heat 

treatment, the hydroxyl groups were greatly 
reduced. The peaks at about 2900 cm-1 indicate 
the aliphatic C-H strength. These peaks are 
increased by the introduction of the raw material 
into the structural arrangement. The increase of 
aliphatic strength peaks with the increase in 

temperature is another proof of structural 
regulation. In addition, multiple peaks at this 

wavelength result from the vibration of the 
methylene groups. Similarly, peaks at this 
wavelength result from the vibration of peaks 
such as -CH3, -CH2CH3 and -CH2. The peaks at 

approximately 1000 cm-1 show that there is a C-
C bond in the structure (33-35). When these 
results were taken into consideration, it was seen 
that the structure was similar to each other. 
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Figure 3: FTIR spectrum of raw material and activated carbon samples. A. Raw Pistachio Shell B. Activated 

carbon sample at 500 °C 100 mL / min N2 carbonization and at 800°C with 100 mL / min CO2 
activation C. Activated carbon sample at 600 °C 100 mL / min N2 carbonization and at 800 °C 
with 100 mL / min CO2 activation D. Activated carbon sample at 1000 °C 500 mL / min N2 

carbonization and at 900 °C with 100 mL / min CO2 activation. 
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               A                                                                              B    

C                                                                             D 
Figure 4: A. SEM image of raw pistachio shell B. Activated carbon sample at 600 °C 100 ml / min N2 

carbonization and at 800 °C with 100 mL / min CO2 activation C Activated carbon sample at 500 
°C 100 mL / min N2 carbonization and at 800 °C with 100 mL / min CO2 activation D. Activated 
carbon sample at 300 °C 100 mL / min N2 carbonization and at 800 °C with 100 mL / min CO2 

activation. 

 

 
2Theta 

Figure 5: XRD chart of samples A. XRD chart of raw pistachio shell B. Activated carbon sample at 400 °C 
100 mL / min N2 carbonization and at 800 °C with 100 mL / min CO2 activation C. Activated 
carbon sample at 500 °C 100 mL / min N2 carbonization and at 800 °C with 100 mL / min CO2 
activation i D. Activated carbon sample at 600 °C 100 mL / min N2 carbonization and at 800 °C 
with 100 mL / min CO2 activation E. Activated carbon sample at 900 °C 100 mL / min N2 

carbonization and at 800 °C with 100 mL / min CO2 activation F. Activated carbon sample at 

1000 °C 500 mL / min N2 carbonization and at 900 °C with 100 mL / min CO2 activation. 
 
In the SEM images shown in Figure 4, no visible 
pores are present in the pistachio shell used as 
raw material. But carbonization and physical 
activation result in the formation of pores. With 

the increase in temperature, it is seen that pores 
appear as a result of the separation of small 

organic groups within the macromolecular 
structure. In the original macromolecular 
structure of pistachio, it is concluded that the 
pores have the same size as the molecular units 
are composed of structures of similar size. The 

homogeneity of the pores shows that the 
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activated carbon is in the form of a molecular 

sieve. 

 
Figure 5 shows the XRD graphs of raw materials 
and activated carbon samples. As can be 
understood from the XRD plot of raw pistachio, 
the structure is largely amorphous. 3 different 

amorphous structures in the structure can be 

expressed as macromolecular groups. Crystalline 

units are separated from the structure with the 

effect of temperature and the structure turns into 
completely amorphous structure. As in the 
original raw sample, three different 
macromolecular main units remain in the 
structure (36, 37).Table 3 shows the ash values 

of samples 
 

Table 3: Ash values of samples. 

Carbonization Physical Activation  

Temperature 
(°C) 

N2 Flow rate (mL/min) 
Temperature (oC) 

 Gas Flow rate 
(100 mL/min CO2) 

Ash % 

                                        Raw pistachio shell 0.380 

300 100 800 0.020 

300 100 900 0.019 

400 100 800 0.017 

500 100 800 0.019 

600 100 800 0.019 

700 100 900 0.018 

800 100 900 0.024 

900 100 800 0.028 

1000 500 800 0.020 

1000 500 900 0.025 

 

When the ash values of the samples are 
examined, the ash value of the raw materials is 
high but the ash values of the synthesized 

materials are lower than the raw materials. It can 
be explained by the fact that the inorganic 
components forming the ash in the structural 
arrangement are inorganic elements degraded at 

high temperature and also they are in organic 
chelate structure. Low temperature ash can be 
explained by the chelate structure. At high 

temperature, the mass increased due to the loss 
of organic structure. The elemental analysis 
results of samples is given in Table 4. 

 
Table 4: Elemental analysis results of samples. 

Samples  %C %H %N %S %O* 

Raw Pistachio Shell 

 

 
47.37 5.896 - - 46.734 

300 °C  100 mL/min N2 800°C CO2 58.39 1.102 - - 40.508 

300 °C  100 mL/min N2 900°C CO2 88.98 0.717 - - 10.303 

400 °C  100 mL/min N2 800°C CO2 65.61 1.157 0.144 - 33.089 

500 °C  100 mL/min N2 800°C CO2 89.84 1.109 - - 9.051 

600 °C  100 mL/min N2 800°C CO2 86.57 1.131 - - 12.299 

700 °C  100 mL/min N2 800°C CO2 87.11 1.049 0.124 - 11.717 

900 °C  100 mL/min N2 800°C CO2 64.49 0.803 0.308 - 34.399 

1000 °C  500 mL/min N2 800°C CO2 58.07 0.789 0.599 - 40.542 

1000 °C  500 mL/min N2 900°C CO2 68.85 0.658 0.348 - 30.144 
* Calculated by difference 
Considering the results of the elemental analysis, 
it was observed that the percentage of carbon in 
the synthesized materials increased as compared 
to the raw material. In addition, there is a 
decrease in the amounts of hydrogen and oxygen. 

The decrease in their amounts indicates structural 

regulation. Methylene blue adsorption capacity of 

samples is in Table 5. 

.  
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Table 5: Methylene blue adsorption capacity of samples. 

Carbonization Physical Activation  

Temperature 
(°C) 

N2 Flow rate (mL/min) 
Temperature (oC) 

 Gas Flow rate 
(100 mL/min CO2) 

 
SBET 

m2/g 

 
Adsorption Capacity 

qe (mg/g) 

300 100 800 394.64 25.31 

300 100 900 530.57 93.45 

400 100 800 401.71 19.48 

600 100 800 857.13 5.95 

700 100 900 473.93 68.54 

800 100 900 518.70 91.16 

900 100 800 179.62 32.79 

1000 500 800 16.66 1.77 

1000 500 900 295.40 19.59 

 
Methylene blue adsorption on samples was 
studied. 0.1 gram of active carbon samples were 
taken into 100 mL 100 ppm methylene blue 

solution and samples were measured after 24 
hours. In the results, the adsorption capacity of 
methylene blue was calculated and given as a 
table. As seen in the BET measurements and DFT 
measurements, the working samples have the 
majority of micro pores and their adsorption 

capacity is low. Methylene blue is a compound 
with a molecule size of approximately 1.43 nm 
(38, 39) and methylene blue molecules do not 
enter the pore (40). Therefore, their adsorption 
capacity is low. 
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