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ÖZET 
Çerçevelerin dinamik analizinde sıkça kullanılan kabullerden birisi hareket denklemini kat 
hizasında topaklanmış kütleye göre yazmak ve kolonları rijitlik elemanı olarak 
modellemektir. Ancak gerçekte, kolonlar yayılı kütleye ve rijitliğe sahiptir ve çerçevelerin 
zeminle bağlantı noktaları, pratikte, dinamik yük sırasında zeminin elastik davranışına bağlı 
olarak bir miktar dönebilmekte ve ötelenebilmektedir. Bu durumda, çerçevelerin 
mesnetlerinde dönmeye ve ötelenmeye karşı elastik yaylar kullanılarak, elastik mesnet 
davranışı modellenebilir. Bu çalışmada, elastik mesnetli Timoshenko kolonu olarak 
modellenen tek katlı çerçevelerin serbest titreşimi kolonların dönme ataleti de dikkate 
alınarak incelenmiş ve farklı yay sabitleri için doğal frekanslar elde edilmiştir. 

 
Anahtar Kelimeler: Elastik mesnet, Serbest titreşim, Tek katlı çerçeve, Timoshenko 
kolonu  

 
 

FREE VIBRATION OF SINGLE STOREY FRAMES 
MODELED AS TIMOSHENKO COLUMN INCLUDING SOIL 

FLEXIBILITY 
 
 

ABSTRACT 
One of the assumptions mostly used in dynamic analysis of frames is writing the equation of 
motion according to concentrated mass at the storey height and modeling the columns as 
stiffness element. The other one is that the model of the frame is fixed supported. However, 
columns, in fact, have distributed mass and stiffness; and in practice, column bases of frames 
may usually rotate and translate a little due to elastic behavior of soil during dynamic loading. 
In this case, elastic support behavior can be modeled using elastic springs against translation 
and rotation at the column bases of frames. In this study, free vibration of single storey frames 
modeled as elastically supported Timoshenko column is studied including rotatory inertia of 
the columns and natural frequencies are obtained for different spring coefficients. 
 

Keywords: Elastic Support, Free Vibration, Single Storey Frame, Timoshenko Column 
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1. INTRODUCTION 
 
In free vibration analysis of SDOF frames, it is generally assumed that distributed mass of 
columns is negligible and supports are fully rigid. These assumptions make the dynamic 
analysis of mathematical calculation model easy. 
 
Michaltsos and Ermopoulos studied free and forced vibration of the model in this study 
neglecting shear deformation and rotatory inertia [1]. Glabisz studied vibration and stability 
of elastically supported continuous bars subjected to static loading [2]. Güler searched the 
effects of soil flexibility on free vibration of tower-like structures using Euler model [3]. 
Demirdağ obtained inelastic response spectrum of elastically supported frames modeled as 
a Timoshenko column [4]. 
 
Dynamic analysis of framed systems modeled as discrete parameter in which deformations 
and distributed mass of the columns are neglected is also frequently studied by many 
researchers [5; 6; 7]. 
 
Behavior of the column bases of frames is more appropriate to elastic support model. 
Dynamic mathematical model of elastically supported single storey frame is presented in 
Fig. 1. Floor mass of the frame is concentrated at the top of elastic column in the model, 
and base of the column is supported by elastic springs against rotation and translation 
modeling the elastic support behavior. 
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Figure-1: Timoshenko column model of elastically supported SDOF frame. 

 
Following assumptions are made in this study. 

1) Axial force acting to system is constant through the column. 
2) Elastic support is modeled by elastic springs against rotation and translation. 
3) Geometrical nonlinearity is valid. 
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2. EQUATION OF MOTION 
 
Since bending and shear deformations of the column with distributed mass in Fig. 1 are 
taken into consideration it is possible to write Eq. (1) for total displacement of the system. 
 

)t,x(u)t,x(u)t,x(u sb +=         (1) 
 
where ub and us are displacements due respectively to bending and shear; u is total 
displacement; x and t are respectively, position and time variables. First order 
differentiation of shear deformation and second order differentiation of bending 
deformation with respect to x is written respectively, as follows. 
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where V(x,t) and M(x,t) are shear and moment functions, respectively; EI and AG are 
respectively, flexural and shear rigidity of the column. Relations concerning equilibrium of 
forces and moments obtained by using equilibrium of differential segment of column in 
Fig. 2 are given in Eqs. (4) and (5), respectively, where FI and MI are inertia force and 
rotatory inertia moment respectively, of differential segment; N is constant axial force; k is 
shear area constant. 
 

 
Figure-2: Internal forces and deformations of the differential segment of the column. 
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where m, A and I are distributed mass, cross-section area and cross-sectional moment of 
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inertia of the column, respectively. Using Eqs. (1), (4) and (5) and making necessary 
arrangements gives differential equation of motion of system in Fig. 1 as in follows. 
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As cited in reference [8], contribution of the last term in Eq. (6) to frequencies and mode 
shapes is very, very small. Therefore, ub≅u can be written as taking contribution of rotatory 
inertia to moment into consideration, and therefore the last term of Eq. (6) can be omitted 
[8]. 
 
Method of separation of variables is applied using transformation given in Eq. (7) for 
solution of differential Eq. (6). 
 

)tsin()x(X)t(T)x(X)t,x(u ω⋅=⋅=        (7) 
 
where X(x) and T(t) are shape and time functions, respectively; ω is natural frequency. 
Differentiating successively of Eq. (7) with respect to x and t and substituting in Eq. (6) 
gives 
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3. SLOPE, MOMENT and SHEAR FUNCTIONS 
 
Second order differentiation of displacement function of bending effect with respect to x is 
written using Eq. (1) as follows. 
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Substituting first order differentiation of Eq. (2) with respect to x and Eq.(3) into Eq. (9) 
gives 
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Substituting second order differentiation of Eq. (7) with respect to t into Eq. (4) gives 
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Moment function is obtained as follows if Eq. (11) is substituted into Eq. (10) and 
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contribution of axial force and rotatory inertia to moment is included. 
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Substituting the second order differentiation of Eq. (7) with respect to t into Eq. (12) gives 
moment function as follows [4]. 
 

)t,x(u
A
Im)t,x(uN)t,x(u

AG
kmEI

x
uEIt)M(x,

22

2

2 ω⋅⋅
−⋅−

ω⋅⋅
−

∂

∂
−=                (13) 

 
Shear function is obtained by differentiating Eq. (13) with respect to x as 
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Slope function θ(x,t) is written using Eq. (1) and Eq. (2) as follows. 
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Thus, slope function of a distributed mass system subjected to axial compression force with 
bending, shear and rotatory inertia effects is given with respect to total displacement as 
follows. 
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4. DIMENSIONLESS ANALYSIS 
 
Taking z=x/L, dimensionless differential equation of motion is obtained as 
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Substituting the successive differentiations of dimensionless displacement function in Eq. 
(18) obtained by using method of separation of variables into Eq. (17) gives Eq (19) for 
general solution of dimensionless equation of motion. 
 

)t(T)z(Z)t,z(u ⋅=                     (18) 
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Eq. (19) can be rewritten as in the following for T=sinωt≠0. 
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Solution of Eq. (20) is obtained due to n1 since ∆>0 and n2<0 [4]. 
 
for n1>o  
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Thus, dimensionless displacement function is obtained for n1>0 and n1<0, respectively as 
follows. 
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Moment, shear and slope functions in Eqs (13), (14) and (16) are written in terms of the 
dimensionless displacement function, respectively, as follows [4]. 
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The four dimensionless boundary conditions of the system in Fig. 1 are 
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where δK  and θK are dimensionless parameters of translational and rotational spring 
coefficients respectively; M  and J  are dimensionless parameters of the concentrated mass 
and its rotational inertia respectively, and are given in Eq. (29). 
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Four linear equations are obtained using boundary conditions in Eq. (28) and are presented 
in matrix form in the following. 
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2c2s 191823 α+α−=α ; c1=cosh(m1); s1=sinh(m1); c2=cos(m2); s1=sin(m2); 

( )1211
2
1124 mm α+α=α ; ( )1211

2
2225 mm α−α=α ; 1c1s 241326 α−α=α ; 

1s1c 241327 α−α=α ; 2c2s 251428 α+α=α ;  2s2c 251429 α−α=α  
 
Determinant of coefficient matrix must be equal to zero for non-trivial solution of Eq. (30). 
The function obtained by equating determinant to zero is the frequency equation of system 
in Fig. 1. Roots of this equation are natural frequencies of the system. One of the simple 
and the widely used methods used for calculation the roots of frequency equation is the 
secant method [9]. Determinant values are evaluated for a range of ω values in this method. 
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The ω value causing a sign change between the successive determinant values is a root of 
frequency equation and means a frequency for the system. 
 
5. NUMERICAL ANALYSIS 
 
Physical properties for dynamic calculation model of single-storey elastically supported 
frame chosen for numerical analysis are given as follows. 
 
Distributed mass of column: m=17.982 kNs2/m2; Cross-section area of column: A=2.45 m2; 
Cross-sectional moment of inertia of column: I=0.0625 m4; Flexural stiffness of column: 
EI=1987500 kNm2; Shear stiffness of column: AG=31164000 kN; Numerical constant 
for column with rectangular cross-section: k=1.2; Length of column: L=3 m. 
 
Dimensionless natural frequencies for the first mode of system are calculated by a computer 
algorithm depending on secant method using values of 0.1-0.25-0.5-0.75-1.0, 0.1-0.5-1.0-
5.0-10, 0.1-0.5-1.0-5.0-10, 0.1-1.0-10-100-1000 and 0.1-1.0-10-100-1000 for 
dimensionless parameters of axial force, concentrated mass, rotational inertia of 
concentrated mass, translational spring coefficient and rotational spring coefficient, 
respectively. 
 
The results indicate that increase in the value of spring coefficients increases the frequency 
values; however, no more increase in frequency values is seen after the dimensionless 
spring value of 1000. Graphical presentation of the change in normalized frequency values 
of the first mode due to increase in rotational spring coefficient for different values of J  is 
given for 1.0N =  in Figs. 3, 4 and 5 for M  values of 0.1, 1 and 10 respectively; for 

0.1N =  in Figs. 6, 7 and 8 for M  values of 0.1, 1 and 10 respectively. γ in horizontal axis 
is the ratio of dimensionless rotational spring coefficient to dimensionless translational 
spring coefficient. 
 
As the values of concentrated mass and its rotational inertia are increased, natural 
frequency values show a decrease, as expected. The graphs of change in normalized 
frequency values due to increase in M  for different γ values are presented for 1.0N =  in 
Figs. 9, 10 and 11 for J  values of 0.1, 1 and 10 respectively; for 0.1N =  in Figs. 12, 13 
and 14 for J  values of 0.1, 1 and 10 respectively. 
 
 
6. CONCLUSIONS 
 
In this study, free vibration analysis of elastically supported s-d-o-f frames modeled as in 
Fig. 1 is investigated. Shear deformation and rotatory inertia for the elastic column modeled 
as having distributed mass and having a concentrated mass representing floor at the top are 
taken into consideration. Rotational inertia of the concentrated mass is also included in the 
dynamic analysis. Elastic connection between elastic column and the soil is modeled by 
elastic springs against rotation and translation. 
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Dimensionless frequency values calculated by a computer algorithm depending on secant 
method show a decrease when shear deformation and rotatory inertia effects are 
respectively included in transverse vibration due to bending of elastic column having 
distributed mass. However, this decrease has no practical meaning and can be neglected. 
 
An increase through a certain value is observed in frequency values as both spring 
coefficient values increase, in other words as the support behavior closes to rigid support 
the system will have greater period. However, a decrease in frequency values is observed as 
the values of concentrated mass and its rotational inertia increase. In the case of increasing 
rotational spring coefficient with constant translational spring coefficient the increase of 
frequency values is greater than the case of increasing translational spring coefficient with 
constant rotational spring coefficient. This indicates that the rotational spring cannot be 
neglected when modeling the column base as an elastic support while the translational 
spring may not be used in the free vibration analysis. 
 
To the contrary of discrete parameter modeling, continuous system modeling allows one to 
study the behavior of the system along its whole height, not only the behavior at the storey 
height. 
 
In practice, column bases of frames may usually rotate and translate a little due to elastic 
behavior of soil. In this case, elastic support behavior can be modeled using elastic springs 
against translation and rotation at the column bases of frames; therefore, more realistic free 
vibration response of frames may be obtained in the case of elastic support. 
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