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Abstract 

Molecular arrangement and noncovalent interactions in organic 

materials greatly influence the charge mobility in organic light-emitting 

diodes (OLEDs), organic photovoltaics (OPVs), and organic field-effect 

transistors (OFETs). In the light of the this argument, we examined the 

electronic properties of the phenanthroline derivatives by considering 

the charge mobility with the combination of density functional theory 

and Marcus Charge Transfer Theory. The drift electron mobility of the 

molecule 1 and 2 were determined to 21.13 cm2 V-1 s-1 and 18.00 cm2 V-

1 s-1, respectively through J type 𝜋⋯𝜋 stacking interactions created by 

small perpendicular distances between the adjacent rings. The effective 

charge pathways of the molecules were generated with strong 𝜋⋯𝜋 

stacking interactions consolidated by noncovalent interactions in their 

solid phases. The electron reorganization energy for both molecules 

were determined smaller than that of holes which means they have n-

type semiconductor properties. The charge transfer integrals were 

calculated with the optimization of molecules’ dimer configurations that 

the theoretical results demonstrate the charge transfer integral depends 

on the distance between the stacking rings. High charge transfer integral 

and small reorganization energy give the high charge mobility fort he 

semiconductor molecules. Beside the mobility, energy band gap, 

ionization potential, electron and hole injection barriers of the molecules 

were interpreted to further understand their electronic properties. Due to 

the small LUMO values which provide n-type molecule and small 

electron injection barrier. From the our work both molecules can be 

effective n type organic semiconductor devices with the high mobility 

and can be modified for more efficient charge transport in 

phenanthroline derivatives. 
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1. Introduction 

 

Molecular arrangement and noncovalent interactions in organic materials greatly influence the 

charge mobility in organic light-emitting diodes (OLEDs), organic photovoltaics (OPVs), and 

organic field-effect transistors (OFETs). In the light of the this argument, we examined the 

electronic properties of the phenanthroline derivatives by considering the charge mobility 

with the combination of density functional theory and Marcus Charge Transfer Theory. The 

drift electron mobility of the molecule 1 and 2 were determined to 21.13 cm2 V-1 s-1 and 18.00 

cm2 V-1 s-1, respectively through J type 𝜋⋯𝜋 stacking interactions created by small 

perpendicular distances between the adjacent rings. The effective charge pathways of the 

molecules were generated with strong 𝜋⋯𝜋 stacking interactions consolidated by 

noncovalent interactions in their solid phases. The electron reorganization energy for both 

molecules were determined smaller than that of holes which means they have n-type 

semiconductor properties. The charge transfer integrals were calculated with the optimization 

of molecules’ dimer configurations that the theoretical results demonstrate the charge transfer 

integral depends on the distance between the stacking rings. High charge transfer integral and 

small reorganization energy give the high charge mobility fort he semiconductor molecules. 

Beside the mobility, energy band gap, ionization potential, electron and hole injection barriers 

of the molecules were interpreted to further understand their electronic properties. Due to the 

small LUMO values which provide n-type molecule and small electron injection barrier. From 

the our work both molecules can be effective n type organic semiconductor devices with the 

high mobility and can be modified for more efficient charge transport in phenanthroline 

derivatives. 

2. Theoretical Methodology 

Density functional theory studies are a widely used computational method to understand the 

optical and electronic properties of organic materials. B3LYP-6311G (d, p) basis set was used 

with the Gaussion 09 software in this study (Reed et al., 2014). The optimizede geometries of 

the neutral and charged states of the molecules were determined form cif file obtained by 

single crystal x-ray diffraction experiment. The charge trasnfer integral and reorganization 

energy, iyonization potential and electron affinity, charge transfer rate and mobility of the 

molecules were calculated by the combination of DFT and Marcus electron theory formula 

given in the equation 1. 

  𝑘 =
4𝜋2

𝜆

1

√4𝜋ℎ𝑘𝐵𝑇
𝑡2exp⁡(−

𝜆

4𝑘𝐵𝑇
)⁡                                                 (1) 
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The reorganization energy (𝜆) includes; inner reorganization energy includes the geometric 

changes in the molecules and is the modifications in the molecular geometry if an electron, is 

removed or added to a molecule. The inner reorganization energy is divided into two parts: 𝜆1 

represents the geometry relaxation energy of one molecule from neutral to charged state, 𝜆2 

represents the geometry relaxation energy from charged to neutral state (Yang et al., 2019). 

𝜆 = 𝜆𝑟𝑒𝑙
1 + 𝜆𝑟𝑒𝑙

2                                                                    (2) 

In the evaluation of 𝜆, the two terms were computed directly from the adiabatic potential 

energy surfaces. 

       𝜆𝑎𝑛𝑖𝑜𝑛 = 𝜆𝑟𝑒𝑙
1 + 𝜆𝑟𝑒𝑙

2 = [𝐸(0)(𝑀−) − 𝐸(0)(𝑀)] +⁡[𝐸(1)(𝑀) − 𝐸(1)(𝑀−)]                     (3) 

𝜆𝑐𝑎𝑡𝑖𝑜𝑛 = 𝜆𝑟𝑒𝑙
1 + 𝜆𝑟𝑒𝑙

2 = [𝐸(0)(𝑀+) − 𝐸(0)(𝑀)] + [𝐸(1)(𝑀) − 𝐸(1)(𝑀+)] 

 

where E0(M+) and E0(M) represent the energies of the neutral molecule at the cation geometry 

and at the optimal ground-state geometry respectively. E1(M) and E1(M+) represent the 

energy of the charged state at the neutral geometry and optimal cation geometry, respectively. 

In the calculation of ionization energy, the adiabatic ionization potential (IPa) and vertical 

ionization potential (IPv), the adiabatic/vertical electron affinity (EAa)/(EAv) of both 

molecules have been calculated as the following equation. 

          𝐼𝑃𝑎 = 𝐸0(𝑀)+ − 𝐸0(𝑀) and 𝐼𝑃𝑣 = 𝐸1(𝑀)+ − 𝐸0(𝑀)                                       (4) 

𝐸𝐴𝑎=𝐸0(𝑀)-𝐸0(𝑀)− and 𝐸𝐴𝑣=𝐸0(𝑀)−𝐸1(𝑀)− 

 

The charge transfer integral of the molecules was calculated by using the DFT optimized 

molecular configuration for its dimeric structure given in the Figure 2. Using the DFT 

optimized molecular configurations for dimeric structures of the molecule 1 and 2 created by 

the pi⋯pi stacking interactions, the charge transfer integral of the both molecules were 

determined.  In the formation of the dimeric structure with two isolated molecules, two 

HOMO (LUMO) levels from each molecule combines to make HOMO and HOMO-1 

(LUMO and LUMO+1) in a dimer. In a simplified energy splitting in dimer, the charge 

transfer integral (t) is approximated as the half of the energy difference between HOMO and 

HOMO-1 for hole transfer whereas LUMO and LUMO+1 for electron transfer. (Köse et al., 

2007) 

 

𝑡ℎ𝑜𝑙𝑒 =
𝐻𝑂𝑀𝑂−𝐻𝑂𝑀𝑂−1

2
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑡𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 =

𝐿𝑈𝑀𝑂−𝐿𝑈𝑀𝑂+1

2
⁡                                                     (5) 



365 
 

To estimate the transfer integral of the molecules, we have take into account perpendicular 

distances between the adjacent rings is 3.947Å for the molecule 1 and 3.77⁡Å and 3.44⁡Å fort 

he molecule 2. Two dimeric configurations were considered to calculate the charge transfer 

integral of the molecule 2. The formula of the diffusion coefficient associated to a one-

dimensional jumping process is given in the equation 6. 

𝐷 = 𝐾𝐵𝑑
2                                                                                           (6) 

The mobility, µ, can be obtained from the following expression where e is the electron charge 

d is the transport distance from the molecular center to center in a stacking dimer, kB is the 

Boltzmann constant and T was taken 300 K (Huang et al., 2020). 

𝜇 =
𝑒𝐷

𝑘𝑇
  =

𝑒𝑑2𝑘𝑇

𝑘𝐵𝑇
                                                                                    (7) 

 

 

3. Results and Discussion  

3.1. Prediction of charge transport properties of the molecules 

The crystal structure of the molecule 1 (2,7-dibütylbenzo[lmn][3,8] phenanthroline-

1,3,6,8(2H,7H)-tetrone) and molecule 2 (2,7-dipropylbenzo[lmn][3,8]phenanthroline-

1,3,6,8(2H,7H)-tetrone) were taken from Cambridge crystallographic database sample 819749 

(a = 5.2230(10)Å, b =7.840(2)⁡Å , c = 11.132(3)⁡Å, Z = 4 and 𝛼 = 103.716(2)°, 𝛽 =

94.279(2)°, 𝛾 = 93.858(3)°) and sample 1029340 (a = 6.9622(4)Å, b =17.2426(11)⁡Å , c = 

27.5809(15)⁡Å, Z = 4 and 𝛼 = 90°, 𝛽 = 90°, 𝛾 = 90°) (Huang et al., 2020; Krishna et al., 

2016). We investigated the charge transfer and electronic characteristic of the both molecules 

in terms of their hole and electron reorganization energies, charge transfer integral, energy 

gap, ionization potential (IP) and electron affinity (EA) and charge mobility as shown in 

Table 1. The optimized structures in the neutral state of the both molecules are presented in 

the Figure 1.  

 

Molecule 1                                                                              Molecule 2 
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Figure 1. Optimized geometry of the molecules in the neutral state.  

 

Table 1. The value of parameters determining the charge transfer property of the molecules. 

Molec

ule 
(eV) (eV) 

telec thole IPa 

(eV) 

IPv(e

V) 

Ea(e

V) 

Ev(e

V) 

khole (s-1) kelectron(s

-1) 

1 2.39 0.003

0 

0.086 0.025 8.61 10.9 2.30 2.12 1.1

× 1012 

3.5

× 1014 

 2 0.00

37 

0.003

6 

0.038 

(dimer 

1) 

0.78 

(dimer 

2) 

0.016 

(dimer 

1) 

0.14 

(dimer2) 

8.43 8.53 2.04 1.86 2.4×

1013 

5.06×

1015 

3.34×

1014 

1.54×

1017 

 

 

 

 

 

Reorganization energies of the molecule 1 for hole and electron transfer were calculated from 

adiabatic potentials are 2.39 and 0.003 eV, respectively. The reoragnization energies of te 

molecule 2 are 0.0037 eV for hole and 0.0036 eV for electron. Because of lower electron 

reorganization energy, it is suggested that bot molecules exhibit the higher intrinsic electron 

transfer rate, and hence, higher electron mobility than that of hole. Therefore, both molecules 

can be called n-type semiconductors.  In terms of the dihedral angle in the crystal structure of 

the molecule 1 and 2 between the fragments we interpreted the reorganization energy.  The 

dihedral angle for neutral state of molecule 1 is 76.95803 while this value were found as 

79.33375 and 79.96829 for the cationic and anionic states, respectively. The cationic state 

Molecules dL (Å) µhole (cm2V-1s-1) µelectron 

(cm2V-1s-1) 

1 3.947(3) 0.066 21.13 

2 3.77(2) 1.3 18 

2 3.44(2) 11 70 
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 is more dominant than anionic state in terms of the dihedral angle between the two rings. It 

means that electron reorganization energy is smaller than those of the hole. The charge 

carriers could be electrons. This situation were observed in the molecule 2 that the diheral 

angles for the neutral, anion and cation state were found as 179. 911°, 179.908° and 179.986°, 

respectively.  
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Molecule 1                                   

 

 

 

Molecule 2 

Figure 2. Hopping pathways within crystal structure of the molecule 1 and molecule 2. 

 

Charge transport properties strongly depend on the solid-state packing arrangements and 

orientations of the molecules including noncovalent interactions such as van der Waals 

interactions, π-π stacking, and hydrogen bondings (Alvey et al., 2010; Cheng et al., 2016). 

The reported crystalline structures of the molecules based on the X-ray diffraction analysis 

show the packing of molecules with the typical J type stacking consolidated with C-O…pi 

and nonclassical C-H…O hydrogen bods in their solid phases.  Charge transfer integrals were 

obtained by from the geometries of the dimers optimized (B3LYP/6-31G(d, p)) where the 

center of mass distance and the angle between molecular planes were fixed by freezing the 

coordinate of the central rings. Since the dimers are symmetric and two monomers are 

equivalent under the symmetric transformation in the charge transfer process we can neglect 

the electrostatic polarization effect (Swicka et al., 2018; Tan et al., 2021). 
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Molecule 1 

 

Molecule 2 

Figure 3. Energy level diagram of the frontier orbitals for dimers of the both molecules in 

solid phase. 

 

Fig. 3 describes the energy level diagram of dimer of the molecule 1 along 110 plane shown 

in Fig. 2. LUMO and HOMO levels of two monomers were combined and created LUMO+1, 

LUMO, HOMO and HOMO-1 in the dimer configuration. Along 110 plane, the energy level 

splitting between HOMO and HOMO-1 is about 0.0018 eV. In contrast, the energy splitting 

between LUMO and LUMO+1 is 0.0063 eV, which is 3.5 times higher, indicating a poor hole 

transport in this material. For the dimer 1of the molecule 2, the energy level splitting between 

HOMO and HOMO-1 is about 0.28 eV while that of LUMO and LUMO+1 is 1.5 eV which 
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supports molecule 2 is an efficient electron transfer molecule. This situaton is valid for the 

dimer 2 of the molecule 2. The charge trasnfer integral value of the dimeric 2 configuration of 

the molecule 2 has the highest value of 70 cm2 V-1 s-1 due to the more stronger stacking 

interactions with the small perpendicular distance between the rings (3.44 Å). This charge 

pathway creates efficient charge transport in the molecule 2 along the (110) plane. Electron 

mobility by considering the expression for the diffusion coefficient associated to a one-

dimensional jumping process was found greater than hole mobility for each dimeric 

configuration of the molecules which supports they show n-type semicondcutor material 

feature (Table 1).  

 

The injection of the holes and electrons play an important role to create optimized electronic 

devices in real world (Yang et al., 2008; Senevirathna et al., 2014). The information about the 

organic device performance and its stability can be obtained from the parameters of ionization 

potential (IP) and electronic affinity (EA) that determine the charge injection through 

estimating the energy barrier for injection of hole and electron into molecule. The ionization 

energy describes the energy necessary to remove electrons from the neutral molecule to create 

cation molecule. The higher IP values indicate that the molecule is difficult to become cation 

in environment to react with OH- (H2O) or O2- (O2) existing in the atmosphere. Hence, it is 

indicated that molecule 2 is more sensitive to the reaction with ion OH- or O2. (Liu et al., 

2013; Huong et al., 2013). While molecule 1 is more stable and hardly oxidized which can be 

favoured for the practical applications (Gruhn et al., 2002).  

 

The EA values of molecule 1 and molecule 2 are 2.30 and 2.04 eV, respectively (Table 1). For 

the devices if the EA value is high, it means that injection energy for electron will be small 

(commonly used metallic electrodes (3 eV)). From these EA values, we can see that molecule 

1 is better than molecule 2 for transporting electrons from both lowering the energy barrier for 

electron injection.  Besides that, the HOMO energy levels for both compounds are not good 

aggrement with the work function of the gold electrode (-5.2 eV). Therefore, the injection of 

the hole from the gold to the organic semiconductor does not easily accompolished. For 

example, OFET is composed of a gate electrode, dielectric layer, organic semiconductor 

layer, and source-drain (S-D) electrodes. Carrier injection from the S-D electrode into the 

organic layer mainly depends on the barrier between the work function of the metal electrode 

and the HOMO or LUMO energy level of the organic semiconductors (Daswani et al., 2018). 
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N-type materials, typically have LUMO levels between –3 and –4 eV and have better contact 

with low work-function metals, such as calcium and lithium. The LUMO levels are 3.37 eV 

and 3.59 eV for both molecules. 

 

4. Conclusions 

Molecular packing in organic materials greatly influences the charge mobility in organic 

light-emitting diodes (OLEDs), organic photovoltaics (OPVs), and organic field-effect 

transistors (OFETs).  Here, we have performed the calculation of the charge mobility in 

molecular crystals of phenanthroline derivatives by considering the reorganization energy fort 

he monomer molecules and carge transfer integral for the dimeric configurations of the 

molecules. With the combination of density functional theory and Marcus Charge Transfer 

Theory. The drift electron mobility of the molecule 1 and 2 were determined to 21.13 cm2 V-1 

s-1 and 18.00 cm2 V-1 s-1, respectively through J type 𝜋⋯𝜋 stacking interactions created by 

small perpendicular distances between the adjacent rings. The electron reorganization energy 

for both molecules were determined smaller than that of holes which means they have n-type 

semiconductor properties. Due to the small LUMO values which provide n-type molecule and 

small electron injection barrier fort he molecules. Molecule 2 is more sensitive to the reaction 

with ion OH- or O2 while molecule 1 is more stable and hardly oxidized which can be 

favoured for the practical applications due to the high ionization potential of the molecule 1. 

Electron mobility by considering the expression for the diffusion coefficient associated to a 

one-dimensional jumping process was found greater than hole mobility for each dimeric 

configuration of both molecules which supports they show n-type semicondcutor material 

feature. From the our work both molecules can be effective n type organic semiconductor 

devices with the high mobility and can be modified for more efficient charge transport in 

phenanthroline derivatives for applications in real word. 
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