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ABSTRACT

The process of machining micro surface patterns on a workpiece to improve various per-
formance aspects of engineering materials, including wear resistance, corrosion resistance, 
and biocompatibility, has been a hot topic of research in recent years. Due to the restricted 
machinability of titanium and its alloys, it is very challenging to process micro surface pat-
terns with exact surface geometries using traditional machining methods. Consequently, 
non-traditional processing techniques, such as laser, electro-erosion, and chemical etching, 
may overcome these obstacles. In the present study, electrical discharge machining (EDM) 
is used to form micro surface patterns on Cp-Ti alloy samples. First, graphite electrodes 
with several channels were manufactured, and then square-shaped surface patterns were 
processed onto Cp-Ti samples using EDM. To evaluate the machining performance of the 
process and surface features of the obtained micro surface patterns, the surface morphol-
ogy and topography of the processed samples were investigated by scanning electron mi-
croscopy (SEM) and three-dimensional (3D) optical profilometry, respectively. The average 
widths of the square-shaped surface patterns along the X and Y axes were 663.7±8 µm and 
609.5±4 µm, respectively. For micro surface designs with square geometry, dimensional 
consistency was obtained with exceedingly small amounts of variation. However, a limited 
number of microcracks were observed due to rapid cooling during the processing of the 
surface patterns. The 3D surface topographies revealed that square-shaped micro surface 
patterns were successfully processed on the samples, indicating that micro surface patterns 
can be processed on Cp-Ti samples by using the proposed methodology, which has the 
potential for obtaining tailor-designed surface features, particularly for biomedical and tri-
bological applications.
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INTRODUCTION

Titanium and its alloys are extensively used in biomed-
ical applications owing to their exceptional mechanical 
properties, strong corrosion resistance, and biocompat-
ibility [1]. The antibacterial surface qualities of the mate-
rial play the most essential role in making titanium alloys 
more suitable for biomedical applications and enhancing 
their surface properties [2]. Commercially pure titanium 
(Cp-Ti) is widely used in medical and surgical applications, 
including bio-implantable bone replacements, owing to its 
excellent biocompatibility, corrosion resistance, and me-
chanical properties [3–5]. It is frequently employed in den-
tal implants due to its desirable biological characteristics, 
low Young's modulus, and adequate strength [6]. Neverthe-
less, its wear rate and coefficient of friction (CoF) are com-
paratively weak, which limits its use to situations in which 
sliding, fretting, and rolling contact are unavoidable [5–9].

Numerous performance features of titanium and its al-
loys, including tribological, corrosion, and biocompatibility, 
are known to be closely related to their surface and subsur-
face properties [10]. However, in some applications (such 
as tribological applications), surface and subsurface prop-
erties may not provide sufficient performance and restrict 
the material's application range [11]. To be biocompatible, 
the surfaces of materials must be hydrophilic (wettable) and 
rough (to ensure cell adhesion) [12, 13]. Additionally, it is 
desirable for titanium alloys to have hydrophobic surfaces 
[14]. Using micro/nano surface patterning techniques, it is 
possible to modify biocompatibility, protein adsorption, and 
cell/surface interactions [15, 16]. In biological applications, 
patterned surfaces enhance cell adhesion and proliferation, 
which is crucial for tissue engineering [17]. Moreover, pat-
terned features may enhance the corrosion resistance of ti-
tanium alloys by modifying the surface chemistry [9, 18]. As 
micro-bearings, well-designed surface patterns may boost 
the dynamic pressure between friction pairs, trap debris 
produced during the friction process, and store lubricant 
[19]. Therefore, processing patterned surfaces on titanium 
and its alloys is an efficient method for improving titanium's 
relatively weak surface characteristics and enhancing their 
performance in a variety of applications [19–22].

To improve the surface properties of titanium and its 
alloys, various mechanical, chemical, and physical tech-
niques such as shot peening [23], ultrasonic peening [24], 
laser peening [25], anodization [26], grinding [27], phys-
ical vapour deposition [28], and die-sinking electrical 
discharge [29] are used. Surface treatment techniques for 
titanium and its alloys offer both benefits and drawbacks. 
Despite the fact that acid etching produced a surface with 
high cell adhesion and a rough texture, the desired dimen-
sional stability could not be achieved. It was also noted that 
acid residues produce pollution, which may result in a va-
riety of long-term issues [30]. Anodization may generate a 
controlled nanoporous oxide layer, although a non-homo-
geneous surface distribution occurs [31]. In the literature, it 
was discovered that laser patterning procedures were often 
used. Despite the fact that laser processing generates sur-

faces that promote cell adhesion and proliferation, it causes 
substantial thermal damage to the surface and subsurface as 
a result of its high heat penetration [32]. As the limitations 
of this method have been addressed using several pattern 
processing techniques, a new field of study has emerged. 
Excellent dimensional stability and surface quality may be 
achieved by optimization of many parameters of die-sink-
ing electrical discharge machining (EDM) for titanium and 
its alloys. EDM-roughened Ti6Al4V alloy significantly im-
proved osteoblast cell adhesion and proliferation, as shown 
by Harcuba et al. [33]. Prakash and Uddin [34] reported the 
development of a crack-free, nonporous, biomimetic layer 
on a Ti-35Nb-7Ta-5Zr alloy using the EDM on hydroxy-
apatite powder mixed with deionized water. Karmiris-
Obrataski et al. [35] conducted an experimental study on 
the surface topography and integrity of EDM-machined 
Ti6Al4V ELI. Hasçalık and Çaydaş [36] studied the influ-
ence of process parameters on Ti6Al4V material using the 
EDM technique with various electrode materials, including 
graphite, electrolytic copper, and aluminum. The graphite 
electrode exhibited the greatest amount of material removal 
and the lowest wear rates.

Literature demonstrates that the surface patterning of 
titanium and its alloys by EDM in collaboration with the 
production of surface and subsurface mechanical and bi-
ological properties is limited. In this study, a new process-
ing approach was used to create distinctive micro surface 
patterns on the surface of the Cp-Ti alloy using EDM. The 
desired surface patterns (depth, width, and roughness, etc.) 
were formed on the Cp-Ti alloy for this purpose. Conse-
quently, the surface properties and topographies of the pat-
terned surfaces were investigated comprehensively.

MATERIALS AND METHODS

Commercially pure titanium (Cp-Ti alloys) bars with a 
diameter of 20 mm were obtained from TIMET (Titanium 
& Medical & Mining Company, Kocaeli, Turkey). After-
wards, cylindrical samples (10 mm in thickness) were cut 
using a semi-automatic band saw. Prior to EDM, the sam-
ples were processed with 320-, 600-, and 1200-mesh grits 
using automated grinding equipment to provide a homoge-
neous and flat surface topography.

HK-75 graphite blocks (density: 1.82 g/cm3, electrical 
receptivity: 16.5 m, hardness: 72 HS), which were in the 
ultra-thin graphite class (average grain size: 4 µm), were 
chosen to machine multi-channel graphite electrodes. Then, 
a multi-channel graphite electrode for EDM processing of 
Cp-Ti samples was machined using a CNC milling machine, 
as the schematic of the machined electrode is given in Figure 
1. Cp-Ti samples were then machined using the prepared 
electrode in accordance with the specifications listed in Ta-
ble 1, resulting in the formation of surface patterns, as Fig-
ure 2 schematically illustrates the EDM machining of Cp-Ti 
samples. The EDM process parameters were selected using a 
trial-and-error approach. The surface pattern characteristics 
were selected according to a literature survey of micro-sur-
face patterning of titanium alloys [13, 16, 22, 37–40].
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EDM is a surface treatment technique that eliminates 
chips from the workpiece by generating high-frequency 
sparks between the electrode and the workpiece [40]. The 
target material (Cp-Ti alloy) was subjected to EDM utiliz-
ing a multi-channel electrode parallel to the X-axis of the 
EDM in the first stage. In the second stage, the multi-chan-
nel electrode rotated 90° and was used to machine the tar-
get material parallel to the Y axis of the EDM to obtain the 
square surface patterns.

The surfaces of the EDM machined samples were then 
cleaned for 10 minutes with alcohol and ultrasonication. A 
3D optical profilometer was used to scan the surface features 
of the machined samples (Huvitz, Gyeonggi, Republic of Ko-
rea). The 3D surface topographies were then visualised using 
Mountains® 9 (Digital Surf, Besançon, France). An SEM (Jeol 
JSM-6060, Tokyo, Japan) with an energy dispersive spectros-
copy (EDS) (Oxfords Instrument, Oxford, UK) detector was 
also used to analyse the surface morphologies of the samples.

The EDM machined samples were cross-sectioned us-
ing a diamond cutting disc and a precision cutter, and then 
the cross-sectioned specimens were moulded in resin. The 
moulded specimens were ground (320-, 600-, 1200-, and 

2000- mesh grits) and polished (1 and 3 µm diamond sus-
pension) using an automatic metallographic sample prepa-
ration system. In an ultrasonic bath containing alcohol, the 
specimens were cleaned for 10 minutes. Finally, cross-sec-
tional examinations were performed using the SEM system 
previously described.

RESULTS AND DISCUSSION

The Surface Morphologies and Subsurface Features of 
Micro Surface Patterned Samples
In Figure 3, the surface morphologies of various channels 

and squares machined by EDM processing of Cp-Ti sam-
ples were given. On the X and Y axes, the average channel 
widths were calculated to be 362.4±4 µm and 390.8±9 µm, 
respectively (Fig. 3b). The channel width difference between 
the two axes is around 30 µm. In the X and Y directions, 
the average widths of the square-shaped surface patterns ob-
tained by EDM processing of Cp-Ti alloy were 663.7±8 µm 
and 609.5±4 µm, respectively (Fig. 3c, d). Figure 4a shows an 
overall view of the surface patterns obtained via EDM. Due to 
electrode wear, regional melting was identified at the channel 

Figure 1. (a) Graphite electrode with multiple channels, (b) cross-sectional technical drawing of the surface pattern, and 
(c) dimensions of micro-patterns.

Figure 2. Schematic representation of the EDM process.

Table 1. EDM process parameters

Pulse on time Pulse off time  Pulse current Voltage Servo voltage Surface roughness

1.6 µs 6.4 µs 1A 200V 65V 0.32 Ra
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borders along the X axis. According to the image of the chan-
nel area captured at a greater magnification (Fig. 4b), molten 
structures were developed because of sparks generated by 
electro-erosion during the EDM processing. Furthermore, a 
limited number of microcracks between the molten forma-
tions are also visible on the surface (Fig. 4c), which could 
be attributed to the rapid cooling of the machined surface 
features by plunge electro-erosion [41]. As a consequence 
of the rapid cooling of the micro pattern features, residual 
tensile tension is also formed. Meanwhile, dielectric liquid is 
used to remove debris from the surroundings that has bro-
ken off from the substance. A portion of the debris cooled on 
the material without removal and created the remelted layer 
known as the white layer [36]. Usually, surface cracks caused 
by the EDM process do not penetrate the substrate material. 

Nevertheless, cracking defects occur in the so-called white 
layer or re-solidified layer and in the heat-affected zone [42]. 
Surface defects in the form of cracking that may occur with 
EDM cause a decrease in the corrosion resistance of the ma-
terial [43]. Tai and Lu demonstrated that EDM-machined 
tool steel with surface cracks would have a reduced fatigue 
life [44]. There is research involving the use of EDM in com-
bination with other surface treatments to eliminate these 
defects and enhance the material's performance. By combin-
ing EDM, acid etching, and shot peening, Otsuka et al. [45] 
increased the fatigue strength and nature of cell adsorption 
in the Ti6Al4V alloy. Strasky et al. [46] used a combination 
of EDM, chemical treatment, and shot peening on the same 
alloy. According to reports, it improves fatigue performance 
and promotes osteoblast proliferation. According to these 

Figure 3. Micro surface pattern size measurements (a) General view, (b) Channels measurement in X and Y directions, 
average widths of the square-shaped surface patterns; (c) X direction, (d) Y direction.
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Figure 4. (a) Surface morphologies of the patterns, (b) A high magnification view of the targeted region, and (c) Surface 
microcracks.

Figure 5. EDM-treated Cp-Ti alloy microstructure in cross-section (a) Low magnification, (b) High magnification, and 
(c) Overlapping recast layers.
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findings, combined machining processes may eliminate the 
negative effects of surface defects. However, the lack of a 
combined EDM process for Cp-Ti alloy in the existing litera-
ture has revealed an important topic of research.

Figure 5 shows the cross-sectional microstructure of 
the Cp-Ti alloy after the EDM process. It is clear that EDM 
causes melt pools on the near surface due to the rapid heat-
ing and cooling of the surface. Due to the current value and 
pulse duration, a thin molten layer was formed on the sur-
face (Fig. 5b). The overlap of these molten layers indicates 
that these layers were formed between the pulse on and pulse 
off times. As the processing parameters (pulse on time, pulse 
off time, and voltage) are kept constant, the shape and geom-
etry of the melt pools are uniform. In the sample's cross-sec-
tional images, no cracks or crack initiation perpendicular 

to the surface were detected. The thickness of the remelted 
layer following EDM processing was approximately 40 μm, 
while the thickness of the untreated region was around 5 μm. 
The cross-sectional images provide essential information for 
determining the sample's heat-affected zone. This will make 
it easier to optimise the process parameters and achieve the 
desired material qualities for the desired application.

The Topographies of Surface Patterned Cp-Ti Alloy
After the EDM process, the topographies of the surface 

patterns were examined with an optical profilometer, and 
3D surface topographies and surface profiles were anal-
ysed (Fig. 6). The melted material at the intersection of the 
first and second processes caused melt collapse, creating 
flow from the channel areas to the crater section (Fig. 6a). 

Figure 6. EDM-modified surface topographies of Cp-Ti specimens (a) Several square-shaped surface patterns, (b) A single 
square-shaped surface pattern, and (c) The surface profile of a single square-shaped surface pattern.
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A single square-shaped surface pattern topography is given 
in Figure 6b. It is visible that EDM processing causes rela-
tively low surface roughness as peaks and valleys having less 
than 1µm height were formed on the surfaces (Fig. 6c). Ex-
amining the profiles of the square-shaped surface patterns 
in the x and y directions revealed that the peaks and valleys 
had similar features (Fig. 6c). The surface of the Cp Ti al-
loy was accurately patterned using multi-channel graphite 
electrodes, as determined by surface profile investigations.

Maressa et al.’s [47] research on laser processing of vari-
ous surface patterns on Ti6Al4V alloy is used as a reference 
for selecting square surface patterns in the present investi-
gation. Multiple channel surfaces, contrary micro-pits, and 
complicated processing forms have been shown to have a 
beneficial influence on bone cell behavior. Additionally, 
EDM machining produced channel forms with an average 
surface roughness of 0.1–10 µm (for Ti6Al4V alloy) [48] 
and 2.5–10 µm (for aluminum alloy) [49] in channel forms. 
In this work, a high level of surface quality was attained by 
reducing the Cp-Ti alloy's surface roughness in consider-
ation of the high accuracy required for micromachining.

CONCLUSIONS

The present study comprises electrical discharge machin-
ing of micro surface patterns onto the surface of the Cp-Ti al-
loy. The surface morphology and topography of the processed 
samples were examined by scanning electron microscopy 
(SEM) and three-dimensional (3D) optical profilometry to 
assess the machining performance of the process and the sur-
face characteristics of the produced micro surface patterns.
• The study clearly shows that micro surface patterns with 

excellent dimensional accuracy can be obtained follow-
ing the proposed EDM methodology (i.e., designing 
multi-channel graphite electrodes and following the 
given EDM parameters). Dimensional consistency is 
maintained across the surface patterns in numerous 
square geometries.

• Due to the two-stage processing, melt collapse occurred 
at the intersections of the processing zones, which caused 
microcracks in the channel sections due to the quick 
cooling action. Molten spherical particles were shown 
by high magnification SEM photos. According to the 3D 
surface topographies of the processed samples, a limited 
surface roughness was observed on the processed fea-
tures with peaks and valleys of less than 1µm in height.
The present study showed that processing micro surface 

patterns by using the proposed methodology has the poten-
tial to obtain tailor-designed surface features with excellent 
dimensional and geometrical stability and less amount of 
surface defects, which can pave the way for improving the 
biocompatibility, tribological, and corrosion performance 
of titanium alloys in respective scientific and industrial us-
age. Future studies should focus on processing and examin-
ing the subsurface properties (i.e., microstructural features 
and mechanical properties) of similarly processed titanium 
samples using electron microscopy, microhardness map-
ping, and indentation mapping.
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