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 ABSTRACT  
 

Proteins play crucial roles, including biocatalysis, transportation, and receptor activity, in living organisms. Moreover, their 

functional efficacy is influenced by their structural properties. Determining the three-dimensional structure of a protein is 

crucial to comprehending its catalytic mechanism, identifying potentially beneficial mutations for industrial applications, and 

enhancing its properties, including stability, activity, and substrate affinity. Although X-ray crystallography, nuclear magnetic 

resonance (NMR), and electron microscopy are employed to ascertain protein structures, many researchers have turned to 

bioinformatics modeling tools because of the high cost and time demands of these techniques. For structure prediction, there 

are three basic methods: ab initio (de novo), homology-based, and threading-based modeling techniques. 

 

In this study, 11 modeling tools belong to different approaches were compared through modeling of various proteins; 

Geobacillus kaustophilus ksilan alpha-1,2-glucuronidase, Actinosynnema pretiosum bifunctional cytochrome P450/NADPH-

P450 reductase, human high affinity cationic amino acid transporter 1 (SLC7A), human proton-coupled zinc antiporter 

(SLC30A) and Bacillus subtilis RNA polymerase sigma factor (sigY). Generated models were validated through QMEAN, 

QMEANDisCo, ProSA, ERRAT and PROCHECK tools. All of the studied proteins could be successfully modeled using 

homology modeling techniques, while some of the proteins could not be effectively modeled using threading or ab initio-based 

methods. YASARA generated reliable models for proteins that contain heteroatoms, such as P450 monooxygenases, because 

other tools exclude heteroatoms in their produced structures. Among approaches for modeling without templates, AlphaFold 

is a potent tool. On the other side, well-known template-based tools like YASARA, Robetta, and SWISS-MODEL have arisen. 

These results will help scientists choose the best protein modeling strategy and tool to guarantee high-quality structures. 

 

Keywords: Protein structure prediction, Homology modeling, Alphafold, YASARA, Ab initio modeling 
 

 

1. INTRODUCTION 

 

The interatomic angles, folding-loop motives, and ultimately the three-dimensional structures of the 

proteins are determined by their sequences and complex interactions with amino acids, which are the 

building blocks of proteins. [1] While being synthesized in the ribosomes of cells, enzymes acquire 

three-dimensional structures with distinct folding patterns. These three-dimensional structures are 

critical for proteins to perform their biological functions, and misfolding can result in enzyme 

dysfunction or structural disorders in the organism. [2] Predicting the three-dimensional structures of 

proteins with known sequences and revealing their patterns is critical for understanding their functional 

mechanisms and improving the properties such as activity and stability. [3–5] Although traditional 

methods such as X-ray crystallography, nuclear magnetic resonance (NMR), and electron microscopy 

can be used to determine protein structures, their high cost and time requirements necessitated the 

development of alternative methods. [6] Various approaches for protein structure prediction in 

bioinformatics studies have been developed, ranging from databases using basic statistical methods to 

artificial intelligence and deep learning algorithms. [7] The first examples of computational protein 

structure prediction were based on detecting amino acid affinities for folding. In the following years, 

more successful results in structure estimation were obtained using techniques such as the calculation 

of free energy levels and the use of multiple alignment methods. [8] There are three main approaches 
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for structure prediction: ab initio (de novo), homology-based, and threading-based modeling methods. 

They may also be divided into template-based modeling and template-free modeling categories. [9] With 

the aid of computer-assisted protein structure prediction and design techniques, which are widely used 

today, it is possible to understand the secondary and tertiary structures of proteins based on their amino 

acid sequences. 

  

De novo or ab initio modeling is based on estimating the most likely low-energy conformation that the 

amino acid sequence may have. [10] Although the accuracy of the models obtained is low in ab initio 

modeling, which is a basic approach in which protein structure is estimated based on physicochemical 

properties, successful results can be obtained in modeling proteins with shorter than 100 amino acid 

sequences. [11] To reduce computation time, probabilistic and predictive approaches have led to the use 

of ab initio methods as techniques for revealing folding patterns of small proteins rather than exact 

structure prediction. [12] In the future, particle-based methods that provide coarse-grained predictions, 

such as Monte Carlo simulation, have developed to overcome these constraints. [11] In a study by Liwo 

et al. on optimization of potential energy functions, <6Å models were created with root mean square 

deviations of protein fragments up to 61 amino acids. [13] Simon et al. successfully modeled 73 of 172 

target proteins up to 150 amino acid sequences using ROSETTA. [14] TOUCHSTONE II software was 

used to generate folding patterns for 83 of 125 target proteins with up to 174 amino acid sequences. [15] 

Bradley et al. used atomic ROSETTA to predict high-resolution models on sequences of less than 85 

amino acids, employing a combination of structural sampling methods, methods that calculate the 

packaging of protein nuclei in detail, and high-resolution structure prediction. [16] In another study, the 

I-TASSER method was developed, which allows the accurate detection of folding regions in small 

proteins by iterative application of the TASSER method. [17] Different algorithms designed to improve 

the accuracy of methods for estimating the spatial structure with the lowest free energy allow for greater 

accuracy in predicting the three-dimensional structures of larger proteins. Rashid et al.'s random-start 

strand method, developed in 2013, greatly improved the results of single-point searches using a three-

dimensional 100-center cubic lattice. [18] Studies have also been conducted to improve the quality of 

the fragment libraries based on the ratio of the number of segments close to the main backbone of the 

protein to the accuracy of the structure prediction. In a study that targeted particles recorded on templates 

with similar structural information in order to reduce the size of the conformational search space, the 

accuracy rate of the models obtained after classification was found to be 7% higher than that of standard 

piece-based estimators. [19] End-to-end learning and attention-based networks are used by AlphaFold; 

therefore, models with high confidence can be created. A study using AlphaFold2, an ab initio modeling 

tool, by Akdel et al. demonstrated that this tool can provide models with accuracy close to experimental 

data. [20] The accuracy of ab initio tools is limited and they require considerable computing resources 

to explore the wide range of protein conformations. This is why, up to now, only the structures of small 

proteins have been successfully predicted with this approach. [21] 

 

In homology-based approaches, also known as comparative modeling, experimentally determined 

structures that are topologically equivalent to the target protein are used. [22] With the development of 

remote homology detection methods based on pairwise comparison of protein sequences, the use of 

tools that can obtain reliable and sensitive results in protein structure prediction has become widespread. 

[23] Finding the best pattern is the first step in homology modeling. Then the target and template 

sequences are aligned, the framework is built, and finally the model is evaluated. [24] The accuracy of 

homology models based on the structure of distantly related or spatially equivalent proteins is 

proportional to the alignment quality. [22] 

 

Threading-based approaches are based on solvent availability and the secondary structure of proteins. 

These methods use the effect of different amino acid alternatives on structural coiling motives and align 

the questioned protein sequence with previously resolved similar template protein sequences and model 

them according to statistical probabilities and energy calculations. [25] Proteins acquire their three-

dimensional natural structure according to distant interactions between amino acids. In threading-based 
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approaches, the data of these interactions are transferred to a scoring system and three-dimensional 

models are created by overlapping the structure information with the existing template models. [26,27] 

These approaches can be thought of as an intersection of ab initio and homology-based approaches. Just 

like in ab initio design, threading-based methods use energy minimization. [13] Threading methods, like 

homology-based modeling, aim to create a model by predicting the curling of the query protein sequence 

based on previously defined patterns. However, both methods ignore the possibility of the protein 

folding in a random conformation with a previously unknown template. [15] The main distinction 

between threading-based methods and comparative methods is that threading-based methods can model 

without requiring structure knowledge of homologous sequences. Threading uses sequence-to-structure 

alignment, whereas comparative methods require sequence-to-sequence alignment. [12] Since 

threading-based techniques focus on structural similarity, they are successful in recognizing sequence-

structure pairs with similarity in folding motifs, but may be insufficient in recognizing homologous 

pairs. [28] In this study, six proteins from different protein classes were modeled using eleven different 

modeling tools belonging to three approaches. The generated models were then evaluated and compared 

in terms of model quality, RMSD and visually.  

 

2. MATERIALS AND METHODS 

 

Geobacillus kaustophilus ksilan alpha-1,2-glucuronidase (Accession Number: KJE27682), 

Actinosynnema pretiosum subsp. auranticum bifunctional cytochrome P450/NADPH-P450 reductase 

(Accession Number: Q8KUI0), human high affinity cationic amino acid transporter 1 (Accession Number: 

P30825) (SLC7A), human proton-coupled zinc antiporter (Accession Number: Q9Y6M5) (SLC30A) and 

Bacillus subtilis RNA polymerase sigma factor (sigY) protein sequences were used for modeling.  

 

2.1. Ab Initio (De novo) Based Modeling Tools 

 

The Alphafold, BhageerathH+, and RaptorX tools were used for ab initio-based modeling of target 

proteins. AlphaFold is a neural network-based structure prediction tool that enables modeling based on 

physical and biological data when data on similar protein structures are not available. [29] AlphaFold, 

an artificial intelligence tool based on deep learning principles, produces modeling results that are very 

close to experimental studies. It predicts structure by constructing new neural network architectures 

within the framework of the evolutionary, physical, and geometric rules of protein structure. [30] 

Another prediction tool, BhageerathH+, is an energy-based application for structure prediction of small 

globular proteins. [31] BhageerathH+ provides modeling results based on ab initio modeling. [32] The 

sequence in FASTA format is converted to PDB format, trial models are created, energy minimization 

is performed after steric mismatches are eliminated by passing through biophysical filters, the models 

with the lowest energy are selected, filtered, and the results are ordered. [31] RaptorX is a tool that 

focuses on solving the therading problem with the linear integer programming method, using ab initio 

methods to generate the unaligned loop regions and the final model. [12,33] RaptorX can estimate 

structural elements as well as the amino acid ratios that contribute to the disordered conformational 

randomness of the secondary structure. [34] The model is generated by energy optimization after 

obtaining the set of all applicable solutions. [25]  

 

2.2. Homology Based Modeling Tools 

 

SWISS-MODEL, IntFOLD, Phyre2, Robetta, ModWeb and YASARA tools were used for homology 

based modeling of proteins. SWISS-MODEL was the first online modeling tool. [35] The SWISS-

MODEL, which performs homology-based modeling; consists of five basic steps: amino acid sequence 

input, pattern search, pattern selection, model building, and quality estimation. [36] Protein sequences 

or UniProt accession code can be used directly , as well as target-pattern sequence alignment via a 

manually or automatically selected template. [37]  
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Another homology modeling tool, Robetta, generates several alignment alternatives based on features 

such as the requirement of a region in the protein sequence for folding. The best models are selected by 

combining criteria such as alignment compromise, hydrophobic embedding measure, low and high 

resolution energy functions. [22] IntFOLD, which allows the estimation of amino acids in the binding 

sites as well as access to the structure information from the protein sequence, is one of the alternative 

tools that provides the revealing of the relationship between the structure and function of the protein. 

[38] IntFOLD generates folding libraries during analysis by using multiple templates during model 

building. [32,39] Phyre2, another online application for predicting the secondary and tertiary structures 

of proteins using a homology-based analysis method, provides users with both ab initio modeling from 

amino acid sequences and manual pattern generation. The tool's modeling method consists of collecting 

homologous sequences, scanning the folding library for known folding patterns, modeling loops and 

side chain placement. [40]  

 

ModWeb, yet another comparative protein structure modeling tool, works on the principle of aligning 

the PSI-BLAST sequence profile of the target sequence with template sequences extracted from the 

Protein Data Bank and comparing them to select the best model. [26] Models are created by aligning 

one or more FASTA-formatted sequences to the best patterns using ModPipe. In addition, ModWeb 

allows users to define and model all homologous sequences in the UniProtKB database by using a 

protein structure and sequence profile as input. [41] 

 

YASARA, generates hybrid models, is a molecular modeling tool with a visualization algorithm that 

performs a lattice-based neighbour search in conjuction with unbound force calculations at each step of 

the simulation without generating pair lists. [42,43] YASARA; is used to display models created by 

other methods as well as molecular models in appropriate formats [44] and for docking to understand 

the protein-ligand interaction. [45] 

 

2.3. Threading Based Modeling Tools 

 

The C-I-TASSER and LOMETS tools were used for threading based modeling of proteins. The C-I-

TASSER tool was developed by combining I-TASSER's fragment assembly simulations with inter-

aminoacid contact maps from deep neural network learning for modeling the folding motifs of non-

homologous proteins. [46] C-I-TASSER, which offers the opportunity to make successful models in the 

structure prediction of proteins -especially when there is not any template models are available- finds 

structure patterns through LOMETS using contact maps and atomic models collected with Monte Carlo 

simulations, and creates the final model. [9,46] Another threading-based application, LOMETS, is a 

local meta-threading application combining nine different threading servers. LOMETS scans a library 

of patterns at various resolutions obtained by different methods such as X-ray crystallography, electron 

microscopy and NMR spectroscopy. The resulting patterns are evaluated based on query-sequence-to-

pattern alignment scores using threading methods. [9] LOMETS also includes Cα atom and side chain 

contact distance maps assembled as a result of threading alignments and guides applications such as 

MODELLER, ROSETTA, TASSER. [47] 

 

2.4. Model Quality Determination 

 

QMEAN, QMEANDisCo, ProSA, ERRAT and PROCHECK tools were used to determine the quality 

of the protein models. QMEAN (Qualitative Model Energy Analysis - Qualitative Model Energy 

Analysis) model quality detection tool of the SWISS-MODEL server is an application that compares 

and scores the geometric properties of the model (dual atomic distances, rotation angles, all atom 

interaction, solvent accessibility, etc.) with statistical data obtained from experimental structures. With 

QMEAN, it is possible to both measure the overall reliability of the model and determine the local 

quality per amino acid. [48] In QMEAN, each amino acid is scored between 0 and 1 by calculating the 

statistical values of the potential mean strength in terms of similarity to the natural structure. The higher 



Altınkülah and Ensari / Eskişehir Technical Univ. J. of Sci. and Tech. C – Life Sci. and Biotech. 13 (1) – 2024 
 

34 

the similarity, the higher the model reliability and score. [36,37] The Z-score is calculated by comparing 

the QMEAN score to the distributions obtained from the high-resolution structures resolved by X-ray 

chromatography. QMEANDisCo, another quality detection application developed over QMEAN 

calculations, is a tool that evaluates the distance localization of experimentally determined protein 

structures homologous to the model under consideration. The accuracy of the results obtained is 

proportional to the number of homologs of the query model. QMEANDisCo scoring cannot provide 

reliable results in protein models with few or no homologs. [49] 

 

ProSA-web (Protein Structure Analysis) is another online tool used to validate protein models. It 

compares the query model to results from X-ray analysis, NMR spectroscopy, or theoretical 

calculations. The tool computes the model's structural energy and displays it as a Z-score and an amino 

acid energy graph. [50] The Z-score indicates the overall model quality and measures the deviation of 

the total energy of the structure according to an energy distribution derived from random conformations. 

[51,52] Positive values of the Z-score may indicate that the model is problematic or inaccurate. [50]  

 

Model errors are caused by three major factors: misdirection of amino acids due to backbone linkages, 

errors in alignment or misregistration of amino acids, and side chain misplacement. [53] To detect faulty 

areas, various techniques are used. Ramachandran analysis of peptide dihedral angles is the first of these 

methods, and it is based on the classification of allowed and disallowed conformations. [54] Protein 

folding is defined by the φ (phi), ψ (psi) and ω (omega) angles of the backbone loops. Among them, the 

allowed loop options of angle ω are quite limited. [55] Ramachandran analysis is based on the principle 

of constructing two-dimensional scatter plots of other φ and ψ angles and comparing them with a 

predicted distribution. [56] By analyzing the statistics of unbound interactions between different types 

of atoms, ERRAT calculates the quality factor by plotting the data obtained as a result of the 

calculations, the value of the error function against a sliding window position of 9 amino acids. [53]  

 

The SAVES developed by UCLA-DOE-LAB is an online verification tool that includes PROCHECK 

and ERRAT calculates Ramachandran plots and scores model quality respectively. The PROCHECK 

tool generates the graphs based on the comparison of stereochemical parameters of the given protein 

against similar patterns of known structure. [57] These parameters are stereochemical criteria used to 

determine the quality of a structure. [58] The obtained Ramachandran graphs show φ and ψ twist angles 

for all amino acids in the query protein structure except the chain ends. Because glycine amino acids are 

incompatible with other side chain types, they are depicted as independent triangles. The dark red 

regions shown in Ramachandran plots are identified as "nuclei". In these regions, amino acids with 

optimal angles are marked, and more than 90% of the amino acid sequence of an ideal model would be 

expected to be found. [58] 

 

3. RESULTS AND DISCUSSION 

Geobacillus kaustophilus ksilan alpha-1,2-glucuronidase, complete sequence and heme domain of 

Actinosynnema pretiosum subsp. auranticum bifunctional cytochrome P450/NADPH-P450 reductase, 

human high affinity cationic amino acid transporter 1 (SLC7A1), human proton-coupled zinc antiporter 

(SLC30A1), and Bacillus subtilis RNA polymerase sigma factor (sigY) protein models were created 

using the AlphaFold, BhageerathH+, C-I-TASSER, IntFOLD, LOMETS, ModWeb, Phyre2, RaptorX, 

Robetta, SWISS-MODEL and YASARA modeling tools. The aforementioned proteins are members of 

different protein families. While Geobacillus kaustophilus ksilan alpha-1,2-glucuronidase and 

Actinosynnema pretiosum subsp. auranticum bifunctional cytochrome P450/NADPH-P450 reductase 

are enzymes, SLC7A1 and SLC30A1 are membrane proteins and sigY is a regulatory protein that 

controls the transcription.  Since AlphaFold models are accessed through the database, AlphaFold 

models for all proteins were downloaded from UniProt except the heme domain (the catalytic domain 

of the enzyme) of the bifunctional cytochrome P450/NADPH-P450 reductase since the model of the full 

protein exist in the database. BhageerathH+ failed during fragment assembly and ab initio loop sampling 
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of high affinity cationic amino acid transporter 1 and proton-coupled zinc antiporter proteins. The 

RaptorX built model for only the Geobacillus kaustophilus ksilan alpha-1,2-glucuronidase.  

 

The models were validated using the ERRAT, PROVE, ProSA, SWISS-MODEL QMEAN, and 

QMEANDisCo tools. In order to compare the modeling tools, the models with the highest accuracy of 

the tools that output more than one model were selected based on the results of the validation. The models 

with the highest ERRAT quality score were selected and compared with the models obtained from the other 

tools. In addition, RMSD values were calculated from the model-to-model comparisons. The ERRAT 

quality scores of all generated models, local quality estimation tables of QMEAN and QMEANDisCo tools, 

Z-PLOTs, and Ramachandran plots of the best models of each tool are shown in the Supporting Information.   

 

3.1. 3D Modeling of Geobacillus kaustophilus xylan alpha-1,2-glucuronidase  

 

From the modeling of the xylan alpha-1,2-glucuronidase protein, composed of 679 amino acids, using 

various tools, one structure prediction was obtained from AlphaFold, ModWeb, Phyre2, and YASARA, 

while two were obtained from the SWISS-MODEL tool. Additionally, five structure predictions were 

acquired through the use of BhageerathH+, C-I-TASSER, IntFOLD, LOMETS, RaptorX, and Robetta 

tools. All other tools generated models with 679 residues, while the Phyre2 generated model with 677, 

ModWeb 675, and SWISS-MODEL 677 residues (Table 1). All generated models were visualized using 

PyMOL and shown in Figure 2. Additionally, Table 1 shows the ERRAT quality scores, QMEAN, 

QMEANDisCo values, and Z-Scores. The YASARA tool generated the best model in terms of ERRAT 

Quality Score (98.36), while the SWISS-MODEL tool generated the best model in terms of QMEAN 

and QMEANDisCo scores (0.06 and 0.94 respectively). Furthermore, most of the models have ERRAT 

score above 90 and all models except RaptorX have QMEANDisCo score close to 1. All models have 

similar Z-values and Z-Plots (Figure S3) which are within the range of scores for similarly sized native 

proteins. Upon examination of the QMEAN graphs, it is evident that the low confidence regions among 

all models are quite similar. Analysis of Ramachandran plots (Figure S4) and statistics reveals that the 

number of amino acids residing in disallowed regions vary across the AlphaFold, LOMETS and 

YASARA models was 1, IntFOLD was 2 and the model obtained by SWISS-MODEL was 4. The ratio 

of the residues located in the most favored regions varies between 79.8 to 93.4. All of the protein models 

exhibit nearly identical structures based on their topology. This is associated with the RMSD values 

obtained from comparing the structural characteristics of each model. Notably, the RaptorX model 

displays a high RMSD in comparison to the other models, which indicates that there are some notable 

differences in the RaptorX model. 
 

Table 1. ERRAT Quality Scores, QMEAN, QMEANDisCo Values, and Z-Scores of Geobacillus 

kaustophilus ksilan alpha-1,2-glucuronidase modeling. 

Approach Tool 
Amino acid 
number in 

model 

ERRAT 
Quality 
Score 

QMEAN QMEANDisCo  Z-SCORE 

Ab initio 
AlphaFold 679 96.42 0.40 0.93 -11.90 
BhageerathH+ 679 92.85 -1.18 0.90 -11.55 
RaptorX 679 87.16 -2.56 0.61 -12.07 

Threading 
C-I-Tasser 679 95.37 -2.42 0.92 -11.91 
LOMETS 679 93.89 -0.72 0.93 -11.96 

Homology  
based 

IntFOLD 679 91.21 -0.86 0.91 -11.62 
ModWeb 675 89.51 -0.56 0.92 -11.79 
Phyre2 677 90.28 -0.18 0.91 -11.53 
Robetta 679 96.42 0.72 0.93 N.C 
SWISS-MODEL 676 93.69 0.06 0.94 -11.95 

YASARA 679 98.36 -0.26 0.89 -11.70 
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Figure 1. 3D models of Geobacillus kaustophilus ksilan alpha-1,2-glucuronidase protein. A. Cartoon representation of models 

generated by different tools (Cyan shows a-helix’s, magenta shows b-sheets, and salmon color shows loops). B. 

Overlaid view of all generated models. Blue; AlphaFold, green; BhageerathH+, pale cyan; RaptorX, cyan; C-I-Tasser, 

magenta; LOMETS, yellow; IntFOLD, salmon color; ModWeb, grey; Phyre2, sand color; Robetta, orange; SWISS-

MODEL, pale green; YASARA.       
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Table 2. RMSD values of model-to-model comparisons for Geobacillus kaustophilus ksilan alpha-1,2-glucuronidase protein.   
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Ab initio 
AlphaFold            
BhageerathH+ 1.51           
RaptorX 4.79 5.09          

Threading 
C-I-Tasser 1.46 2.25 5.05         
LOMETS 1.19 2.00 5.02 1.78        

Homology  
based 

IntFOLD 1.09 1.49 4.77 1.59 1.25       
ModWeb 0.97 1.40 4.75 1.51 1.28 0.86      
Phyre2 1.51 1.74 4.85 1.65 1.48 1.57 1.57     
Robetta 2.10 2.69 4.90 2.40 2.38 2.15 2.07 2.23    
SWISS-MODEL 0.84 1.29 4.77 1.48 1.15 1.02 1.00 1.41 2.13   
YASARA 1.46 2.22 5.08 2.04 1.90 1.60 1.43 1.70 2.50 1.37  

 

3.2. Bifunctional Cytochrome P450/NADPH-P450 Reductase Models 

Since the heme domain of P450 monooxygenases refers to the catalytic domain, both the heme domain 

and full protein were modeled separately. First, we modeled the heme domain of the bifunctional 

cytochrome P450/NADPH-P450 reductase, which consists of 482 amino acids, using 11 different tools. 

We retrieved the AlphaFold structures from the UniProt database. However, since the heme domain is 

part of the full sequence, the AlphaFold structure was not available in the database. Additionally, the 

RaptorX tool failed for modeling. On the contrary, one structure was derived from the utilization of 

Phyre2, SWISS-MODEL, and YASARA tools, whereas three were obtained from the ModWeb tool. 

Additionally, the remaining tools each yielded five structure predictions. All other tools output models 

comprising 482 amino acid sequences, while the ModWeb models comprise 466, Phyre2 457 and 

SWISS-MODEL 462 residues. The models generated by C-I-Tasser, Robetta, and YASARA exhibited 

the highest ERRAT quality scores (Table 3). Based on the ERRAT, QMEAN and QMEANDisCo 

scores, homology based methods have higher quality scores compared to ab-initio and threading based 

methods. All models' Z-Plots are in the range of scores for similarly sized native proteins except for the 

model generated by BhageerathH+ (Figure S7). The Z-Score and Z-Plot for the models obtained using 

the Robetta tool were not calculable. The SWISS-MODEL tool produced the model with the highest 

QMEANDisCo score. When the QMEAN Local Quality Estimation plots (Figure S5 and S6) were 

examined, it was discovered that the positions of the heme domain's beginning and ending amino acids 

were the least reliable regions of all models. Based on the Ramachandran Plots (Figure S8), models 

generated by BhageerathH+, C-I-Tasser, and LOMETS possessed the lowest quality, with residues 

located in the most favored regions ranging between 70-85 %. When visualizing the generated models 

in Pymol, it was clearly seen that BhageerathH+ generated the least favorable model due to numerous 

secondary structure elements, including α-helix and β-sheets, not being modeled (Figure 2). However, 

the rest of the models share similar folding and low RMSD values except BhageerathH+ and LOMETS. 

Furthermore, P450 monooxygenases are heme containing enzymes and thus, structure should have heme 

molecule in the structure. Only the model generated by YASARA has the heme molecule and the 

remaining models lack the heteroatom in their final structure. As a result, YASARA yielded the best 

model for the heme domain of the bifunctional cytochrome P450/NADPH-P450 reductase, based on 

quality scores and heteroatom feature. 
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Table 3. ERRAT Quality Scores, QMEAN, QMEANDisCo Values, and Z-Scores of bifunctional Cytochrome 

P450/NADPH-P450 reductase heme domain modeling. 
 

Approach Tool 
Amino acid 
number in 

model 

ERRAT 
Quality 
Score 

QMEAN  QMEANDisCo  Z-SCORE 

Ab initio 
AlphaFold  - - - - - 

BhageerathH+ 482 46.51 -11.15 0.35 -4.26 

RaptorX - - - - - 

Threading C-I-Tasser 482 96.19 -5.33 0.74 -10.54 

LOMETS 482 82.87 -5.72 0.63 -11.02 

Homology  

based 

IntFOLD  482 77.92 -2.59 0.73 -10.62 

ModWeb 458 77.11 -2.75 0.72 -10.66 

Phyre2 457 65.70 -3.63 0.69 -10.79 

Robetta 482 95.98 0.58 0.75 NA 

SWISS-MODEL  462 91.69 -1.94 0.76 -10.98 

YASARA 482 95.72 -1.53 0.72 -10.59 

 

Figure 2. 3D models of bifunctional cytochrome P450/NADPH-P450 reductase heme domain protein. A. Cartoon 

representation of models generated by different tools (Cyan shows a-helix’s, magenta shows b-sheets, and salmon 

color shows loops). B. Overlaid view of all generated models. Green; BhageerathH+, cyan; C-I-Tasser, magenta; 

LOMETS, yellow; IntFOLD, salmon color; ModWeb, grey; Phyre2, sand color; Robetta, orange; SWISS-MODEL, 

pale green; YASARA.    
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Table 4. RMSD values of model-to-model comparisons for bifunctional cytochrome P450/NADPH-P450 reductase heme 

domain protein. 
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Ab initio 
AlphaFold            
BhageerathH+            
RaptorX            

Threading 
C-I-Tasser  21.79          
LOMETS  21.25  5.96        

Homology  
based 

IntFOLD  21.44  3.95 6.43       
ModWeb  21.48  2.69 4.19 2.24      
Phyre2  21.46  2.93 4.16 2.27 2.63     
Robetta  21.55  4.35 5.18 3.99 2.87 2.95    
SWISS-MODEL  21.53  2.41 4.24 2.16 2.31 2.43 2.78   
YASARA  21.85  4.78 6.08 6.62 3.14 3.46 5.02 3.23  

 

The full sequence of the bifunctional Cytochrome P450/NADPH-P450 reductase enzyme containing 

1005 residues was also modeled. Out of eleven tools, six generated models for the target sequence. 

However, all ab-initio and threading based tools, which are template independent tools, except 

AlphaFold, failed to generate a model. Usually, these tools have sequence length limitations. When 

analyzing the obtained six structural models, the models generated by AlphaFold, Phyre2, Robetta and 

SWISSMODEL comprised the almost entire sequence on the structure. Nevertheless, ModWeb generated 

the model with 522 residues and YASARA generated the model with 642 residues which contains the heme 

and FMN binding domain. AlphaFold, Robetta, SWISSMODEL, and YASARA models have higher 

quality scores (Table 5) compared to ModWeb and Phyre2. When evaluating the QMEAN scores, Phyre2 

has below -4 which indicates low quality. And similarly, ModWeb has -3,56 which is close to -4 and it has 

also low quality. The QMEAN score for YASARA is -1,17 this is lowered because of the lower quality of 

some residues around 480 which lie in the linker region between heme and FMN domain. However, aside 

from this linker region, the rest of the model’s QMEAN score is better. However, the model obtained from 

AlphaFold is the only model which is out of the range in the Z-Plots (Figure S11). All generated models 

have high percentage of residues located in the most favored regions on their Ramachandran plots (Figure 

S12). Visual inspection of the models reveals low folding similarities among the models, resulting in high 

RMSD values. Regarding heteroatom composition, the model generated by YASARA contains both heme 

and FMN molecules, while SWISSMODEL generated model contains only the heme molecule. The 

remaining four models lack heteroatoms as observed in the heme domain modeling. 
 

Table 5. ERRAT Quality Scores, QMEAN, QMEANDisCo Values, and Z-Scores of bifunctional Cytochrome P450/NADPH-

P450 reductase full sequence modeling. 

 

Approach Tool 
Amino acid 
number in 

model 

ERRAT 
Quality 
Score 

QMEAN  QMEANDisCo  Z-SCORE 

Ab initio 
AlphaFold  1005 93.139 0.40 0.71 -16.22 
BhageerathH+ - - - - - 
RaptorX - - - - - 

Threading 
C-I-Tasser - - - - - 
LOMETS - - - - - 

Homology  
based 

IntFOLD  - - - - - 
ModWeb 522 62.840 -3.56 0.63 -10.5 
Phyre2 1000 69.596 -4.20 0.69 -14.61 
Robetta 1005 96.3 1.04 0.70 -16.31 
SWISS-MODEL  1000 93.598 -2.57 0.73 -15.01 
YASARA 642 97.078 -1.17 0.71 -12.83 
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Figure 3. 3D models of bifunctional cytochrome P450/NADPH-P450 reductase full sequence protein. A. Cartoon 
representation of models generated by different tools (Cyan shows a-helix’s, magenta shows b-sheets, and salmon 
color shows loops). B. Overlaid view of all generated models. Blue; AlphaFold, salmon color; ModWeb, grey; 
Phyre2, sand color; Robetta, orange; SWISS-MODEL, pale green; YASARA.    

 
Table 6. RMSD values of model-to-model comparisons for bifunctional cytochrome P450/NADPH-P450 reductase full 

sequence protein. 
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Ab initio 
AlphaFold            
BhageerathH+            
RaptorX            

Threading 
C-I-Tasser            
LOMETS            

Homology  
based 

IntFOLD            
ModWeb 57.97           
Phyre2 78.83      89.57     
Robetta 54.88      79.12 69.86    
SWISS-
MODEL 

64.02      62.77 74.50 96.38   

YASARA 63.78      6.38 67.54 99.59 8.04  
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3.3. High Affinity Cationic Amino Acid Transporter 1 Models (SLC7A1) 
 

Ten tools successfully generated models for the high affinity cationic amino acid transporter protein, 

which consists of 629 residues. It is difficult to determine membrane proteins structure experimentally, 

thus computational prediction is a promising approach. [21] While, one structure prediction was 

obtained from AlphaFold, Phyre2, and YASARA tools. 2 from SWISS-MODEL, 3 from the ModWeb 

tool and 5 structure predictions were obtained from the remaining tools. ModWeb, Phyre2, and SWISS-

MODEL generated models consisting of 247, 451, and 589 residues, respectively. The remaining tools 

generated models with entire sequence. ERRAT quality scores, QMEAN, QMEANDisCo values, and 

Z-Scores of all models are shown in Table 7. Of the models, Robetta, YASARA, and AlphaFold had 

ERRAT quality scores exceeding 90 and their QMEAN values were higher than -4. Conversely, the 

remaining tools had QMEAN values below -4 indicating a low quality model. Furthermore, Robetta, 

YASARA, and AlphaFold had the highest QMEANDisCo scores which were approximately 0.6. 

According to Z-Plots, the scores for models generated by YASARA, and AlphaFold are out of the range of 

typically observed for native proteins of similar size determined by X-Ray and NMR. Additionally, the Z-

Score and Z-Plot for Robetta model was not calculated. Based on Ramachandran Plots (Figure S16), more 

than 90% of residues in models generated by AlphaFold and YASARA are in the most favored regions. 

Generated ten models showed varying topology, but, AlphaFold, LOMTES, Phyre2, Robetta, and SWISS-

MODEL share more or less similar folding structures (Figure 4). This similarity was also confirmed through 

RMSD calculation and AlphaFold, Phyre2, and Robetta have lowest RMSD values which indicates the 

folding similarity (Table 8). As a conclusion, all tested tools did not generate reliable 3D model for the 

SLC7A1, which is a membrane transporter protein, based on different quality parameters.        

 
Table 7. ERRAT Quality Scores. QMEAN. QMEANDisCo Values. and Z-Scores of High Affinity Cationic Amino Acid 

Transporter 1 modeling. 
 

Approach Tool 
Amino acid 
number in 

model 

ERRAT 
Quality 
Score 

QMEAN  QMEANDisCo  Z-SCORE 

Ab initio 
AlphaFold  629 94.79 -2.37 0.64 -6.78 
BhageerathH+ 629 15.58 -14.23 0.22 0.91 
RaptorX - - - - - 

Threading 
C-I-Tasser 629 81.48 -11.68 0.57 -3.56 
LOMETS 629 84.33 -5.93 0.55 -6.23 

Homology  
based 

IntFOLD  629 73.29 -9.18 0.58 -4.58 
ModWeb 247 79.83 -7.98 0.28 -1.96 
Phyre2 451 88.18 -5.80 0.71 -3.51 
Robetta 629 99.19 -2.08 0.61 N.C. 
SWISS-MODEL  589 85.38 -7.50 0.61 -4.65 

YASARA 629 96.93 -3.83 0.60 -5.30 

 

Table 8. RMSD values of model-to-model comparisons for High Affinity Cationic Amino Acid Transporter 1 protein. 
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Ab initio 
AlphaFold            
BhageerathH+ 30.88           
RaptorX            

Threading 
C-I-Tasser 15.75 36.02          
LOMETS 10.40 31.13  16.20        

Homology  
based 

IntFOLD 19.30 28.09  25.98 18.61       
ModWeb 28.32 28.62  27.69 28.83 28.40      
Phyre2 4.00 23.70  2.50 4.73 3.07 23.05     
Robetta 4.66 30.75  15.63 10.66 19.13 28.16 3.95    
SWISS-
MODEL 

19.58 26.07  23.80 19.09 19.40 29.85 2.55 19.81   

YASARA 27.56 35.30  33.34 29.74 34.31 29.42 4.96 28.18 23.77  
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Figure 4. 3D models of High Affinity Cationic Amino Acid Transporter 1 protein. A. Cartoon representation of 
models generated by different tools (Cyan shows a-helix’s. magenta shows b-sheets. and salmon color 
shows loops). B. Overlaid view of all generated models. Blue; AlphaFold. green; BhageerathH+. cyan; 
C-I-Tasser. magenta; LOMETS. yellow; IntFOLD. salmon color; ModWeb. grey; Phyre2. sand color; 
Robetta. orange; SWISS-MODEL. pale green; YASARA.       

 

3.4. Proton-Coupled Zinc Antiporter Models (SLC-30A) 
 

Nine tools, apart from BhageerathH+ and RaptorX, successfully generated models of the human Proton-

Coupled Zinc Antiporter, comprised of 507 amino acids. AlphaFold, C-I-TASSER, LOMETS, 

IntFOLD, and Robetta generated full sequence models. However, the remaining tools were unsuccessful 

in generating models with entire sequence (Table 9). AlphaFold, Robetta, and YASARA had the higher 

ERRAT quality scores of 93.38, 95.82, and 89.87, respectively, compared to other full sequence models. 

Only, the model generated by Robetta had the QMEAN value higher than –4, while all other models 

had QMEAN values below -4 which is an indicator of a model with low quality. Comparing the 

QMEANDisCo scores of AlphaFold, Robetta, and YASARA, Robetta had the highest score of 0.6. 

Moreover, 86.1 % of the residues in the model generated by Robetta were in the most favored regions 

on the Ramachandran Plot. On visual inspection, AlphaFold and Robetta exhibited structural 

similarities. The Robetta tool generated the model with the top scores for ERRAT, QMEAN, and 

QMEANDisCo. After analyzing the QMEAN Local Quality Estimation graphs (Figure S17-18), it was 

found that there were frequently occurring low confidence regions in all models. Further examination 

revealed that the region spanning from the 140th to 220th amino acids served as the common region 
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with the lowest confidence score in all models. Hence, this could be a contributing factor to the varying 

folding patterns observed in the models. Robetta, a homology-based tool, generated a more reliable 

model for the SLC-30A based on the evaluations mentioned earlier. Moreover, Robetta generated better 

models for membrane proteins. However, it takes days to build models in the Robetta server. 
 

Table 9. ERRAT Quality Scores. QMEAN. QMEANDisCo Values. and Z-Scores of Proton-Coupled Zinc Antiporter 

modeling. 

 

Approach Tool 
Amino acid 
number in 

model 

ERRAT 
Quality 
Score 

QMEAN  QMEANDisCo  Z-SCORE 

Ab initio 
AlphaFold  507 93.38 -6.74 0.44 -5.87 
BhageerathH+ - - - - - 
RaptorX - - - - - 

Threading 
C-I-Tasser 507 88.94 -12.00 0.36 -5.84 
LOMETS 507 81.19 -5.68 0.50 -6.16 

Homology  
based 

IntFOLD  507 59.957 -9.65 0.47 -5.63 
ModWeb 110 87.25 -4.23 0.36 -2.93 
Phyre2 288 84.64 -6.41 0.60 -4.04 
Robetta 506 95.82 -1.26 0.60 N.C. 
SWISS-MODEL  421 70.3 -6.86 0.46 -4.99 
YASARA 507 89.87 -6.72 0.27 -4.06 

 

 
 

Figure 5. 3D models of Proton-Coupled Zinc Antiporter protein. A. Cartoon representation of models generated by different 
tools (Cyan shows a-helix’s. magenta shows b-sheets. and salmon color shows loops). B. Overlaid view of all 
generated models. Blue; AlphaFold. cyan; C-I-Tasser. magenta; LOMETS. yellow; IntFOLD. salmon color; 
ModWeb. grey; Phyre2. sand color; Robetta. orange; SWISS-MODEL. pale green; YASARA.       
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Table 10. RMSD values of model-to-model comparisons for Proton-Coupled Zinc Antiporter protein. 
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Ab initio 
AlphaFold            
BhageerathH+            
RaptorX            

Threading 
C-I-Tasser 34.90           
LOMETS 22.66   28.27        

Homology  
based 

IntFOLD 27.55   28.40 21.81       
ModWeb 17.30   17.35 16.92 18.07      
Phyre2 6.11   6.74 7.15 3.58 18.06     
Robetta 18.51   32.76 16.59 22.20 16.63 6.59    
SWISS-
MODEL 

15.90   24.83 14.62 18.41 17.90 3.49 13.01   

YASARA 38.56   40.07 34.29 30.84 16.50 28.17 34.25 32.38  

 

3.5 Bacillus subtilis RNA Polymerase Sigma Factor (sigY) 

 

The sigma factor protein of Bacillus subtilis RNA polymerase comprises 178 residues and is the shortest 

and final protein utilized for modeling. All tools except RaptorX generated model for sigY. Phyre2, 

ModWeb, and SWISS-MODEL generated models of 154, 171, and 175 residues respectively (Table 

11). It is worth noting that the model generated by Phyre2 lacks the region spanning between residues 

90 and 109. Moreover, ModWeb and SWISS-MODEL lack the residues present at the beginning of the 

sequence. Alphafold, YASARA, and Robetta achieved perfect ERRAT scores of 100, while threading-

based methods surpassed 95.  The worst QMEAN scores were seen in BhageerathH+ and C-I-Tasser, 

with -10.28 and -3.78, respectively. On the other hand, IntFOLD had the highest QMEAN score, 

reaching 0.31, which was closest to 1.0. Except for BhageerathH+ (0.26), all models scored above 0.6 

in terms of QMEANDisCo. All models had Z-scores similar to those of native proteins of similar size. 

Ramachandran plots indicated that over 95% of the residues in the protein models produced by 

AlphaFold, Robetta, IntFOLD, ModWeb, and YASARA are situated in the most favored regions. 

BhageerathH+, C-I-Tasser, and ModWeb generated models with differing structures from the other 

tools, as observed from Figure 6 and confirmed by RMSD calculations in Table 12. 

 
Table 11. ERRAT Quality Scores. QMEAN. QMEANDisCo Values. and Z-Scores of Bacillus subtilis RNA 

polymerase sigma factor modeling. 
 

Approach Tool 
Amino acid 
number in 

model 

ERRAT 
Quality 
Score 

QMEAN  QMEANDisCo  Z-SCORE 

Ab initio 
AlphaFold  178 100 -0.81 0.66 -6.88 
BhageerathH+ 178 50.74 -10.26 0.26 -1.77 
RaptorX - - - - - 

Threading 
C-I-Tasser 178 98.24 -3.78 0.63 -5.75 
LOMETS 178 95.88 -1.12 0.67 -6.52 

Homology  
based 

IntFOLD  178 98.23 0.31 0.67 -6.98 
ModWeb 171 76 -2.13 0.63 -5.9 
Phyre2 154 87.67 -1.99 0.70 -6.54 
Robetta 178 100 1.46 0.67 -6.86 
SWISS-MODEL  175 88.62 -2.17 0.66 -6.2 
YASARA 178 100 -1.05 0.66 -6.13 
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Figure 6. 3D models of Bacillus subtilis RNA polymerase sigma factor protein. A. Cartoon representation of models generated 
by different tools (Cyan shows a-helix’s. magenta shows b-sheets. and salmon color shows loops). B. Overlaid view 
of all generated models. Blue; AlphaFold. green; BhageerathH+. cyan; C-I-Tasser. magenta; LOMETS. yellow; 
IntFOLD. salmon color; ModWeb. grey; Phyre2. sand color; Robetta. orange; SWISS-MODEL. pale green; 
YASARA.       

 
 

Table 12. RMSD values of model-to-model comparisons for Bacillus subtilis RNA polymerase sigma factor protein. 
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Ab initio 

AlphaFold            
BhageerathH+ 16.56           
RaptorX            

Threading 
C-I-Tasser 14.88 19.08          
LOMETS 5.29 17.99  13.32        

Homology  
based 

IntFOLD 2.24 16.52  14.84 4.62       
ModWeb 11.25 17.74  16.62 12.06 11.10      
Phyre2 5.82 13.77  14.22 11.04 6.08 6.48     
Robetta 4.52 17.15  14.48 3.96 3.71 11.04 5.47    
SWISS-
MODEL 

7.17 16.85  14.40 7.38 6.69 7.69 4.60 5.86   

YASARA 4.71 17.06  14.47 4.82 4.47 11.51 5.67 3.88 6.79  
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Figure 7. ERRAT quality scores of all generated models with tested eleven different tools. 

 

Elucidating functions and mechanism of proteins is one of the primary questions in biochemistry. The 

structure of proteins has a major influence on the variety of activities they can perform. [59] Thus, one 

of the main goals of structural biology is to determine the three-dimensional structure of proteins. [21] 

Limited research has been conducted thus far to compare various model building tools, with a strong 

focus on homology modeling tools. Nikolaev and colleagues compared three homology modeling tools 

(Modeller, I-TASSER, and Rosetta) for predicting membrane proteins. Their findings indicate that 

successful modeling requires a target-template sequence identity of at least 40%. [21] Jang et al., 

conducted a study in order to compare multiple alignment tools and two template based model building 

program. SWISS-MODEL built models with better accuracy compared to Modeller. Because RMSD 

values of models generated both tools were below 1 and thus there is no significant quality difference 

between two tested programs for the modeling of soluble proteins. [60]  

 

In our study, we have compared various tools from three different modeling approach. In addition to 

above mentioned results, YASARA, AlphaFold and SWISS-MODEL are the fastest tools among the all 

tested tools. On the other hand, other tools also had server problems and thus, they were not available 

time to time. Furthermore, YASARA generated high quality models since it generates hybrid models 

through performing hybrid modeling by separating the query protein into different units and selecting 

separate patterns for each unit. Major drawback of YASARA is that it is a paid tool, while all tested 

other tools are free of charge. 

 

4. CONCLUSIONS 

 

In this study, we conducted a comparison between ab-initio, threading, and homology modeling protein 

approaches. We tested 11 modeling tools to build models of six proteins. Template-based homology 
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modeling tools, in particular, successfully built models for all of the tested proteins; however, threading 

and ab initio-based tools were unsuccessful in building models for some of the proteins. For example, 

ab initio and threading-based methods were unsuccessful in generating a model for the complete 

sequence of the Bifunctional Cytochrome P450/NADPH-P450 Reductase protein. Furthermore, 

RaptorX could only produce a model for Geobacillus kaustophilus ksilan alpha-1,2-glucuronidase. 

YASARA is suitable for proteins that contain heteroatoms, such as P450 monooxygenases, since most 

other tools do not include heteroatoms in their produced structures. AlphaFold is a powerful tool among 

template-free modeling methods. On the other hand, YASARA, Robetta, and SWISS-MODEL have 

emerged as prominent template-based tools. These findings will aid researchers in selecting the suitable 

protein modeling approach and tool for ensuring high-quality structures. 

 
CONFLICT OF INTEREST 
 

The authors declare no conflict of interest. 

 

AUTHORSHIP CONTRIBUTIONS 

 

Elif Altunkülah; performed the analysis, collected the data, analyzed the data, wrote the manuscript 

draft. Yunus Ensari; conceptialization, design of study, supervised the research, wrote and edited the 

manuscript.  

 

REFERENCES 

 

[1] Smith GM. The Nature of Enzymes. In: Biotechnology. 1995. p. 4–72.  

 

[2] Benítez CMV, Lopes HS. Protein structure prediction with the 3D-HP side-chain model using a 

master–slave parallel genetic algorithm. J Brazilian Comput Soc. 2010;16(1):69–78.  

 

[3] Divya M, Jain SJMN, Phadke SR, Kishore R, Kamate M, Gupta N, et al. Protein structure 

prediction for novel mutations in Arylsulfatase-A gene. Mol Cytogenet. 2014;7(1):P62.  

 

[4] Alford RF, Fleming PJ, Fleming KG, Gray JJ. Protein Structure Prediction and Design in a 

Biologically Realistic Implicit  Membrane. Biophys J. 2020 Apr;118(8):2042–55.  

 

[5] Batbat T, Öztürk C. Ayrık Yapay Arı Kolonisi Algoritması İle Protein Yapısı Tahmini. Bilişim 

Teknol Derg. 2016 Sep 30;9(3):260–3.  

 

[6] Li X, Hu C, Liang J. Simplicial edge representation of protein structures and alpha contact 

potential  with confidence measure. Proteins. 2003 Dec;53(4):792–805.  

 

[7] Torrisi M, Pollastri G, Le Q. Deep learning methods in protein structure prediction. Comput 

Struct Biotechnol J. 2020;18:1301–10.  

 

[8] Aydin Z, Singh A, Bilmes J, Noble WS. Learning sparse models for a dynamic Bayesian network 

classifier of protein secondary structure. BMC Bioinformatics. 2011;12(1):154.  

 

[9] Pearce R, Zhang Y. Toward the solution of the protein structure prediction problem. J Biol Chem. 

2021;297(1):100870.  

 

[10] ANFINSEN CB, HABER E, SELA M, WHITE FHJ. The kinetics of formation of native 

ribonuclease during oxidation of the reduced  polypeptide chain. Proc Natl Acad Sci U S A. 1961 

Sep;47(9):1309–14.  



Altınkülah and Ensari / Eskişehir Technical Univ. J. of Sci. and Tech. C – Life Sci. and Biotech. 13 (1) – 2024 
 

48 

 

[11] Lee J, Wu S, Zhang Y. Ab Initio Protein Structure Prediction. In: From Protein Structure to 

Function with Bioinformatics. Dordrecht: Springer Netherlands; 2009. p. 3–25.  

 

[12] Abbass J, Nebel JC, Mansour N. Ab Initio Protein Structure Prediction: Methods and challenges. 

In: Biological Knowledge Discovery Handbook. 2013. p. 703–24.  

 

[13] Liwo A, Lee J, Ripoll DR, Pillardy J, Scheraga HA. Protein structure prediction by global 

optimization of a potential energy  function. Proc Natl Acad Sci U S A. 1999 May;96(10):5482–

5.  

 

[14] Simons KT, Strauss C, Baker D. Prospects for ab initio protein structural genomics. J Mol Biol. 

2001 Mar;306(5):1191–9.  

 

[15] Zhang Y, Kolinski A, Skolnick J. TOUCHSTONE II: A New Approach to Ab Initio Protein 

Structure Prediction. Biophys J. 2003;85(2):1145–64.  

 

[16] Bradley P, Misura KMS, Baker D. Toward high-resolution de novo structure prediction for small 

proteins. Science. 2005 Sep;309(5742):1868–71.  

 

[17] Wu D, Wu T, Liu Q, Yang Z. The SARS-CoV-2 outbreak: What we know. Int J Infect Dis  IJID  

Off Publ  Int Soc Infect Dis. 2020 May;94:44–8.  

 

[18] Rashid MA, Shatabda S, Newton MAH, Hoque MT, Sattar A. A Parallel Framework for 

Multipoint Spiral Search in ab Initio Protein Structure  Prediction. Adv Bioinformatics. 

2014;2014:985968.  

 

[19] Abbass J, Nebel JC. Customised fragments libraries for protein structure prediction based on 

structural class annotations. BMC Bioinformatics. 2015;16(1):136.  

 

[20] Akdel M, Pires DE V, Pardo EP, Jänes J, Zalevsky AO, Mészáros B, et al. A structural biology 

community assessment of AlphaFold2 applications. Nat Struct Mol Biol. 2022;29(11):1056–67.  

 

[21] Nikolaev DM, Shtyrov AA, Panov MS, Jamal A, Chakchir OB, Kochemirovsky VA, et al. A 

Comparative Study of Modern Homology Modeling Algorithms for Rhodopsin Structure 

Prediction. ACS Omega. 2018;3(7):7555–66.  

 

[22] Chivian D, Baker D. Homology modeling using parametric alignment ensemble generation with 

consensus  and energy-based model selection. Nucleic Acids Res. 2006;34(17):e112.  

 

[23] Battey JND, Kopp J, Bordoli L, Read RJ, Clarke ND, Schwede T. Automated server predictions 

in CASP7. Proteins. 2007;69 Suppl 8:68–82.  

 

[24] Heneghan MN, McLoughlin L, Murray PG, Tuohy MG. Cloning, characterisation and 

expression analysis of α-glucuronidase from the thermophilic fungus Talaromyces emersonii. 

Enzyme Microb Technol. 2007;41(6):677–82.  

 

[25] Xu Y, Liu Z, Cai L, Xu D. Protein Structure Prediction by Protein Threading BT  - Computational 

Methods for Protein Structure Prediction and Modeling: Volume 2: Structure Prediction. In: Xu 

Y, Xu D, Liang J, editors. New York, NY: Springer New York; 2007. p. 1–42.  

 

[26] Eswar N, John B, Mirkovic N, Fiser A, Ilyin VA, Pieper U, et al. Tools for comparative protein 



Altınkülah and Ensari / Eskişehir Technical Univ. J. of Sci. and Tech. C – Life Sci. and Biotech. 13 (1) – 2024 
 

49 

structure modeling and analysis. Nucleic Acids Res. 2003 Jul;31(13):3375–80.  

 

[27] Shao M, Wang S, Wang C, Yuan X, Li SC, Zheng W, et al. Incorporating Ab Initio energy into 

threading approaches for protein structure  prediction. BMC Bioinformatics. 2011 Feb;12 Suppl 

1(Suppl 1):S54.  

 

[28] Shi J, Blundell TL, Mizuguchi K. FUGUE: sequence-structure homology recognition using 

environment-specific  substitution tables and structure-dependent gap penalties. J Mol Biol. 2001 

Jun;310(1):243–57.  

 

[29] Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, et al. AlphaFold Protein 

Structure Database: massively expanding the structural coverage  of protein-sequence space with 

high-accuracy models. Nucleic Acids Res. 2022 Jan;50(D1):D439–44.  

 

[30] Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate 

protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–9.  

 

[31] Jayaram B, Bhushan K, Shenoy SR, Narang P, Bose S, Agrawal P, et al. Bhageerath: an energy 

based web enabled computer software suite for limiting the  search space of tertiary structures of 

small globular proteins. Nucleic Acids Res. 2006;34(21):6195–204.  

 

[32] Jabeen A, Mohamedali A, Ranganathan S. Protocol for Protein Structure Modelling. In: 

Ranganathan S, Gribskov M, Nakai K, Schönbach CBTE of B and CB, editors. Oxford: 

Academic Press; 2019. p. 252–72.  

 

[33] Chen CC, Hwang JK, Yang JM. (PS)2-v2: template-based protein structure prediction server. 

BMC Bioinformatics. 2009;10(1):366.  

 

[34] Chandra Sekhar Mukhopadhyay, Ratan Kumar Choudhary MAI. Basic Applied Bioinformatics. 

Wiley-Blackwell; 2017. 472 p.  

 

[35] Guex N, Peitsch MC, Schwede T. Automated comparative protein structure modeling with 

SWISS-MODEL and  Swiss-PdbViewer: a historical perspective. Electrophoresis. 2009 Jun;30 

Suppl 1:S162-73.  

 

[36] Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-

MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018 

Jul;46(W1):W296–303.  

 

[37] Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, et al. SWISS-MODEL: 

modelling protein tertiary and quaternary structure using  evolutionary information. Nucleic 

Acids Res. 2014 Jul;42(Web Server issue):W252-8.  

 

[38] Roche DB, Buenavista MT, Tetchner SJ, McGuffin LJ. The IntFOLD server: an integrated web 

resource for protein fold recognition, 3D  model quality assessment, intrinsic disorder prediction, 

domain prediction and ligand binding site prediction. Nucleic Acids Res. 2011 Jul;39(Web 

Server issue):W171-6.  

 

[39] Roche DB, Tetchner SJ, McGuffin LJ. FunFOLD: an improved automated method for the 

prediction of ligand binding residues using 3D models of proteins. BMC Bioinformatics. 

2011;12(1):160.  

 



Altınkülah and Ensari / Eskişehir Technical Univ. J. of Sci. and Tech. C – Life Sci. and Biotech. 13 (1) – 2024 
 

50 

[40] Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein 

modeling, prediction and analysis. Nat Protoc. 2015;10(6):845–58.  

 

[41] Pieper U, Webb BM, Dong GQ, Schneidman-Duhovny D, Fan H, Kim SJ, et al. ModBase, a 

database of annotated comparative protein structure models and  associated resources. Nucleic 

Acids Res. 2014 Jan;42(Database issue):D336-46.  

 

[42] Krieger E, Vriend G. YASARA View - molecular graphics for all devices - from smartphones 

to workstations. Bioinformatics. 2014;  

 

[43] Krieger E, Vriend G. New ways to boost molecular dynamics simulations. J Comput Chem. 2015 

May;36(13):996–1007.  

 

[44] Joosten RP, te Beek TAH, Krieger E, Hekkelman ML, Hooft RWW, Schneider R, et al. A series 

of PDB related databases for everyday needs. Nucleic Acids Res. 2011 Jan 1;39(suppl_1):D411–

9.  

 

[45] Krieger E, Vriend G. Models@Home: distributed computing in bioinformatics using a 

screensaver based  approach. Bioinformatics. 2002 Feb;18(2):315–8.  

 

[46] Zheng W, Zhang C, Li Y, Pearce R, Bell EW, Zhang Y. Folding non-homologous proteins by 

coupling deep-learning contact maps with  I-TASSER assembly simulations. Cell reports 

methods. 2021 Jul;1(3).  

 

[47] Wu S, Zhang Y. LOMETS: A local meta-threading-server for protein structure prediction. 

Nucleic Acids Res. 2007 May 15;35(10):3375–82.  

 

[48] Bienert S, Waterhouse A, de Beer TAP, Tauriello G, Studer G, Bordoli L, et al. The SWISS-

MODEL Repository-new features and functionality. Nucleic Acids Res. 2017 Jan;45(D1):D313–

9.  

 

[49] Studer G, Rempfer C, Waterhouse AM, Gumienny R, Haas J, Schwede T. QMEANDisCo—

distance constraints applied on model quality estimation. Bioinformatics. 2020 Mar 

15;36(6):1765–71.  

 

[50] Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in  

three-dimensional structures of proteins. Nucleic Acids Res. 2007 Jul;35(Web Server 

issue):W407-10.  

 

[51] Sippl MJ. Recognition of errors in three-dimensional structures of proteins. Proteins. 1993 

Dec;17(4):355–62.  

 

[52] Sippl MJ. Knowledge-based potentials for proteins. Curr Opin Struct Biol. 1995 Apr;5(2):229–

35.  

 

[53] Colovos C, Yeates TO. Verification of protein structures: Patterns of nonbonded atomic 

interactions. Protein Sci. 1993 Sep 1;2(9):1511–9.  

 

[54] Ramachandran GN, Sasisekharan V. Conformation of Polypeptides and Proteins In: Anfinsen 

CB, Anson ML, Edsall JT, Richards FMBTA in PC, editors. Academic Press; 1968. p. 283–437.  

 

[55] MacArthur MW, Thornton JM. Deviations from planarity of the peptide bond in peptides and 



Altınkülah and Ensari / Eskişehir Technical Univ. J. of Sci. and Tech. C – Life Sci. and Biotech. 13 (1) – 2024 
 

51 

proteins. J Mol Biol. 1996 Dec;264(5):1180–95.  

 

[56] Hooft RWW, Sander C, Vriend G. Objectively judging the quality of a protein structure from a 

Ramachandran plot. Bioinformatics. 1997 Aug 1;13(4):425–30.  

 

[57] Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the 

stereochemical quality of protein structures. J Appl Crystallogr. 1993 Apr 1;26(2):283–91.  

 

[58] Morris AL, MacArthur MW, Hutchinson EG, Thornton JM. Stereochemical quality of protein 

structure coordinates. Proteins. 1992 Apr;12(4):345–64.  

 

[59] Gligorijević V, Renfrew PD, Kosciolek T, Leman JK, Berenberg D, Vatanen T, et al. Structure-

based protein function prediction using graph convolutional networks. Nat Commun. 

2021;12(1).  

 

[60] Jang WD, Lee SM, Kim HU, Lee SY. Systematic and Comparative Evaluation of Software 

Programs for Template-Based Modeling of Protein Structures. Biotechnol J. 2020;1–21.  

 


