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ABSTRACT:  

The stability analysis of an epidemic model that takes into account the impact of vaccination 

and hospitalization is investigated in this study. Disease-free and endemic equilibrium points 

are obtained for the stability analysis. The necessary conditions for analyzing local stability 

at equilibrium points as well as global stability at the disease-free equilibrium point are also 

defined. Using data from three different periods corresponding to the emergence of three 

different variants of the COVID-19 outbreak in Turkey, the numerical simulation with graph 

fitting for the model is also taken into account. The analysis considers the efficacy of 

vaccination in restricting the virus's spread. 
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This study was produced from Cihan Taş’s Master’s thesis. 

INTRODUCTION 

The novel coronavirus disease (COVID-19) was first identified on January 13, 2020. The World 

Health Organization’s Technical Report (https://www.who.int/emergencies/diseases/new-coronavirus-

2019) states that the novel coronavirus's initial symptoms included fever, coughing, and shortness of 

breath, and that the respiratory system was typically impacted. While the onset of symptoms is 5–6 

days from the first infection, the incubation period can vary between 2–14 days. COVID-19 cases, 

which started to be seen outside of China as of January 2020, were seen for the first time in Turkey on 

March 10–11, 2020. More than 15 million cases and almost 100,000 fatalities have been reported as a 

result of COVID-19 in Turkey, according to data published by the Turkish Ministry of Health 

(https://covid19.saglik.gov.tr/TR-66935/genel-koronavirus-tablosu.html). The objective of this work is 

to mathemaically analyze the coronavirus pandemic in Turkey and the spread, persistence, and 

prevention mechanisms of epidemic diseases via COVID-19-adapted mathematical models with 

hospitalized variables. 

A disease caused by a virus, bacteria, protozoan, or toxin that can pass from one host to another 

is considered contagious. This transmission can occur through direct physical contact, airborne 

droplets, water, food, or from mother to newborn. The infected individual may not show symptoms at 

the early stage of the infection and may develop clinical symptoms later on; this elapsed time is called 

the incubation period. When infected individuals are included in a susceptible population, the disease 

spreads throughout the population by means of transmission, and if the number of cases rises above the 

average in a short period of time, this disease becomes an epidemic. Infected individuals recover from 

the infection, either by treatment or by the action of the immune system, and acquire varying degrees 

of immunity. When the number of susceptible individuals decreases, the epidemic slows down or 

stops—that is, the infection ends. If new susceptible individuals are added to the population through 

birth or migration, re-infection may occur spread, the epidemic may continue, and the disease may 

remain in the population for a long time. In this case, the disease is said to be endemic to this 

population. A pandemic will occur if the disease spreads to many countries and continents (Meltzer et 

al., 2001; Halloran et al., 2002; Keeling & Eames, 2005). 

Despite the rapid spread and lethality of COVID-19, the world is combating this disease with all 

the means at its disposal. One of the most effective ways to identify and plan ways to fight this virus is 

through mathematical models. Mathematical models play an important role in predicting the future of 

the disease and its effects on society. Compartmental models are a very general modeling technique, 

often applied to the mathematical modeling of infectious diseases. The population is divided into 

compartments. For example, these compartments can be 𝑆 (susceptible), 𝐼 (infected), or 𝑅 (recovered) 

for the basic model SIR (Anderson & May, 1991). Individuals in the population can shift between 

compartments, and labels can be sorted according to the flow order between the compartments. 

Another epidemic model, SEIR, also has an exposed (𝐸) compartment in addition to the compartments 

in the SIR model. There are many other epidemic models in the literature that can be taken as a basis, 

and all these models have been used in the investigation of the transmission of diseases such as 

tuberculosis, HIV, SARS, and MERS coronaviruses, etc. (Newman, & Girvan 2004; Liu & Zhang, 

2011; Sorensen et al., 2012; Rahman et al., 2016; Kim et al., 2021). In 2016, Al-Asouad et al. used the 

stability analysis of dynamical systems in the analytical examination of mathematical models in the 

MERS-CoV epidemic and concluded that endemic stability would be ensured by the isolation method 

to prevent the spread of MERS-CoV. Budhwar and Daniel (2017) used a combination of SEIR and SI 
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models for humans and mosquitoes, respectively, to investigate the stability of the model generated for 

malaria. With the COVID-19 epidemic, interest in epidemic mathematical models has increased, and 

many researchers have considered using epidemic mathematical models to predict the future of the 

epidemic and its effects on society. The original version of the SEIR model, which is one of the 

classical models, or the revised version of the model, in which new parameters such as quarantine, 

hospitalization, and vaccination were added, were used in many COVID-19 studies (He et al., 2020; 

Ivorra et al., 2020; Ahmed et al., 2021a). In these studies, local or global stability analyses of the 

models were performed. Bugalia et al. (2020) have developed a new epidemic model for COVID-19, 

including quarantine and hospitalization. This model consists of compartments that are susceptible 

individuals, quarantined for isolation, asymptomatic self-quarantined individuals, and asymptomatic 

individuals. In 2020, Ndaïrou et al. added the super-spreaders class to mathematical modeling of 

transmission dynamics in the Chinese province of Wuhan  (Ndaïrou,  et al., 2020). Zeb et al. (2020) 

developed a new model including an isolation class. Moreover, mathematical models incorporating 

asymptomatic and symptomatic infected compartments were formulated (Biswas et al., 2020; Ahmed 

et al., 2021b). Ahmad et al. (2021) suggested a new model, consisting of a susceptible class 𝑆(𝑡), the 

healthy (resistive) class 𝐻(𝑡), the infected class 𝐼(𝑡), and the quarantine class 𝑄(𝑡). In the study of 

Yavuz et al. (2021), the effect of vaccination on the spread of COVID-19 was examined. In addition to 

the studies mentioned above, various mathematical models have been developed to understand the 

dynamics of the spread of COVID-19 disease. Recently, researchers have extensively investigated 

COVID-19 from different aspects through these new mathematical models. These studies focused on 

stability theory, numerical simulation, and global local dynamics (Halloran et al., 2002; Iboi et al., 

2020; Ivorra et al., 2020; Samui et al., 2020; Singh et al., 2021). This study examines the COVID-19 

disease’s spread in Turkey using a new extended SEIR-type dynamical model. The model separates 

the population into compartments for those who are susceptible, exposed, infected, hospitalized, and 

recovered.  

Mahata et al. (2022) developed numerical solution methods for a model system with vaccination 

strategies using the Adam-Bashforth-Moulton approach. In addition to numerical solutions of 

vaccination scenarios, the stability of model at equilibrium points with the time delay parameter was 

also investigated. Ottaviano et al. (2022) examined the stability of a SAIRS-type epidemic model, 

specifically considering the impact of symptomatic and asymptomatic infected individuals. Fractional-

order SEIR-type models and discrete-time epidemic models were used to characterise the dynamics of 

COVID-19 outbreaks (Paul et al., 2022; Khalaf et al., 2023; Li et al., 2023;). In addition, stability 

analyses of fractional-order epidemic models were performed for different virus transmissions such as 

Nipah and Dengue (Baleanu et al., 2023; Gu et al., 2023). 

An extended SEIR-type dynamic model is used in this work to look into the COVID-19 disease's 

spread throughout Turkey. It is critical to investigate more thorough models that take into account 

many aspects affecting disease transmission in response to a pandemic like COVID-19. Therefore, we 

provide an epidemiological model that also includes those who must be hospitalized due to a major 

infection, in addition to the traditional compartments of susceptible, exposed, infected, and recovered 

individuals. It also allows us to have a better understanding of the potential cost to the healthcare 

system and the impact of hospitalization rates on outbreak control. 

Additionally, we consider data from Turkey that cover three different time periods, each of 

which is associated with the predominance of a certain COVID-19 variant. We seek to provide a 

clearer picture of the dynamics of the outbreak and its response to vaccination attempts by including 

real-world data into our model. We assess the efficacy of vaccination efforts at various pandemic 
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stages through numerical simulations and sensitivity studies, and we highlight the crucial variables that 

affect the outbreak's trajectory. 

The findings of this study help to clarify the function of vaccination in combating the COVID-19 

pandemic and new epidemic diseases, especially in light of newly developing variations and probable 

modifications in healthcare requirements. This study emphasizes the value of timely and focused 

vaccination programs to lessen the virus's effects and offers the framework for a well-informed public 

health strategy to battle COVID-19 and upcoming pandemics. 

 
Figure 1: SEIHR model’s flow diagram represents the susceptible (S), exposed (E), infected (I),  

hospitalized (H) and recovered (R) individuals) 

MATERIALS AND METHODS  

This study is based on the SEIR model to provide a new perspective on the spread of epidemic 

diseases, by adding a new variable, hospitalisations and a new parameter vaccination. The SEIR model 

is very important for the dynamic representation of changes over time and the spread of infection, as it 

also takes into account exposed individuals, which is one of the main components of epidemics. The 

inclusion of an exposed compartment in the SEIR model allows a more realistic modelling of disease 

contagion and transmission. This component describes the latent or incubation period that an infected 

person goes through before transmitting the disease. This means that the person is infected and has the 

capacity to spread the disease, even if they are not currently symptomatic. This improves the 

representation of the spread of real world epidemics and helps to develop more effective disease 

control strategies. 

In this section, we describe the methodology and equipment we employed to examine the 

dynamics of an epidemic model that takes vaccination and hospitalization into account. We outline the 

information sources, mathematical constructions, and numerical approaches used to examine how 

vaccination affects the transmission of disease.  

Formulation of the model 

𝑁(𝑡), representing the total population at a given time, is classified into five groups: susceptible 

(𝑆), exposed (𝐸), infected (𝐼), hospitalized (𝐻), and recovered (𝑅). It is assumed that the total 

population 𝑁 = 𝑆(𝑡) +𝐸(𝑡) +𝐼(𝑡) +𝐻(𝑡) +𝑅(𝑡) is constant. By including the hospitalized compartment in 

the SEIR model, a new model is created that takes into consideration a parameter associated with the 

vaccination impact. The following system of ordinary differential equations illustrates a SEIR-type 

deterministic model of COVID-19 transmission in the community: 

𝑑𝑆(𝑡)

𝑑𝑡
= 𝜇 𝑁 − 𝛽𝐼(𝑡)

𝑆(𝑡)

𝑁
− 𝜈 𝑆(𝑡) − 𝑑 𝑆(𝑡) 

𝑑𝐸(𝑡)

𝑑𝑡
= 𝛽𝐼(𝑡)

𝑆(𝑡)

𝑁
− 𝜎𝐸(𝑡) − 𝑑 𝐸(𝑡) 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝜎𝐸(𝑡) − 𝛼𝐼(𝑡) − 𝜖𝐼(𝑡) − 𝑑 𝐼(𝑡)                                                                                                          (1) 
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𝑑𝐻(𝑡)

𝑑𝑡
= 𝛼𝐼(𝑡) − 𝜃𝐻(𝑡) − 𝑑 𝐻(𝑡) 

𝑑𝑅(𝑡)

𝑑𝑡
= 𝜃𝐻(𝑡) + 𝜖𝐼(𝑡) + 𝜈 𝑆(𝑡) − 𝑑 𝑅(𝑡) 

New variables can be defined using fractions such as 𝑆 =
𝑆

𝑁
, 𝐸 =

𝐸

𝑁
, 𝐼 =

𝐼

𝑁
, 𝐻 =

𝐻

𝑁
, and 𝑅 =

𝑅

𝑁
  in 

order to normalize the model. The following equations system, with 𝑆 + 𝐸 + 𝐼 + 𝐻 + 𝑅 = 1, is 

obtained if we rescale the system (1). 

𝑑𝑆

𝑑𝑡
= μ − β𝐼𝑆 − ν 𝑆 − 𝑑 𝑆 

𝑑𝐸

𝑑𝑡
= β𝐼 𝑆 − σ𝐸 − 𝑑 𝐸 

𝑑𝐼

𝑑𝑡
= σ𝐸 − α𝐼 − ϵ𝐼 − 𝑑 𝐼                                                                                                                                       (2) 

𝑑𝐻

𝑑𝑡
= α𝐼 − θ𝐻 − 𝑑 𝐻 

𝑑𝑅

𝑑𝑡
= θ𝐻 + ϵ𝐼 + ν 𝑆 − 𝑑 𝑅 

where 𝜇 and 𝑑 denote natural human birth and death rates, respectively. The contact rate between 

susceptible and exposed individuals is represented by 𝛽; 𝜈 is the vaccination rate of the susceptible 

population; 𝜎 is the transmission coefficient of exposed to infected populations; 𝛼  is the rate of 

transfer of infected individuals to hospitalized individuals; 𝜖 is the transmission coefficient of infected 

to the recovered class; 𝜃 is the recovery rate of hospitalized individuals. The proposed model’s 

flowchart is presented in Fig. 1. Moreover, system (2) is completed with initial conditions 𝑆(0) =

𝑆0 ≥ 0,  𝐸(0) = 𝐸0 ≥ 0,  𝐼(0) = 𝐼0 ≥ 0,  𝐻(0) = 𝐻0 ≥ 0,  𝑅(0) = 𝑅0 ≥ 0. 

Equilibrium points and stability analysis 

The disease-free and endemic equilibrium points need to be determined for stability analysis.  

The equilibrium points of the system can be found by solving the following system: 

𝑑𝑆

𝑑𝑡
= μ − β𝐼𝑆 − ν 𝑆 − 𝑑 𝑆 = 0 

𝑑𝐸

𝑑𝑡
= 𝛽𝐼 𝑆 − σ𝐸 − 𝑑 𝐸 = 0 

𝑑𝐼

𝑑𝑡
= σ𝐸 − α𝐼 − ϵ𝐼 − 𝑑 𝐼 = 0                                                                                                                              (3) 

𝑑𝐻

𝑑𝑡
= α𝐼 − θ𝐻 − 𝑑 𝐻 = 0 

𝑑𝑅

𝑑𝑡
= θ𝐻 + ϵ𝐼 + ν 𝑆 − 𝑑 𝑅 = 0 

Disease-free equilibrium point  

When there is no disease spread and the infected class 𝐼 is equal to zero, disease-free equilibrium 

occurs. If system (3) is solved using the 𝐼 =  0 argument, the disease-free equilibrium point 𝐸0 is 

obtained as follows: 

  𝐸0(𝑆, 𝐸, 𝐼, 𝐻, 𝑅) = (𝑆0,0,0,0, 𝑅0) = (
μ

𝑑+ν
, 0,0,0,

𝑣μ

𝑑(𝑑+ν)
)                                                                           (4) 

The expected number of secondary cases produced by a typical infected individual in an entire 

susceptible population per unit of time is referred to as the basic reproduction number  ℛ0. It is 
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determined using the matrices with the next-generation method (Diekmann et al., 1990). Based on the 

system (2), an equation is constructed containing the exposed and infected population classes. 

According to the definition of ℛ0, the matrices ℱ and 𝒱, which are the production of the new disease 

and the disease transition, respectively, for the system (2), are expressed by 

ℱ = [
𝛽𝐼𝑆
0
0

],    𝒱=[

(𝜎 + 𝑑)𝐸
−𝜎𝐸 + (𝛼 + 𝜖 + 𝑑)𝐼

−𝛼𝐼 + (𝜃 + 𝑑)𝐻
].                                                                                                    (5) 

The Jacobian matrices of ℱ and 𝒱 are computed at disease-free equilibrium (DFE) point and 

found as 

𝐹 = [
0 𝛽𝑆0 0
0 0 0
0 0 0

] ,   V = [
σ +  𝑑 0 0
−σ  α + ϵ + 𝑑 0
0 −α θ +  𝑑

]. 

 

It is also necessary to calculate 𝑉−1 for basic reproduction number. 

𝑉 −1=

[
 
 
 
 

1

(𝜎+𝑑)
0 0

𝜎

(𝛼+𝜖+𝑑)(𝜎+𝑑)

1

(𝛼+𝜖+𝑑)
0

𝜎𝛼

(𝜎+𝑑)(𝛼+𝜖+𝑑)(𝜃+𝑑)

𝛼

(𝜃+𝑑)(𝛼+𝜖+𝑑)

1

(𝜃+𝑑)]
 
 
 
 

 

From the definition of repruduction number in next-generation method, it is necessary to compute 

𝐷 = 𝐹𝑉−1. 

𝐷 = [

𝛽𝜎𝑆0

(𝜎 + 𝑑)(𝛼 + 𝜖 + 𝑑)

𝛽𝑆0

(𝛼 + 𝜖 + 𝑑)
0

0 0 0
0 0 0

] 

The matrix 𝐷 = 𝐹𝑉−1, which is called the next-generation matrix, is a kind of measure of how 

each class changes multiplicatively to the next generation. This means that the entry (i, k) of the matrix 

D is the expected number of new infections in compartment i produced by the infected individual 

initially introduced into compartment k. Consider an eigenvector, Y, which is also a vector of infected 

classes. The eigenvector equation 𝐷𝒀 = λ𝒀 is used to determine the changes in the quantity of Y, 

which is composed of infected classes, at the equilibrium point, where λ indicates eigenvalues. Since Y 

represents the infected classes, if  |λ| < 1, Y will decrease, indicating that the infection will disappear. 

However, if   |λ| > 1, the disease is spreading. If there is an eigenvalue with an absolute value greater 

than 1, it can be used to determine whether the disease is spreading. This means that we only need to 

analyse the dominant eigenvalue, or the eigenvalue with the largest absolute value. Thus, the dominant 

eigenvalue of 𝜌(𝐹𝑉−1) provides the characteristics we need in the basic reproduction number 

(Castillo-Garsow et al., 2020).  

To find  the  largest eigenvalues of 𝐹𝑉−1,  the corresponding matrix  is considered. 

[

𝛽𝜎𝑆0

(𝜎 + 𝑑)(𝛼 + 𝜖 + 𝑑)
− 𝜆

𝛽𝑆0

(𝛼 + 𝜖 + 𝑑)
0

0 −𝜆 0
0 0 −𝜆

] 

The spectral radius of the next generation matrix ρ(𝐹𝑉−1) is the basic reproduction number, 

seen as below. 
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ℛ0 =
𝜎𝛽𝑆0

(𝜎 + 𝑑)(𝛼 + 𝜖 + 𝑑)
                                                                                                                                    (6) 

The local and global stability of system (2) at DFE point 𝐸0 are demonstrated by the following 

theorems. 

Theorem 1.  If ℛ0< 1, the system (2) is locally asymptotically stable at the DFE point 𝐸0 . 

PROOF. To find the stability of the model, the Jacobian matrix must be evaluated. The Jacobian 

matrix at DFE point (𝑆0, 0,0,0, 𝑅0) is presented as follows. 

𝐽(𝐸0) =

[
 
 
 
 
−d 0 −βS0 0 γ

0 −σ − d βS0 0 0
0 σ −α − d 0 0
0 0 α −θ − d 0
0 0 0 θ −γ − d]

 
 
 
 

                                                                                  (7) 

Characteristic equation of corresponding Jacobian matrix 𝐽(𝐸0) is 

(−𝑑 − λ)(−θ − 𝑑 − λ)(−𝑑 − ν − λ) [(−σ − 𝑑 − λ)(−α − ϵ − 𝑑 − λ) −
σβμ

𝑑+ν
].                                 (8) 

While the three eigenvalues are obtained directly from the above equation  λ1 = −𝑑, λ2 =

−(θ + 𝑑), λ3 = −(𝑑 + ν) , the Routh–Hurwitz criterion for the sign of the real parts of the other two 

eigenvalues λ4 and λ5 is used (Marghitu, 2001).  The following characteristic equation, representing 

the remaining part of the det(𝐽(𝐸0) − λ𝐼) in Eq. (8) obtained from the Jacobian matrix, is considered 

as Routh–Hurwitz criterion for second order polynomials:  λ2 + 𝑎λ + 𝑏 = 0 where  𝑎 = α + ϵ + σ +

2𝑑 > 0   and 𝑏 = (σ + 𝑑)(α + ϵ + 𝑑)(1 − ℛ0). 

If ℛ0 < 1, then it is seen that 𝑏 > 0. Therefore, the Routh–Hurwitz criterion, 𝑎 > 0 and 𝑏 > 0, 

can be verified and it is concluded that other two eigenvalues have negative real part (Marghitu, 2001). 

Hence, if ℛ0 < 1,  the system (2) is locally asymptotically stable at the DFE point 𝐸0. 

Theorem 2. If ℛ0 < 1, the system (2) is globally asymptotically stable at DFE point 𝐸0. 

PROOF. To prove the global stability of the system (2) at DFE point 𝐸0, the Lyapunov function 

given in (9) is considered. 

𝐿 = 𝑆 − 𝑆0 − 𝑆0 ln
𝑆

𝑆0
+

σ

(σ + 𝑑)(α + ϵ + 𝑑)
𝐸 +

1

(α + ϵ + 𝑑)
𝐼                                                                (9) 

It is obvious that 𝐿(𝐸0) = 0. The derivative of 𝐿 with respect to time is found by 

𝐿′ = 𝑆′ − 𝑆0 𝑆′

𝑆
+

𝜎

(𝜎+𝑑)(𝛼+𝜖+𝑑)
𝐸′ +

1

(𝛼+𝜖+𝑑)
𝐼′.                                                                                      (10) 

If the derivatives 𝑆′, 𝐸′ and 𝐼′ are substituted, we get 

𝐿′ = (1 −
𝑆0

𝑆
) (μ − β𝐼𝑆 − ν𝑆 − 𝑑𝑆) +

σ

(σ+𝑑)(α+ϵ+𝑑)
(β𝐼𝑆 − σ𝐸 − 𝑑𝐸) +

1

(α+ϵ+𝑑)
(σ𝐸 − α𝐼 − ϵ𝐼 − 𝑑𝐼). 

After rearranging the above equation, we have 

𝐿′ = −𝑆(ν + 𝑑) (1 −
𝑆0

𝑆
)(1 −

𝑆0

𝑆
+

β𝐼

ν + 𝑑
) + 𝐼(ℛ0 − 1) −

σ𝐸

α + ϵ + 𝑑
+

σ𝐸

α + ϵ + 𝑑
(11) 

     ≤ −𝑆(ν + 𝑑) (1 −
𝑆0

𝑆
)
2

+ 𝐼(ℛ0 − 1) .                                                (12) 

We obtain from the Eq. (12) that if  ℛ0 < 1, this means that 𝐿′ < 0 and the system is globally 

asymptotically stable at the DFE point. 
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Endemic equilibrium point 

The system (3) is solved without the assumption of 𝐼 = 0 for the endemic equilibrium point 

denoted by 𝐸∗ = (𝑆∗, 𝐸∗, 𝐼∗, 𝐻∗, 𝑅∗). 

μ − β𝐼∗𝑆∗ − ν 𝑆∗ − 𝑑 𝑆∗ = 0  

β𝐼∗ 𝑆∗ − σ𝐸∗ − 𝑑 𝐸∗ = 0 

σ𝐸∗ − α𝐼∗ − ϵ𝐼∗ − 𝑑 𝐼∗ = 0                                                                                                                 (13) 

α𝐼∗ − θ𝐻∗ − 𝑑 𝐻∗ = 0 

θ𝐻∗ + ϵ𝐼∗ + ν 𝑆∗ − 𝑑 𝑅∗ = 0 

From the third and fourth equation of (13), we obtain 

𝐸∗ =
α + ϵ + 𝑑

𝜎
𝐼∗,  𝐻∗ =

α

θ + 𝑑
𝐼∗                                                                                                                                                               (14) 

Inserting 𝐸∗ in the second equation of (13), we get 

𝑆∗ =
(σ + 𝑑)(α + ϵ + 𝑑)

𝛽𝜎
.                                                                                                                                  (15) 

Substituting  𝐻∗, 𝐸∗ and 𝑆∗ in the last equation of (13), yields 

𝑅∗ = (
θα

𝑑(θ + 𝑑)
+

ϵ

𝑑
) 𝐼∗ +

ν(σ + 𝑑)(α + ϵ + 𝑑)

𝑑βσ
.                                                                                        (16) 

Using 𝑆∗ in the first equation of the system (13), we get 𝐼∗ as 

𝐼∗ =
𝑑+ν

β
(

βμσ

(𝑑+ν)(σ+𝑑)(α+ϵ+𝑑)
− 1) =

𝑑+ν

β
(ℛ0 − 1).                                                                             (17) 

Thus, we conclude with the following theorem. 

Theorem 3. The endemic equilibrium point 𝐸∗ of the system (2) is locally asymptotically stable 

if ℛ0 ≥ 1 . 

PROOF. Stability analysis is performed by finding the eigenvalues at the endemic equilibrium 

point 𝐸∗ using the Jacobian matrix. It is obvious that if ℛ0 ≥ 1, then 𝐸∗ exists and is positive. 

The characteristic polynomial of the Jacobian matrix at 𝐸∗  is given by det(𝐽(𝐸∗) − 𝜆𝐼) where 𝜆 is 

the eigenvalue and 𝐼 is the identity matrix 

|
|

−β𝐼∗ − 𝑑 − ν − λ 0 −β𝑆∗ 0 0
β𝐼∗ −σ − 𝑑 − λ β𝑆∗ 0 0
0 σ −α − ϵ − 𝑑 − λ 0 0
0 0 α ∗ −θ − 𝑑 − λ 0
ν 0 ϵ 0 −𝑑 − λ

|
|  . 

Substituting the 𝐼∗ and 𝑆∗   and solving for λ, we obtain 

det(𝐽(𝐸∗) − λ𝐼) = (−𝑑 − λ)(−θ − 𝑑 − λ)[λ3 + 𝑎λ2 + 𝑏λ + 𝑐]                                                       (18) 

where 

𝑎 = (𝑑 + ν)ℛ0 + σ + α + ϵ + 2𝑑 

𝑏 = (𝑑 + ν)(σ + α + ϵ + 2𝑑)ℛ0 

𝑐 = (𝑑 + ν)(σ + 𝑑)(α + ϵ + 𝑑)(ℛ0 − 1) 

It is seen from the equation (18) that the first two eigenvalues are  λ1 = −𝑑 and λ2 = −(θ + 𝑑). 

The other eigenvalues are the roots of the characteristic equation given by 𝑃 in Eq. (19). 

𝑃 = λ3 + 𝑎λ2 + 𝑏λ + 𝑐 = 0                                                                                                                               (19) 
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The Routh-Hurwitz criterion for the characteristic polynomial is used to interpret the signs of the 

real parts of the roots. The roots of the characteristic equation have a negative real part if and only if 

𝑎 > 0, 𝑏 > 0, and 0 < 𝑐 < 𝑎𝑏. It is clear that 𝑎, 𝑏 > 0. Moreover, 𝑐 > 0  when ℛ0 > 1. It is 

necessary to show  𝑎𝑏 − 𝑐 > 0. Calculating and simplifying 𝑎𝑏 − 𝑐, we have 

𝑎𝑏 − 𝑐 = (𝑑 + ν)2ℛ0
2(α + σ + ϵ + 2𝑑) + (𝑑 + ν)ℛ0(α + σ + ϵ + 2𝑑)2 − σβμ

+ (𝑑 + ν)(σ + 𝑑)(α + ϵ + 𝑑).                                                                                               (20) 

From the ℛ0 > 1 condition and expression of ℛ0, we have σβμ > (𝑑 + ν)(σ + 𝑑)(α + ϵ + 𝑑). 

Hence, as seen from Eq. (20), if ℛ0 > 1, then 𝑎𝑏 − 𝑐 > 0, which means that all roots of the 

characteristic polynomial (19) have negative real parts. Therefore, system (2) is locally asymptotically 

stable if ℛ0 > 1. 

Numerical simulation 

In addition to mathematical modeling, determining whether this model works with actual data is 

essential to the validity of the model. Data can be compared with numerical solution results using a 

curve fitting approach. The parameters of the system are adjusted to fit the data collected within a 

certain time period, within a margin of relatively small error. To determine the dispersion of data 

points in regression analysis, the sum of squares is a statistical method that is generally regarded as 

reliable. The function that best fits the data is determined mathematically using the sum of squares. 

In this section, we use the nonlinear curve fitting strategy to obtain the unknown parameters of 

the proposed model listed in Table 1. The objective of the graph fitting procedure is to define the 

residual sum of squares (RSS) as 

𝑅𝑆𝑆 = ∑(𝑓(𝑥𝑖) − 𝑦𝑖)
2

𝑛

𝑖=1

 

where 𝑦𝑖 represents 𝑖𝑡ℎ value of the given data and 𝑓(𝑥𝑖) is the predicted value from the solution of 

the model. The error rate was computed as the sum of squares of the differences between the model 

solutions 𝑓(𝑥𝑖) and the data 𝑦𝑖. The MATLAB programming language was used to insert the dynamic 

system solution curve into the data with a minimum of error as the selected parameter values changed. 

Data was collected between March 24 and July 1, 2020, which coincides with the beginning of 

the COVID-19 pandemic; between July 22 and October 29, 2021, when the Delta variant 

predominated; and between February 7 and March 29, 2022, when the Omicron form predominated. 

The number of cases and the model's numerical results were compared to the data, which was acquired 

from the Turkey Ministry of Health's website. For the SEIHR model, a graph was inserted into the data 

with the parameters σ, α, ν and 𝑑. The fitted values of these parameters for three cases are given in 

Table 2. The graphs drawn with fitted values are seen in Figures 2, 3, and 4. The black solid line in 

these figures represents the model's best-fit curve, whereas the solid red circles show the real COVID-

19 cases. 

Table 1. Estimated and best fitted values of the parameters used in the proposed COVID-19 model 
Parameters Numerical value 

𝜇 0.2 

𝛽 2.5 

𝜖 0.7 
𝜃 0.1 
𝜎 fitted 
𝛼 fitted 
𝜈 fitted 

𝑑 fitted 
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Table 2.  Best fitted values of the parameters used in the proposed COVID-19 model after the graph fitting 

procedure 
Parameters 24.03-01.07 2020 22.07-29.10 2021 07.02-29.03 2022 

𝜎 0.278 0.06 0.076 

𝛼 1.22 1.66 0.112 

𝜈 0.275 0.04 1.94 

𝑑 0.008 0.06 0.015 

RESULTS AND DISCUSSION  

The purpose of this study was to construct a mathematical model describing the dynamics of 

COVID-19. While developing this model, the frequently used mathematical epidemiology literature 

was taken into account. Moreover, by including the hospitalized variable 𝐻(𝑡) and the vaccination 

parameter ν, the variation in the number of hospitalizations and the effectiveness of vaccination were 

reviewed. 

A stability analysis was performed on the model. In the case of ℛ0 < 1, the global and local 

asymptotical stability analyses are confirmed for the disease-free equilibrium point 𝐸0. Furthermore, 

the endemic equilibrium point 𝐸∗ is locally asymptotically stable for ℛ0 > 1. 

Since COVID-19 has been around for four years, the virus has undergone mutations, and 

variants have evolved over time. Some variants of COVID-19, such as Delta and Omicron, are more 

likely to spread among humans, and even though the Omicron variant is less severe than Delta, it is 

still dangerous, especially for those who have not received the COVID-19 vaccine. In addition to that, 

they also have much higher rates of reproduction at baseline. In this study, these two variants are 

discussed as well as the original COVID-19 virus. The values of α, σ, ν, and 𝑑 variables were 

estimated using the graphical fit method during the periods when these two variants were dominant.  

The values obtained are given in Table 2. Vaccination appears to have had a positive impact on 

survival during the periods where Delta and Omicron variants were dominant. It is also seen from this 

table that as the vaccination rate increased for these highly contagious variants, the rate of 

hospitalization decreased. 

 
Figure 2: Comparison of our SEIHR model (black solid curve) after performing curve fitting method to the Daily COVID-

19 cases (red filled circles) time series in Turkey from March 24 to July 1, 2020, when the orginal COVID-19 predomintes 

 

 

 

6000 
 

 
5000 

 

 
4000 

 

 
3000 

 

 
2000 

 

 
1000 

 

 
0 

0 20 40 60 80 100 120 

time in days 

Figure 2: Comparison of our SEIHR model (black solid curve) after performing curve fitting method to the 

daily COVID-19 cases (red filled circles) time series in Turkey from March 24 to July 1, 2020, when the 

original COVID-19 predominates. 
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Figure 3: Comparison of our SEIHR model (black solid curve) after performing curve fitting method to the daily COVID-

19 cases (red filled circles) time series in Turkey from 22 July to October 29, 2021, when the delta variant predomintes 

 
Figure 4: Comparison of our SEIHR model (black solid curve) after performing curve fitting method to the daily COVID-

19 cases (red filled circles) time series in Turkey from February 07 to March 29, 2022, when the omicron variant 

predomintes 

CONCLUSION 

In this study, we conducted a comprehensive stability analysis of an epidemic model that 

incorporates vaccination and hospitalization dynamics. We obtained both disease-free and endemic 

equilibrium points, which serve as key reference points for our stability analysis. 

We rigorously developed local stability conditions for these equilibrium points and looked into 

the overall stability of the disease-free equilibrium point. 

We used data from Turkey, representing three unique times corresponding to the emergence of 

different forms of the COVID-19 virus, to further validate our model and evaluate its applicability in 

the real world. We included this data into our model through numerical simulations and graph fitting to 

assess the model's effectiveness in actual-world circumstances. 
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Figure 3: Comparison of our SEIHR model (black solid curve) after performing curve fitting method to the 

daily COVID-19 cases (red filled circles) time series in Turkey from July 22 to October 29, 2021, when the 

delta variant predominates. 
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Figure 4: Comparison of our SEIHR model (black solid curve) after performing curve fitting method to the 

daily COVID-19 cases (red fillied circles) time series in Turkey from February 07 to March 29, 2022, when the 

omicron variant predominates. 
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Our results support the effectiveness of vaccination strategies and provide important information 

for the control of an epidemic outbreak. Future studies will focus on investigating the global stability 

of the present model at the endemic equilibrium point and confirming its reliability under different 

initial conditions and parameter values. In addition, we plan to consider the effects of time delays in 

the model structure, namely those corresponding to the incubation period of the virus. By taking this 

into account, we can better understand pandemic dynamics and predict and stop the spread of 

infectious diseases such as COVID-19. 
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