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Abstract – Antibiotic resistance is a threat that renders bacteria ineffective against antibiotics and makes it difficult to treat 

infections. Therefore, finding new target compounds is essential in discovering and developing new antibiotics. In this study, we 

developed an artificial intelligence algorithm that can predict and explain the pIC50 values for four antibiotic targets (Penicillin 

Binding Proteins (PB), β-Lactamase (BL), DNA Gyrase (DG), and Dihydrofolate Reductase(DR)). The algorithm uses molecular 

fingerprints of the molecules to predict the pIC50 values using the random forest regression method. We created the algorithm 

in a transparent and interpretable way. We used permutation feature importance (PFI) and Shapley explanations methods to 

identify the different molecular fingerprints that have the most influence on the pIC50 values. The results obtained from these 

methods show that different molecular fingerprints are essential for different antibiotic targets. According to the permutation 

importance results, KRFPC1646 (number of hydrogen bond donors of the compound) for BL and DR targets; 579 (a substructure 
with 5 bonded radius around the atom) for DG target; SubFPC182 (number of aromatic rings in the molecule) for PB target, are 

important fingerprints. With explainable artificial intelligence (XAI) (SHAP), KRFPC1646 (the number of hydrogen bond 

donors of the compound) for BL; KRFPC4274 (C1CCCCC1) for DR; 401 (C1CCCCC1) for DG; SubFPC182 (number of 

aromatic rings in the molecule) were determined as important fingerprints for PB. These results demonstrate the effectiveness 

and potential of using molecular fingerprints with explainable artificial intelligence to find new antibiotic candidates. 
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I. INTRODUCTION 

Antibiotics have formed the basis of modern medicine since 

the discovery of Penicillin, and the continued effectiveness of 

these drugs is uncertain due to the global spread of antibiotic 

resistance[1]. Furthermore, the development of new antibiotics 

has been declining due to a lack of economic incentives in the 

private sector, exacerbating this problem [2, 3]. Antibiotic 
resistance is a problem that reduces the effectiveness of 

existing antibiotics and complicates the treatment of 

infections. Unfortunately, the current antimicrobial crisis, 

which is to blame for 700,000 deaths globally each year, is the 

result of the enticing gradual growth of antibiotic resistance 

[4]. Therefore, discovering new antibiotics can contribute to 

health by providing alternative options for treating resistant 

infections. Antibiotics are one of the cornerstones of modern 

medicine, and bacterial resistance is known to occur to a 

minimal extent immediately after or immediately after the 

introduction of an antimicrobial agent [5-9]. It is stated that 
there are significant differences between organisms and 

antibiotics at the time of the emergence of resistance. New 

antibiotics stimulate innovation in medicine and 

pharmacology. It allows for the improvement of existing 

treatment methods and the development of more effective, 

safer antibiotics. This diversifies treatment options and can 

help control infections more effectively. In the last two 

decades, critical perspectives such as resistance gene 

detection, genome sequencing, and rapid pathogen 

identification have been developed to develop new antibiotics. 

But technologies such as artificial intelligence (AI), machine 

learning (ML), and neural networks (NN) process enormous 
amounts of data almost instantly, ushering in a new golden age 

in drug discovery and synthesis [10, 11]. Table 1 summarizes 

AI's studies on antibiotic drugs. Traditional drug discovery 

techniques require high costs, long synthesis, testing and 

application processes, expensive equipment and extensive 

human resources, which are the most difficult to obtain. 

Alternatively, automated computer-assisted drug discovery 

techniques are more economical and rapid, enabling faster 

progression to preclinical and clinical testing phases [12]. 

https://dergipark.org.tr/en/pub/ijmsit
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Table 1.  Artificial Intelligence technologies used in antibiotics studies. 

Highlights Technology Ref. 

The use of spectroscopy to 
identify specific biochemical 
fingerprints and machine learning 
to evaluate and predict the mode 
of action and potency of various 
antibiotics. 

ML + high-
throughput Fourier-
transform infrared 
spectroscopy(FTIR) 

[13] 

Estimating phenotypic changes 

and antibacterial potency of 
various substances using a 
random forest model. 

ML-random forest 

model 

[14] 

Estimation of possible 
antibacterial agents using DL and 
NN by searching databases. 

DL + NN [15] 

Using ML to search and find 

possible candidates with beta-
lactamase inhibition properties. 

ML-random forest 

model 

[16] 

Using neural networks to 
distinguish between bacteriocin-
containing sequences and those 
containing con-bacteriocin. 

RNN [17] 

Using ANN to build 
computational chemistry models, 
identify and classify antimicrobial 
compounds. 

ANN [18] 

Evaluating antimicrobial 
susceptibility and phenotypic 
polymyxin resistance using ML. 

ML [19] 

Development of an ML algorithm 
for identifying toxin-like 
substances that also function as 
antimicrobial agents. 

ML [20] 

Applying NN to examine the 
characteristics and composition of 
amino acids and peptides in order 
to find fresh antibacterial 

peptides. 

NN [21] 

Using Mask-Loss 1D 
convolutional neural network 
(ML-ConvNet) for antibiotic 
resistance prediction in datasets 
with missing labels 

ML-ConvNet [22] 

Using a ligand-based virtual 
scanning method, a deep neural 
network (DNN) model called a 
multilayer perceptron (MLP) is 
created to categorize molecules 
into "active" and "inactive" 
substances. 

DNN, MLP [23] 

Examining the capacity of logistic 

regression, conditional trees and 
C5.0 rule-based models to 
evaluate the impact of critical 
interpretable prediction 
approaches using a dataset. 

logistics regression [24] 

 

This study aims to apply an interpretable algorithm that 

supports the prodrug discovery stage against Penicillin 

Binding Proteins (PB), β-Lactamase (BL), DNA Gyrase (DG), 

and Dihydrofolate Reductase (DR) enzymes on the deficiency 

seen in the literature. Our study offers a transparent and 

interpretable perspective on new antibiotic discovery based on 

various molecular fingerprints (Figure 1). 

 

Fig. 1. Workflow of molecular fingerprint similarity study against Penicillin Binding Proteins, β-Lactamase, DNA Gyrase, and Dihydrofolate Reductase 

enzymes with explainable artificial intelligence methods. 

II. MATERIALS AND METHOD 

The examination of candidate antibiotics within the 
framework of molecular fingerprints (Klekota Roth Count, 

Circular Fingerprint and Infrastructure Fingerprint Number) 

by XAI is shown in Figure 1. In this study, new Penicillin 

Binding Proteins (PBP), and β-Lactamase (BL), DNA Gyrase 

(DG), and Dihydrofolate Reductase (DR) enzymes were 

analyzed using ChEMBL 32, PubChem, BindingDB 

databases. The molecular properties of anti-antibiotic 

candidates were predicted by XAI with the help of molecular 

fingerprints [25-27]. The research proceeds in the form of data 

collection, determination of molecular fingerprints, and 

application of ML and XAI. Python version 3.11 was used to 

conduct the research. Matplotlib version 3.7.1, pip version 

22.0.4, Sklearn version 1.2.2, Pandas version 2.0.1, RDkit 

version 2023.3.1, Shap version 0.41.0, eli5 version 0.13.0, sci-
kit-plot version 0.3.7, and NumPy version 1.24.3 were the 
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libraries used throughout the application. The application was 

carried out on a computer with Intel(R) Core (TM) i5-8300H 

CPU 2.30GHz, 64-bit operating system, x64-based processor, 

and 32 GB RAM. 

Data Collection and Preprocessing 

According to the results of the preliminary examinations on 

the ChEMBL and BindingDB databases, since the known 

inhibitors against the selected target protein were mainly 

determined based on IC50, the independent variable IC50 was 

selected in this study, and only compounds with known IC50 

values were collected. The prepared library was constructed 

from the SMILES, ID (ChEMBL or PubChem SID/CID), 

compound detecting institution, and IC50 values of each 

compound. Since the library will consist of 4 different sources, 
in the preprocessing of the libraries, (i) all SMILES were 

converted to canonical format, (ii) they were free of repetitive 

compounds/SMILES, (iii) SMILES in crystalline form were 

desalted, and (iv) IC50 All values were linearized with the -

log(M) transformation (pIC50) by converting Molar units. 

 

Calculation of chemical descriptors and fingerprints 

 

Different sets of "Attributes" were calculated from the 

SMILES of the compounds in the library to make the 

compounds in the four libraries suitable for use in machine 

learning applications. BL and DR are based on the Klekota 
Roth Count, DG Circular Fingerprint, and SBP Infrastructure 

Fingerprint Count attributes. 

 

Permutation Feature Importance (PFI) 

 

Due to the increasing complexity of ML models, better 

explanations are needed on how predictions are made and 

which input properties are most important in a model's 

decision. Also known as model explainability, providing clear 

details and reasons for ML predictions and performance, 

validating and improving models is essential for the ethical 

evaluation of model performance and reliability of results[28, 

29]. One method that can be used to understand and explain 

the models' predictions is through the feature importance (FI) 

calculation, which estimates each feature's contribution to the 

model's predictions [30]. There are various FI techniques, but 

this article uses Permutation Feature Importance (PFI), a PFI 

technique that is very simple to implement and understand. 

RandomForestRegressor model and PFI method were applied 

to antibiotic candidates determined against PBP, BL, DG and 

DR enzymes. Among the data obtained against these enzymes, 

20 important molecular fingerprints were identified, and pre-

screened features for ML and XAI were used. 

Explainable Artificial Intelligence (Shapley Additive 

exPlanation) 

Shapley values are a concept in a collaborative game theory 

that aims to measure each player's contribution to the game. 

The method of obtaining Shapley values was proposed by 

Lioyd Shapley [31] in 1953. Shapley values emerge from the 

context in which "n" players collectively participate, and each 

of the "n" earns a "p" reward that is intended to be distributed 

fairly. Such a contribution is a Shapley value relative to the 

individual players' contribution. Shapley Additive 

Explanations (SHAP) is a method introduced by Lundberg and 

Lee in 2017 for interpreting the estimations of ML models 

through Shapely values [32]. The basic idea of SHAP is to 

calculate Shapley values for each feature of the sample to be 

interpreted, where each Shapley value represents the effect of 

the associated feature on the prediction. In this study, the 

TreeSHAP method was used to determine the molecular 

properties of chemical compounds. The TreeSHAP method is 

an effective method for describing the predictions of decision 

tree-based models. Decision trees to predict the molecular 

properties of chemical compounds can be annotated with the 

TreeSHAP method to determine the contribution of specific 

properties to the prediction [33-35]. 

III. RESULTS 

Data Collection and Preprocessing 

After preprocessing the data in the study, the size of the 

libraries prepared against each target protein group was 

finalized as follows: 2045 specific compounds for β-

Lactamases (BL), 813 specific compounds for DNA Gyrases 

(DG), 306 specific compounds for Dihydrofolate Reductases 

(DR), 132 unique compounds for Penicillin Binding Proteins 

(PB) (Fig. 2). 

Permutation Feature Importance (PFI) 

 

According to the results of the Permutation Feature 

Importance (PFI), KRFPC1646 (0.438), KKRFPC4591 

(0.132), and KRFPC2815 (0.085) fingerprints have an 

excellent importance score against the β-Lactamases (BL) 

target. KRFPC1646 (0.438), KRFPC3180 (0.133), and 

KRFPC4274(0.133) fingerprints are essential against the 

target of Dihydrofolate Reductases (DR). 579(0.054), 376 

(0.054), and 401 (0.051) circular fingerprints against DNA 

Gyrases (DG) targets are essential. Against Penicillin Binding 
Proteins (PB) target, SubFPC182 (0.392), SubFPC17 (0.334), 

and SubFPC291 (0.08) fingerprints are significant (Fig.2). 
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Fig. 2. Ranking of molecular fingerprints by Permutation Feature method. 

 

Explainable Artificial Intelligence (Shapley Additive 

exPlanation) 

When explainable artificial intelligence (SHAP) is applied to 

the studied data sets, KRFPC1646, KRFPC2815, KRFPC4591 

for β-Lactamases (BL); KRFPC4274, KRFPC3180, 

KRFPC2815, KRFPC3616 for Dihydrofolate Reductases 

(DR); 401, 376, 958 for DNA Gyrases (DG); For Penicillin 

Binding Proteins (PB), SubFPC182, SubFPC17 and 

SubFPC128 were determined to be among the critical 

fingerprints (Fig.3). 

 

 

 

 
Fig. 3. Beeswarm, bar and heatmap graphics of SHAP analysis, one of the 

explainable artificial intelligence methods. 
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IV. DISCUSSION 

In this study, we developed an explainable artificial 

intelligence (XAI) algorithm that can predict the pIC50 values 

for four antibiotic targets. Using the random forest regression 

method, the algorithm uses molecular fingerprints of the 

compounds to predict the pIC50 values. The algorithm also 

uses permutation feature importance and Shapley explanations 

methods to identify the molecular fingerprints that have the 

most influence on the pIC50 values. The results obtained from 

these methods show that different molecular fingerprints are 

essential for the four antibiotic targets. These results 
demonstrate the effectiveness and potential of using molecular 

fingerprints with XAI to find new antibiotic candidates. 

Molecular fingerprints are numerical vectors representing 

chemical compounds' structural or physicochemical properties 

[36].  

The results of ShAP analyses show that different molecular 

fingerprints play an important role. Both PFI Dihydrofolate 

Reductases and SHAP β-Lactamases target and methods show 

KRFPC1646 as one of the important fingerprints. KRFPC1646 

fingerprint indicates the number of hydrogen bond donors of 

the compound. This result may suggest that compounds with 

high hydrogen bond donors are more effective against β-
Lactamases and Dihydrofolate Reductases. In our Shap 

results, we present graphs showing the contribution of each 

molecular fingerprint to the pIC50 value. 

On the other hand, we see that the KRFPC1146 fingerprint has 

both the longest and the reddest bar. This indicates that the 

KRFPC1146 fingerprint is the most increasing and the most 

important fingerprint for the pIC50 value for the BL target. 

KRFPC1146 contains a pyridine ring, an amide group, and a 

nitrile group. We see that KRFPC4274 and KRFPC3180 

fingerprints have both the longest and the bluest bars for 

Dihydrofolate Reductases. These fingerprints indicate that 
they are the most decreasing and the most important 

fingerprints for pIC50 value. KRFPC4274 indicates the 

number of hydroxyl groups in the molecule; KRFPC3180 

indicates the number of carbonyl groups in the molecule. For 

DNA Gyrase, 401-376-958 fingerprints have a red bar. This 

indicates that these fingerprints are the most increasing and 

significant for pIC50 value. Circular fingerprints are 

topological fingerprints that encode substructures with a 

certain radius around each atom in the molecule [37]. The 

circular fingerprint 401 represents a substructure with 4 

bonded radii around the atom [38]. Circular fingerprints 376 

represent a substructure with 3 bonded radii around the atom. 
Of the circular fingerprints, 958 represent a hydroxyl group 

found in molecules. The hydroxyl group can affect the 

solubility and acidity of molecules [39]. For Penicillin Binding 

Proteins, we found that the SubFPC182, SubFPC17 and 

SubFPC128 fingerprints had both the longest and the bluest 

bar. SubFPC182 is the number of aromatic rings in the 

molecule; SubFPC17 is the number of hydrogen bond donors; 

SubFPC128 shows the number of carbonyl groups in the 

molecule [40]. It was seen that the SubFPC137 fingerprint had 

the reddest bar. This shows that the SubFPC317 fingerprint is 

the one that reduces the Pic50 value the most. SubFPC137 are 
fingerprints called substructure fingerprint count. This 

fingerprint shows the number of vinylogen ester groups in the 

molecule [41]. The vinylogen ester group is a functional group 

with a carbonyl group attached to an alkene. This group may 

be a property that may affect the interaction of the compound 

with penicillin-binding proteins. The SHAP and PFI methods 

results show that different molecular fingerprints are important 

for different antibiotic targets. These results demonstrate the 

efficacy and potential of using molecular fingerprints and XAI 

to find new antibiotic candidates. In addition to this study, 

some future studies are to estimate and compare pIC50 values 
with different molecular fingerprints and different machine 

learning (ML) methods, to estimate and explain pIC50 values 

for different antibiotic targets, to design new antibiotic 

candidates using predicted pIC50 values, and to synthesize, 

and experimentally confirm the predicted pIC50 values. The 

limitations of this study are that molecular fingerprints may 

not reflect all the structural or physicochemical properties of 

molecules, random forest regression may not be suitable for 

complex and high-dimensional data, permutation feature 

significance and Shapley annotations may be computationally 

costly, and pIC50 values may not be the only determinants of 
antibiotic efficacy. 

V. CONCLUSION 

The explainable algorithm estimates pIC50 values by random 

forest regression method using molecular fingerprints of 

molecules. The algorithm also uses permutation feature 

significance and Shapley annotations to identify the molecular 

fingerprints that have the most influence on pIC50 values. The 

results obtained with these methods show that different 

molecular fingerprints are essential for different antibiotic 

targets. These results demonstrate the efficacy and potential of 

using molecular fingerprints and XAI to find new antibiotic 

candidates. 
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