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Abstract  
In this study, we present a description of Arf numerical semigroups with multiplicity eight and given conductor.  
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Katlılığı 8 Olan Arf Sayısal Yarıgrupları 

 
Öz  

Bu çalışmada, belirli ileticili ve katlılığı sekiz olan Arf sayısal yarı gruplarının tanımlamasını sunuyoruz. 
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INTRODUCTION  

A numerical semigroup 𝑆 is a subset of ℕ =
ℤ+ ∪ {0} such that 𝑆 is closed under addition, 0 ∈  𝑆 

and ℕ\𝑆 is finite (i.e. 𝑆 has finite complement in ℕ). 

It is known that every numerical semigroup 𝑆 is 

finitely generated; that is, there exist some elements 

𝑢1,⋯ , 𝑢𝑝 ∈ 𝑆 (𝑝 ∈ ℤ
+) such that 𝑆 =

 ⟨𝑢1,⋯ , 𝑢𝑝⟩ = 𝑢1ℕ+⋯+ 𝑢𝑝ℕ (Barucci, Dobbs and 

Fontana, 1997; Fröberg, Gottlieb and H𝑎̈ggkvist, 

1987; Rosales and García-Sánchez, 2009). Moreover, 

𝑔𝑐𝑑{𝑢1,⋯ , 𝑢𝑝}  =  1 since this is equivalent to that 

the semigroup 𝑆 has a finite complement in ℕ where 

𝑔𝑐𝑑 the abbreviation for the greatest common divisor 

(Fröberg  et al., 1987). 

The set 𝐴 = {𝑢1,⋯ , 𝑢𝑝} is called the minimal 

system of generators for any semigroup 𝑆, if 𝑆 = ⟨𝐴⟩ 
and no proper subset 𝐴 generates 𝑆. It is known that 

every numerical semigroup 𝑆 has a unique minimal 

system of generators and the cardinality of the 

minimal system of generators of 𝑆 is called the 

embedding dimension of 𝑆, denoted by 𝑒(𝑆). The 

least positive integer in 𝑆 is called the multiplicity of 

𝑆, denoted by 𝑚(𝑆). It is known that the minimal 

system of generators of 𝑆 must contain 𝑚(𝑆), and that 

𝑒(𝑆) ≤ 𝑚(𝑆) (García -Sánchez, Heredia, Karakaş, 

and Rosales, 2017; İlhan and Süer, 2017). Moreover, 

a numerical semigroup 𝑆 is a numerical semigroup of 

maximal embedding dimension if 𝑒(𝑆) = 𝑚(𝑆). 
Another notable element of a numerical semigroup is 

the ratio. The ratio of 𝑆, denoted by 𝑅(𝑆) (in short 𝑅), 

is defined as the least positive integer greater than the 

multiplicity of 𝑆 in the minimal system of generators 

of 𝑆. 
The greatest integer not in 𝑆 is known as the 

Frobenius number of 𝑆, denoted by 𝐹(𝑆), through in 

the literature it is sometimes replaced by the 

conductor of 𝑆, denoted by 𝐶(𝑆) (in short 𝐶 which is 

the least integer 𝑥 such that 𝑥 + 𝑛 ∈ 𝑆 for all 𝑛 ∈ ℕ. 

It is easy to see that 𝐹(𝑆) = 𝐶 − 1. If 𝑆 is different 

from ℕ, it is traditional to denote the elements of 𝑆 

that are less than or equal to 𝐶 by  𝑠0 =
0, 𝑠1,⋯ , 𝑠𝑛−1, 𝑠𝑛 = 𝐶 with 𝑠𝑖−1 < 𝑠𝑖for each 1 ≤
𝑖 ≤ 𝑛, and write 

𝑆 = {𝑠0 = 0, 𝑠1,⋯ , 𝑠𝑛−1, 𝑠𝑛 = 𝐶,→} 
where “→ ” means that every integer greater than 𝐶 

belongs to the set. The elements 𝑠0 = 0, 𝑠1,⋯ , 𝑠𝑛−1  
are called the small elements of 𝑆. Note that the first 

non-zero small element is 𝑠1 = 𝑚(𝑆), the multiplicity 
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of 𝑆, and 𝑛 = 𝑛(𝑆) = |𝑆 ∩  {0, 1, . . . , 𝐹(𝑆)}| is the 

number of small elements of S (|𝐴| denotes the 

cardinality of any set 𝐴).  

If S is a numerical semigroup and 𝑎 ∈ 𝑆 \ {0}, 
the Apéry set of 𝑆 with respect to 𝑎 is the set 

𝐴𝑝(𝑆, 𝑎) = {𝑠 ∈ 𝑆 ∶ 𝑠 − 𝑎 ∉ 𝑆}. It is easy to see that 

𝐴𝑝 (𝑆, 𝑎)  =  {𝑤0  =  0, 𝑤1,⋯ , 𝑤𝑎−1} where 𝑤𝑖 is 

the least element of 𝑆 such that 𝑤𝑖 ≡  𝑖 (mod 𝑎) for 

each 1 ≤ 𝑖 ≤ 𝑎 − 1.  Moreover, (𝐴𝑝(𝑆, 𝑎) \ {0})  ∪
 {𝑎} generates 𝑆 and max(𝐴𝑝(𝑆, 𝑎)) = 𝐹(𝑆) + 𝑎 =

𝐶(𝑆) + 𝑎 − 1 for any  k𝑎 ∈ 𝑆 \ {0} (Rosales, 2005; 

Rosales and García -Sánchez,  2009). Thus, if 𝑆 is a 

numerical semigroup with multiplicity 𝑚, then 𝑆 has 

maximal embedding dimension if and only if 

(𝐴𝑝(𝑆,𝑚) \ {0}) ∪ {𝑚} is the minimal system of 

generators for 𝑆. 

 

Arf Numerical Semigroups 

A numerical semigroup 𝑆 is called Arf if 𝑥 +
𝑦 − 𝑧 ∈ 𝑆 for all 𝑥, 𝑦, 𝑧 ∈ 𝑆 where 𝑥 ≥ 𝑦 ≥ 𝑧. This 

definition was first given by C. Arf in 1949, and 

therefore, the condition in this definition is known as 

the Arf condition. For all 𝑥, 𝑦, 𝑧 ∈ 𝑆 such that 𝑥 ≥
𝑦 ≥ 𝑧 and 𝑥 ≥ 𝐶, clearly 𝑥 + 𝑦 − 𝑧 ≥ 𝐶 and so 𝑥 +
𝑦 − 𝑧 ∈ 𝑆. Therefore, to check if a numerical 

semigroup is Arf, it is enough to check the Arf 

condition for only the small elements. There are many 

equivalent conditions to the Arf condition, one of 

them is specified as “a numerical semigroup is Arf if 

and only if 2𝑥 − 𝑦 ∈ 𝑆 where 𝑥 ≥ 𝑦” (García–

Sánchez at al., 2017). 

Any Arf numerical semigroup has maximal 

embedding dimension. Thus, if 𝑆 is an Arf numerical 

semigroup with multiplicity 𝑚, then 𝑆 is minimally 

generated by (𝐴𝑝(𝑆,𝑚) \ {0}) ∪ {𝑚}. 
A class of numerical semigroups Arf, the 

multiplicity of which is a p prime number, is given in 

(Çelik, 2022). However, García–Sánchez at al., in 

2017 show that Arf numerical semigroups with 

multiplicity up to seven and given conductor are 

described parametrically. In this work, we obtain a 

description for Arf numerical semigroups with 

multiplicity eight, which is similar to the work in 

(García–Sánchez at al., 2017). We now recall some 

results that we will frequently use throughout the 

paper. 

Lemma 1 [García–Sánchez at al., 2017, Lemma 

11] Let 𝑆 be an Arf numerical semigroup with 

multiplicity 𝑚 and conductor 𝐶. Let  𝐴𝑝 (𝑆,𝑚) =

 {𝑤0  =  0,𝑤1,⋯ , 𝑤𝑚−1}. For each 𝑗 =
2, 3,⋯ ,𝑚 − 1, we have 

(a) 𝑤𝑗−1 < 𝑤𝑗 ⇒  𝐶 ≤ 𝑤𝑗 − 1 

(b) 𝑤𝑗 < 𝑤𝑗−1 ⇒  𝐶 ≤ 𝑤𝑗−1. 

Lemma 1 shows that for each 𝑗 = 2,⋯ ,𝑚 − 1, 
at least one of 𝑤𝑗−1 or 𝑤𝑗 is not less than 𝐶. 

Let 𝑆 be a numerical semigroup with multiplicity 

𝑚 and conductor 𝐶. As every non-negative multiple 

of 𝑚 is in S and 𝐶 − 1 ∉ 𝑆, it follows that 𝐶 ≢
 1 (mod 𝑚). The following lemma shows that 𝑤1 and 

𝑤𝑚−1 are completely determined by the multiplicity 

and the conductor in any Arf numerical semigroup. 

Lemma 2 [García–Sánchez at al., 2017, Lemma 

13] Let 𝑆 be an Arf numerical semigroup with 

multiplicity 𝑚 and conductor 𝐶 where 𝐶 ≡
 𝑘 (mod 𝑚) and 𝑘 ∈  {0, 2,⋯ ,𝑚 − 1}. Then 

(a)  

𝑤1 = {
𝐶 + 1                   𝑖𝑓 𝑘 = 0 ( 𝐶 ≡  0 (mod 𝑚))

C − k + m + 1 𝑖𝑓 𝑘 ≠ 0 ( 𝐶 ≢  0 (mod 𝑚))
 

(b) 𝑤𝑚−1 =  C − k + m− 1 

Lemma 3 [García–Sánchez at al., 2017, Lemma 

15] Let 𝑆 be an Arf numerical semigroup with 

multiplicity 𝑚 >  2. For any 𝑡 ∈ ℕ with 𝑡 ≤  
𝑚

2
, we 

have 𝑤2𝑡 ≤ 𝑤𝑡 + 𝑡 and 𝑤𝑚−2𝑡 ≤ 𝑤𝑚−𝑡 +𝑚 − 𝑡. 
 

Arf Numerıcal Semıgroups With Multiplicity 8 

Let 𝑆 be an Arf numerical semigroup with 

multiplicity eight and conductor 𝐶. Then 𝐶 ≡
 0, 2, 3, 4, 5, 6 or 7 (mod 8). Recall that the ratio R of 

S is the least element larger than the multiplicity in 

the minimal system of generators for 𝑆. It can be 

easily seen that 

 𝑅 ≤  𝐶 + 1 if 𝐶 ≡  0 (mod 8), 𝑅 ≤  𝐶 if 𝐶 ≢
0 (mod 8).  

Remark 1 As a result of Lemma 3, if 𝑆 is an Arf 

numerical semigroup with multiplicity eight and 

𝐴𝑝 (𝑆, 8) =  {𝑤0  =  0,𝑤1,⋯ , 𝑤7} then we have 

(a) 𝑤6  ≤  𝑤3 +  3   (b) 𝑤4  ≤  𝑤2 +  2 

(c) 𝑤2 ≤ 𝑤5  +  5    (d) 𝑤4  ≤  𝑤6  +  6. 
Theorem 4 Let 𝑆 be a numerical semigroup with 

multiplicity eight and conductor 𝐶 where 𝐶 >  8 and 

𝐶 ≡ 0 (mod 8). Then 𝑆 is an Arf numerical 

semigroup if and only if 𝑆 is one of the followings: 

⟨8, 𝐶 + 1, 𝐶 + 2, 𝐶 + 3, 𝐶 + 4, 𝐶 + 5, 𝐶 + 6, 𝐶 + 7⟩; 
⟨8, 8𝑢 + 2, 8𝑢 + 4, 8𝑢 +  6, 𝐶 + 1, 𝐶 + 3, 𝐶 +

5, 𝐶 + 7⟩ for each 1 ≤  𝑢 ≤  
𝐶−8

8
; 

⟨8, 𝐶 − 5, 𝐶 − 2, 𝐶 + 1, 𝐶 + 2, 𝐶 + 4, 𝐶 + 5, 𝐶 + 7⟩; 
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⟨8, 8𝑢 + 4, 8𝑡 + 2, 8𝑡 + 6, 𝐶 + 1, 𝐶 + 3, 𝐶 +

5, 𝐶 + 7⟩ for each 1 ≤  𝑢 <  𝑡 ≤  
𝐶

8
; 

⟨8, 8𝑢 + 4, 8𝑡 − 2, 8𝑡 + 2, 𝐶 + 1, 𝐶 + 3, 𝐶 +

5, 𝐶 + 7⟩ for each 1 ≤  𝑢 <  𝑡 ≤  
𝐶

8
; 

⟨8, 𝐶 −  3, 𝐶 +  1, 𝐶 +  2, 𝐶 +  3, 𝐶 +  4, 𝐶 +  6, 𝐶
+  7⟩; 

⟨8, 8𝑢 + 6, 8𝑢 + 10, 8𝑢 + 12, 𝐶 + 1, 𝐶 + 3, 𝐶 +

5, 𝐶 + 7⟩ for each 1 ≤  𝑢 ≤  
𝐶−8

8
 . 

Proof (Necessity) Let 𝑆 be an Arf numerical 

semigroup with multiplicity eight and conductor 𝐶 

where 𝐶 > 8 and 𝐶 ≡ 0 (mod 8). It can be obtained 

from Lemma 2 that 𝑤1 =  𝐶 + 1 and 𝑤7  =  𝐶 + 7. 

In addition, the largest element of the set 𝐴𝑝(𝑆, 8) is 

𝑤7  =  𝐶 + 7 which can be obtained from the 

equality of max(𝐴𝑝(𝑆, 8))  =  𝐹(𝑆) + 8. So the other 

elements of the Apéry set must be smaller than 𝑤7  =
 𝐶 + 7 . In other words, 𝑤𝑖   < 𝐶 + 7 𝑓𝑜𝑟 each 𝑖 ∈
 {0, 1, 2, 3, 4, 5, 6}. In this way, the ratio of 𝑆, 𝑅, is one 

of the elements 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5 or  𝑤6 . 
(i) If 𝑅 = 𝑤1, then it is obvious that 

𝑆 =  ⟨8, 𝐶 + 1, 𝐶 + 2, 𝐶 + 3, 𝐶 + 4, 𝐶 + 5, 𝐶 + 6, 𝐶
+ 7⟩. 

(ii) If 𝑅 = 𝑤2, then  𝑤2 ≤ 𝐶 − 6. Consequently, 

𝑤2 =  8𝑢 + 2, where 1 ≤  𝑢 ≤  
𝐶−8

8
. Since 𝑤2 <

𝑤3, 𝐶 +  1 ≤  𝑤3. Then by Lemma 1, we have 𝑤3 =
𝐶 + 3.  Because we know that 𝑤2 < 𝑤4 and 𝑤4 ≤
𝑤2 + 2 given in Remark 1, we get 𝑤4 = 𝑤2 + 2 =
 8𝑢 +  4. The inequality 𝑤2 < 𝑤5 yields the 

inequality 𝑤4 = 𝑤2 + 2 <  𝑤5 . Then 𝑤5 can be 

obtained from Lemma 1 to be 𝐶 +  5. Finally, we 

have 2𝑤4 −𝑤2 =  8𝑢 +  6 ∈ 𝑆 by the Arf condition, 

which 𝑤6 ≤  8𝑢 +  6. Since 𝑤2 =  8𝑢 +  2 < 𝑤6, 

we get 𝑤6 =  8𝑢 +  6. It follows that 

𝑆 = ⟨8, 8𝑢 + 2, 8𝑢 + 4, 8𝑢 + 6, 𝐶 + 1, 𝐶 +

3, 𝐶 + 5, 𝐶 + 7⟩ for each 1 ≤  𝑢 ≤
𝐶−8

8
. 

(iii) If 𝑅 = 𝑤3, then 𝑤3  ≤  𝐶 −  5. Since 𝑅 =
𝑤3, 𝑤2 and 𝑤4 can be found from Lemma 1 as 𝑤2 =
 𝐶 +  2 and 𝑤4  =  𝐶 +  4, respectively. In order see 

to that 𝐶 +  4 =  𝑤4 ≤ 𝑤6  +  6 ≤  𝑤3  +  9 ≤
 𝐶 +  4, we use Remark 1 (d) and (a), respectively. 

Accordingly, we get 𝑤3  =  𝐶 − 5 and 𝑤6  =  𝐶 − 2. 
Since 𝑅 = 𝑤3 and max(𝐴𝑝(𝑆, 8)) = 𝐶 +  7, we can 

obtain 𝐶 −  5 =  𝑤3  <  𝑤5 <  𝐶 +  7. Thus, 𝑤5 =
 𝐶 +  5. Hence, 

𝑆 =  ⟨8, 𝐶 − 5, 𝐶 − 2, 𝐶 + 1, 𝐶 + 2, 𝐶 + 4, 𝐶 + 5, 𝐶
+ 7⟩. 

 

(iv) If 𝑅 = 𝑤4, then 𝑤4   ≤  𝐶 −  4. As a result 

of this, 𝑤4 is equal to 8𝑢 +  4 for the interval of 𝑢 

indicated by 1 ≤  𝑢 ≤  
𝐶−8

8
 . Then by Lemma 1, we 

have 𝑤3  = 𝐶 + 3 and 𝑤5 = 𝐶 + 5. The inequality of 

𝑤4 ≤ 𝑤2 +  2 is given in Remark 1 (b), and so 𝑤2 +
2 ∈ 𝑆. Therefore, 2(𝑤2 + 2) − 𝑤2 = 𝑤2 + 4 ∈ 𝑆 by 

the Arf condition. This implies that 𝑤6 ≤ 𝑤2 +  4. 
Under these conditions, there are two cases: 𝑤4  <
𝑤2 < 𝑤6 or 𝑤4  < 𝑤6 < 𝑤2.  

If 𝑤4  < 𝑤2 < 𝑤6 then 𝑤2 =  8𝑡 +  2 and 

𝑤6 =  8𝑡 +  6, for some 𝑡 ∈ ℕ. Since 𝑤4  < 𝑤6 and 

𝑤6  < 𝐶 + 7, we have 1 ≤  𝑢 <  𝑡 ≤
 𝐶 

8
 . It follows 

that 

𝑆 =  ⟨8, 8𝑢 + 4, 8𝑡 + 2, 8𝑡 + 6, 𝐶 + 1, 𝐶 +

3, 𝐶 + 5, 𝐶 + 7⟩ for each 1 ≤  𝑢 <  𝑡 ≤
 𝐶 

8
 .  

If 𝑤4  < 𝑤6 < 𝑤2, then 𝑤2 = 8𝑡 + 2 and 𝑤6 =
 8𝑡 −  2 for some 𝑡 ∈ ℕ. Since 𝑤4  < 𝑤2 and 𝑤2 <

𝐶 + 7, we have 1 ≤  𝑢 <  𝑡 ≤
 𝐶 

8
 . It follows that 

𝑆 =  ⟨8, 8𝑢 + 4, 8𝑡 − 2, 8𝑡 + 2, 𝐶 + 1, 𝐶 +

3, 𝐶 + 5, 𝐶 + 7⟩ for each 1 ≤  𝑢 <  𝑡 ≤
 𝐶 

8
 . 

(v) If 𝑅 = 𝑤5, then 𝑤5 ≤ 𝐶 − 3. We can obtain 

𝑤4 = 𝐶 + 4 and 𝑤6 = 𝐶 + 6 by using Lemma 1. 

From Remark 1 (a), (b) and (c), respectively, we have 

𝐶 + 6 = 𝑤6 ≤ 𝑤3  +  3, 𝐶 + 4 = 𝑤4  ≤  𝑤2 +
2 and 𝑤2  ≤ 𝑤5 + 5.  Accordingly, we can calculate 

𝑤3 = 𝐶 + 3,𝑤2  = 𝐶 + 2 and 𝑤5 = 𝐶 − 3. As a 

result, 

𝑆 =  ⟨8, 𝐶 − 3, 𝐶 + 1, 𝐶 + 2, 𝐶 + 3, 𝐶 + 4, 𝐶 + 6, 𝐶
+ 7⟩. 

(vi) If 𝑅 = 𝑤6, then 𝑤6 ≤ 𝐶 − 2. So 𝑤6 = 8𝑢 +

 6 for 1 ≤  𝑢 ≤
𝐶−8

8
. By using Lemma 1, we can 

calculate 𝑤5 = 𝐶 + 5. By the Arf condition, 2𝑤6 −
 8𝑢 = 8𝑢 +  12 ∈  𝑆. Therefore, 𝑤4 ≤  8𝑢 +  12. 
This yields 𝑤4 =  8𝑢 +  12 due to 𝑤6 =  8𝑢 +  6 <
 𝑤4 (𝑅 =  𝑤6). In addition, by the Arf condition 

again, we obtain 2(8𝑢 + 8) − (8𝑢 + 6) = 8𝑢 +
10 ∈ 𝑆, and so 𝑤2 =  8𝑢 +  10. Furthermore, since 

𝑤6 < 𝑤3, we can write 8𝑢 + 11 ≤ 𝑤3, which 

implies that 𝑤2 =  10𝑢 +  10 < 𝑤3 . Hence, 

𝑆 =  ⟨8, 8𝑢 + 6, 8𝑢 + 10, 8𝑢 + 12, 𝐶 + 1, 𝐶 +

3, 𝐶 + 5, 𝐶 + 7⟩ for each 1 ≤  𝑢 ≤
𝐶−8

8
. 

(Sufficiency) The definition of Arf numerical 

semigroup given in the Section 2 shows that each 

semigroup given in Theorem 4 satisfies 

the Arf property. 
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Theorem 5 Let 𝑆 be a numerical semigroup with 

multiplicity eight and conductor 𝐶 where 𝐶 >
 10 and 𝐶 ≡ 2 (mod 8). Then S is an Arf numerical 

semigroup if and only if 𝑆 is one of the followings: 

⟨8, 8𝑢 + 2, 8𝑢 + 4, 8𝑢 + 6, 𝐶 + 1, 𝐶 + 3, 𝐶 +

5, 𝐶 + 7⟩ for each 1 ≤  𝑢 ≤  
𝐶−2

8
 ; 

⟨8, 8𝑢 + 4, 8𝑡 + 2, 8𝑡 + 6, 𝐶 + 1, 𝐶 + 3, 𝐶 +

5, 𝐶 + 7⟩ for each 1 ≤  𝑢 <  𝑡 ≤
𝐶−2

8
 ; 

⟨8, 8𝑢 + 4, 8𝑡 − 2, 8𝑡 + 2, 𝐶 + 1, 𝐶 + 3, 𝐶 +

5, 𝐶 + 7⟩ for each 1 ≤  𝑢 <  𝑡 ≤
𝐶−2

8
 ; 

⟨8, 𝐶 − 5, 𝐶, 𝐶 + 1, 𝐶 + 2, 𝐶 + 4, 𝐶 + 5, 𝐶 + 7⟩; 
⟨8, 8𝑢 + 6, 8𝑢 + 10, 8𝑢 + 12, 𝐶 + 1, 𝐶 + 3, 𝐶 +

5, 𝐶 + 7⟩ for each 1 ≤  𝑢 ≤  
𝐶−10

8
 . 

Proof (Necessity) Let 𝑆 be an Arf numerical 

semigroup with multiplicity eight and conductor 𝐶 

where 𝐶 > 10 and 𝐶 ≡ 2(mod 8). We can calculate 

𝑤1 =  𝐶 +  7 and 𝑤7 =  𝐶 + 5 by using Lemma 2. 

We can see that the largest element of the set 𝐴𝑝(𝑆, 8) 
is 𝑤1 = 𝐶 + 7 by using max(𝐴𝑝(𝑆, 8)) =  𝐹(𝑆) + 8. 

Thus, the other elements of the Apéry set must be 

smaller than 𝑤1 = 𝐶 + 7, i.e. 𝑤𝑖 < 𝐶 + 7 for each 

𝑖 ∈ {0, 2, 3, 4, 5, 6, 7}. Note that 𝑤3 must be bigger 

than 𝐶. Otherwise, if 𝑤3 ≤  𝐶, then 𝐶 − 7 ∈  𝑆. It can 

also be found from Lemma 1 𝑤4 = 𝐶 + 2. In 

addition, by respectively using Remark 1 (d), (a), the 

following inequalities can be obtained 𝐶 +  2 =
𝑤4 ≤ 𝑤6 + 6 ≤ 𝑤3 + 9 ≤ 𝐶 + 2. Thus, 𝑤6 = 𝐶 −
4. Accordingly, by the Arf condition 2(𝐶 − 4) −
(𝐶 − 7) = 𝐶 − 1 ∈ 𝑆. This is a contradiction. For this 

reason 𝑤3 is equal to 𝐶 + 1. Under this condition the 

ratio of 𝑆, is one of the elements 𝑤2, 𝑤4, 𝑤5 or 𝑤6. 
(i) If 𝑅 = 𝑤2, then 𝑤2 ≤  𝐶. 𝑤2 must be 8𝑢 + 2 

for the interval of u indicated by 1 ≤  𝑢 ≤  
𝐶−2

8
 . 

Thus, we can get 2𝑤2 − (8𝑢) = 8𝑢 + 4 ∈ 𝑆 by using 

the Arf condition. Therefore, 𝑤4 ≤  8𝑢 + 4. This 

shows 𝑤4 = 8𝑢 + 4 as 𝑤2 = 8𝑢 + 2 < 𝑤4. The Arf 

condition also gives 𝑤4 +𝑤2 − (8𝑢) = 8𝑢 + 6 ∈ 𝑆, 
which yields 𝑤6 = 8𝑢 +  6. We can see that 𝐶 +
1, 8𝑢 + 4 and 8𝑢 +  2 ∈ 𝑆 through information 

given above. There are two situations: In the first, if  

𝐶 + 1 > 8𝑢 + 4 > 8𝑢 + 2, then (𝐶 + 1) + (8𝑢 +
 4) − (8𝑢 +  2) = 𝐶 + 3 ∈ 𝑆 can be obtained by the 

Arf condition. In the second,  if  8𝑢 + 4 > 𝐶 + 1 >

8𝑢 + 2 , then 𝑢 =  
𝐶−2

8
  and 2(8𝑢 + 4) − (𝐶 + 1) =

2(𝐶 + 2) − (𝐶 + 1) = 𝐶 + 3 ∈ 𝑆 can be obtained by 

the Arf condition.  Hence, 𝑤5 = 𝐶 +  3 and 

𝑆 = ⟨8, 8𝑢 + 2, 8𝑢 + 4, 8𝑢 + 6, 𝐶 + 1, 𝐶 + 3, 𝐶 +

5, 𝐶 + 7⟩ for each 1 ≤  𝑢 ≤  
𝐶−2

8
 . 

 (ii) If 𝑅 = 𝑤4, then 𝑤4 ≤ 𝐶 − 6. In this case, 

𝑤4 = 8𝑢 +  4 for the interval of 𝑢 indicated by 1 ≤

 𝑢 ≤  
𝐶−10

8
. It can easily be calculated by using 

Lemma 1 that 𝑤3 = 𝐶 + 1 and 𝑤5 = 𝐶 + 3. On the 

other hand, 𝑤4 ≤ 𝑤2 + 2 is given in Remark 1 (b). 

Therefore, 2(𝑤2 + 2) − 𝑤2 = 𝑤2 + 4 ∈  𝑆 can be 

obtained from the Arf condition. We obtained that 

𝑤6 ≤ 𝑤2 +  4. Under these conditions, there are two 

cases: 𝑤4 < 𝑤2 < 𝑤6 or 𝑤4 < 𝑤6 < 𝑤2. If 𝑤4 <
𝑤2 < 𝑤6, then 𝑤2 =  8𝑡 +  2 and 𝑤6 = 8𝑡 +  6 for 

some 𝑡 ∈ ℕ. Since 𝑤4 < 𝑤6 and 𝑤6 < 𝐶 + 7, we 

have 1 ≤  𝑢 <  𝑡 ≤
𝐶−2

8
. It follows that 

𝑆 = ⟨8, 8𝑢 + 4, 8𝑡 + 2, 8𝑡 + 6, 𝐶 + 1, 𝐶 +
3, 𝐶 + 5, 𝐶 + 7⟩  

for each 1 ≤  𝑢 <  𝑡 ≤
𝐶−2

8
. 

If 𝑤4 < 𝑤6 < 𝑤2, then 𝑤2 = 8𝑡 + 2 and 𝑤6 =
 8𝑡 −  2 for some 𝑡 ∈ ℕ. Since 𝑤4 < 𝑤2 and 𝑤2 <

 𝐶 + 7, we have 1 ≤  𝑢 <  𝑡 ≤
𝐶−2

8
. It follows that 

𝑆 = ⟨8, 8𝑢 + 4, 8𝑡 − 2, 8𝑡 + 2, 𝐶 + 1, 𝐶 +

3, 𝐶 + 5, 𝐶 + 7⟩ for each 1 ≤  𝑢 <  𝑡 ≤
𝐶−2

8
. 

(iii) If 𝑅 = 𝑤5, then 𝑤5 ≤ 𝐶 − 5. We can 

calculate by usig Lemma 1 that 𝑤4 = 𝐶 + 2 and 𝑤6 =
 𝐶 +  4. By respectively applying Remark 1 (b), (a) 

and (c), we can write 𝐶 + 2 = 𝑤4 ≤ 𝑤2 + 2, 𝐶 + 4 =
𝑤6  ≤ 𝑤3 + 3 and 𝐶 = 𝑤2  ≤ 𝑤5 + 5. As a result, 

𝑤4 =  𝐶,𝑤3 =  𝐶 + 1 and 𝑤5 =  𝐶 − 5. Hence, 

𝑆 = ⟨8, 𝐶 − 5, 𝐶, 𝐶 + 1, 𝐶 + 2, 𝐶 + 4, 𝐶 + 5, 𝐶 + 7⟩. 
(iv) If 𝑅 =  𝑤6, then 𝑤6 ≤ 𝐶 − 4. In this case, 

𝑤6 = 8𝑢 + 6 for the interval of 𝑢 indicated by 1 ≤

 𝑢 ≤  
𝐶−10

8
 .  By using the Arf condition, we can write 

2𝑤6 − 8𝑢 = 8𝑢 + 12 ∈ 𝑆. Thus, 𝑤4 ≤  8𝑢 +  12. 

Since 𝑅 =  𝑤6, 𝑤6 =  8𝑢 +  6 < 𝑤4. These 

situations yield 𝑤4 = 8𝑢 + 12. The Arf condition 

also gives 2(8𝑢 + 8) − (8𝑢 + 6) = 8𝑢 +  10 ∈ 𝑆, 

which yields 𝑤2 =  8𝑢 +  10. Furthermore, it can 

easily be seen by Lemma 1 that 𝑤5 = 𝐶 + 3. 

Moreover, 8𝑢 +  6 < 𝑤3 since  𝑤6 < 𝑤3. This 

implies that  𝑤2 < 𝑤3. Under these conditions, 𝑤3 =
𝐶 + 1 by using Lemma 1. It is follows that 

𝑆 = ⟨8, 8𝑢 + 6, 8𝑢 + 10, 8𝑢 + 12, 𝐶 + 1, 𝐶 +

3, 𝐶 + 5, 𝐶 + 7⟩ for each 1 ≤  𝑢 ≤  
𝐶−10

8
 . 

(Sufficiency) The definition of Arf numerical 

semigroup given in the Section 2 shows that each 
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semigroup given in Theorem 5 satisfies 

the Arf property. 

 

Theorem 6 Let 𝑆 be a numerical semigroup with 

multiplicity eight and conductor 𝐶 where 𝐶 >
 11 and 𝐶 ≡ 3 (mod 8). Then 𝑆 is an Arf numerical 

semigroup if and only if 𝑆 is one of the followings: 

⟨8, 𝐶, 𝐶 +  1, 𝐶 +  2, 𝐶 +  3, 𝐶 +  4, 𝐶 +
 6, 𝐶 +  7⟩;  

⟨8, 8𝑢 +  4, 𝐶, 𝐶 +  2, 𝐶 +  3, 𝐶 +  4, 𝐶 +

 6, 𝐶 +  7⟩ for each 1 ≤  𝑢 ≤  
𝐶−11

8
.  

Proof (Necessity) Let 𝑆 be an Arf numerical 

semigroup with multiplicity eight and conductor 𝐶 

where 𝐶 > 11 and 𝐶 ≡ 3 (mod 8). Then, we can get 

𝑤1 =  𝐶 +  6 and 𝑤7 =  𝐶 + 4 by using Lemma 

2.We can see that the largest element of the set 

𝐴𝑝(𝑆, 8) is 𝑤2 = 𝐶 + 7 by using max(𝐴𝑝(𝑆, 8)) =

𝐹(𝑆) + 8. So the other elements of the Apéry set must 

be smaller than 𝑤2 = 𝐶 + 7, i.e. 𝑤𝑖 <  𝐶 + 7 for 

each 𝑖 ∈ {0, 1, 3, 4, 5, 6, 7}. If 𝑤6 < 𝐶, then 𝐶 − 5 ∈
𝑆. We also have 𝐶 − 3 ∈ 𝑆, and so 2(𝐶 − 3) − (𝐶 −
5) = 𝐶 − 1 ∈ 𝑆 by the Arf condition. This 

contradicts with the fact that 𝐶 is the conductor of 𝑆. 
Therefore, 𝑤6 must be bigger than 𝐶. This means that 

𝑤6  =  𝐶 +  3. By respectively using Remark 1 (a) 

and (c) we see that 𝐶 + 3 =  𝑤6 ≤ 𝑤3 + 3 and 𝐶 +
7 =  𝑤2 ≤ 𝑤5 + 5. Thus, these results yield 𝑤3 =
 𝐶 and 𝑤5 =  𝐶 +  2. Accordingly, the ratio of 𝑆, 𝑅, 

is one of the elements 𝑤3 =  𝐶 or 𝑤4. 

(i) If  𝑤3 =  𝐶, then it is clear that 

𝑆 = ⟨8, 𝐶, 𝐶 + 1, 𝐶 + 2, 𝐶 + 3, 𝐶 + 4, 𝐶 + 6, 𝐶 + 7⟩. 
(ii) If 𝑅 = 𝑤4, then 𝑤4 ≤ 𝐶 − 7. 

Consequently 𝑤4 = 8𝑢 + 4, for the interval of 𝑢 

indicated by 1 ≤  𝑢 ≤  
𝐶−11

8
. It follows that 

𝑆 = ⟨8, 8𝑢 + 4, 𝐶, 𝐶 + 2, 𝐶 + 3, 𝐶 +  4, 𝐶 +

6, 𝐶 + 7⟩ for each 1 ≤  𝑢 ≤  
𝐶−11

8
. 

(Sufficiency) The definition of Arf numerical 

semigroup given in the Section 2 shows that each 

semigroup given in Theorem 6 satisfies 

the Arf property. 

 

Theorem 7 Let 𝑆 be a numerical semigroup with 

multiplicity eight and conductor 𝐶 where 𝐶 > 12 and 

𝐶 ≡ 4 (mod 8). Then 𝑆 is an Arf numerical 

semigroup if and only if 𝑆 is one of the followings: 

⟨8, 8𝑢 + 2, 8𝑢 + 4, 8𝑢 + 6, 𝐶 + 1, 𝐶 + 3, 𝐶 +

5, 𝐶 + 7⟩ for each 1 ≤  𝑢 ≤  
𝐶−4

8
; 

⟨8, 8𝑢 + 4, 8𝑡 + 2, 8𝑡 + 6, 𝐶 + 1, 𝐶 + 3, 𝐶 +

5, 𝐶 + 7⟩ for each 1 ≤ 𝑢 < 𝑡 ≤  
𝐶−4

8
; 

⟨8, 8𝑢 + 4, 8𝑡 − 2, 8𝑡 + 2, 𝐶 + 1, 𝐶 + 3, 𝐶 +

5, 𝐶 + 7⟩ for each 1 ≤ 𝑢 < 𝑡 ≤  
𝐶+4

8
; 

⟨8, 8𝑢 + 6, 8𝑢 + 10, 8𝑢 + 12, 𝐶 + 1, 𝐶 + 3, 𝐶 +

5, 𝐶 + 7⟩ for each 1 ≤  𝑢 ≤  
𝐶−12

8
. 

Proof (Necessity) Let 𝑆 be an Arf numerical 

semigroup with multiplicity eight and conductor 𝐶 

where 𝐶 > 12 and 𝐶 ≡ 4(mod 8). We can calculate 

𝑤1 = 𝐶 + 5 and 𝑤7 = 𝐶 + 3 by using Lemma 2. The 

largest element of the set 𝐴𝑝(𝑆, 8) is 𝑤3 = 𝐶 + 7 due 

to the fact that max(𝐴𝑝(𝑆, 8))  𝐹(𝑆) + 8. So the other 

elements of the Apéry set must be smaller than 𝑤3 =
𝐶 + 7, i.e.  𝑤𝑖 <  𝐶 +  7 for each 𝑖 ∈
{0, 1, 2, 4, 5, 6, 7}.  Note that 𝑤5 >  𝐶. Otherwise, 

𝑤5 ≤  𝐶 which implies that 𝑤5 ≤  𝐶 −  7 ∈ 𝑆. Then 

𝐶 − 4 ∈ 𝑆 as well, and so 2(𝐶 − 4) − (𝐶 − 7) =
𝐶 − 1 ∈  𝑆 by the Arf condition. This is a 

contradiction. Therefore, 𝑤5 >  𝐶 and 𝑤5 = 𝐶 + 1. 

Thus, the ratio of 𝑆, 𝑅, is one of the elements 

𝑤2, 𝑤4 𝑜𝑟 𝑤6. 
(i) If 𝑅 = 𝑤2, then 𝑤2 ≤  𝐶 − 2. Consequently, 

𝑤2 = 8𝑢 + 2 for the interval of 𝑢 indicated by 1 ≤

 𝑢 ≤  
𝐶−4

8
. The Arf condition gives 2𝑤2 − 8𝑢 =

 8𝑢 + 4 ∈ 𝑆. Therefore, 𝑤4 ≤  8𝑢 + 4. Since 8𝑢 +
2 = 𝑤2 < 𝑤4. The Arf condition also gives 𝑤4 +
𝑤2 − 8𝑢 =  8𝑢 + 6 ∈ 𝑆. This yields 𝑤6 = 8𝑢 + 6 

due to 𝑤2 = 8𝑢 + 2 < 𝑤6. Hence, 

𝑆 =  ⟨8, 8𝑢 + 2, 8𝑢 + 4, 8𝑢 + 6, 𝐶 + 1, 𝐶 +

3, 𝐶 + 5, 𝐶 + 7⟩  for each 1 ≤  𝑢 ≤  
𝐶−4

8
. 

(ii) If 𝑅 = 𝑤4, then 𝑤4 ≤  𝐶. As a result, 𝑤4 =
8𝑢 + 4 for the interval of 𝑢 indicated by 1 ≤  𝑢 ≤

 
𝐶−4

8
. Note that 𝑤2 + 2 ∈ 𝑆 since 𝑤4 < 𝑤2 + 2. Then 

the Arf condition gives 2(𝑤2 +  2) − 𝑤2 = 𝑤2 + 4 ∈
𝑆. This implies 𝑤6 ≤ 𝑤2 + 4. As a result, we get two 

cases: 𝑤4 < 𝑤2 < 𝑤6 and 𝑤4 < 𝑤6 < 𝑤2 are 

considered. If 𝑤4 < 𝑤2 < 𝑤6, then 𝑤2 = 8𝑡 + 2 and 

𝑤6 = 8𝑡 + 6 for some 𝑡 ∈ ℕ. Since 𝑤4 < 𝑤6 and 

𝑤6 <  𝐶 +  7, we have 1 ≤ 𝑢 < 𝑡 ≤  
𝐶−4

8
. It follows 

that 

𝑆 =  ⟨8, 8𝑢 + 4, 8𝑡 + 2, 8𝑡 + 6, 𝐶 + 1, 𝐶 +

3, 𝐶 + 5, 𝐶 + 7⟩ for each 1 ≤ 𝑢 < 𝑡 ≤  
𝐶−4

8
. 

If 𝑤4 < 𝑤6 < 𝑤2, then 𝑤2 = 8𝑡 + 2 and 𝑤6 =
8𝑡 − 2 for some 𝑡 ∈ ℕ. 
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Since 𝑤4 < 𝑤2 and 𝑤2 < 𝐶 + 7, we have 1 ≤

𝑢 < 𝑡 ≤  
𝐶+4

8
. It follows that 

𝑆 = ⟨8, 8𝑢 + 4, 8𝑡 − 2, 8𝑡 + 2, 𝐶 + 1, 𝐶 +

3, 𝐶 + 5, 𝐶 + 7⟩ for each 1 ≤ 𝑢 < 𝑡 ≤  
𝐶+4

8
.  

(iii) If 𝑅 = 𝑤6, then 𝑤6 ≤ 𝐶 − 6. Accordingly, 

𝑤6 = 8𝑢 + 6 for the interval of 𝑢 indicated by 1 ≤

 𝑢 ≤  
𝐶−12

8
. We can get 𝑤5 = 𝐶 + 1 by Lemma 1. On 

the other hand, 𝑤4 ≤ 𝑤6 + 6 is given in Remark 1 

(d). Since 𝑤6 < 𝑤4, we get 𝑤4 = 𝑤6 + 6 = 8𝑢 + 12. 

By the Arf condition, we also get 2(8𝑢 + 8) − 𝑤6 =
8𝑢 + 10 ∈ 𝑆. This implies 𝑤2 ≤  8𝑢 + 10. Since 

𝑤6 =  8𝑢 +  6 <  𝑤2, 𝑤2 must be equal to 8𝑢 +
 10. It follows that 

𝑆 =  ⟨8, 8𝑢 + 6, 8𝑢 + 10, 8𝑢 + 12, 𝐶 + 1, 𝐶 +

3, 𝐶 + 5, 𝐶 + 7⟩ for each 1 ≤  𝑢 ≤  
𝐶−12

8
. 

(Sufficiency) The definition of Arf numerical 

semigroup given in the Section 2 shows that each 

semigroup given in Theorem 7 satisfies 

the Arf property. 

 

Theorem 8 Let 𝑆 be a numerical semigroup with 

multiplicity eight and conductor 𝐶 where 𝐶 > 13 and 

𝐶 ≡ 5 (mod 8). Then 𝑆 is an Arf numerical 

semigroup if and only if 𝑆 is one of the followings: 

⟨8, 𝐶 − 2, 𝐶, 𝐶 + 1, 𝐶 + 2, 𝐶 + 4, 𝐶 + 5, 𝐶 + 7⟩; 
⟨8, 𝐶, 𝐶 + 1, 𝐶 + 2, 𝐶 + 4, 𝐶 + 5, 𝐶 +  6, 𝐶 + 7⟩. 
Proof (Necessity) Let 𝑆 be an Arf numerical 

semigroup with multiplicity eight and conductor 𝐶 

where 𝐶 > 13 and 𝐶 ≡ 5(mod 8). It can easily be 

calculated from Lemma 2 that 𝑤1 =  𝐶 +  4 and 

𝑤7 = 𝐶 + 2. The largest element of the set 𝐴𝑝(𝑆, 8) 
is 𝑤4 =  𝐶 + 7 due to the fact that max(𝐴𝑝(𝑆, 8))  =

𝐹(𝑆) + 8. So the other elements of the Apéry set must 

be smaller than 𝑤4 =  𝐶 + 7, i.e. 𝑤𝑖 <  𝐶 +  7 for 

each 𝑖 ∈ {0, 1, 2, 3, 5, 6, 7}. Using respectively 

Remark 1 (b), (d), (c) and (a), we see that 𝐶 +  7 =
𝑤4 ≤ 𝑤2  +  2 ⇒ 𝑤2  =  𝐶 + 5 , 𝐶 +  7 =  𝑤4  ≤
𝑤6  +  6 ⇒ 𝑤6 =  𝐶 + 1, 𝐶 + 5 = 𝑤2 ≤ 𝑤5  + 5 ⇒
 𝑤5 ≥  𝐶 and 𝐶 + 1 = 𝑤6  ≤  𝑤3  +  3 ⇒ 𝑤3   ≥
 𝐶 −  2. According to the values obtained above, 𝑅 =
𝑤3  = 𝐶 − 2 or 𝑅 =  𝑤5  =  𝐶. 

(i) If 𝑅 = 𝑤3 = 𝐶 − 2, then 

𝑆 =  ⟨8, 𝐶 − 2, 𝐶, 𝐶 + 1, 𝐶 + 2, 𝐶 + 4, 𝐶 +
5, 𝐶 + 7⟩. 

(ii) If 𝑅 = 𝑤5 = 𝐶, then 

𝑆 =  ⟨8, 𝐶, 𝐶 + 1, 𝐶 + 2, 𝐶 + 4, 𝐶 + 5, 𝐶 +
6, 𝐶 + 7⟩. 

(Sufficiency) The definition of Arf numerical 

semigroup given in the Section 2 shows that each 

semigroup given in Theorem 8 satisfies 

the Arf property.                                                                  

 

Theorem 9 Let 𝑆 be a numerical semigroup with 

multiplicity eight and conductor 𝐶 where 𝐶 > 14 and 

𝐶 ≡ 6 (mod 8). Then 𝑆 is an Arf numerical 

semigroup if and only if 𝑆 is one of the followings: 

⟨8, 8𝑢 + 2, 8𝑢 + 4, 8𝑢 + 6, 𝐶 + 1, 𝐶 + 3, 𝐶 +

5, 𝐶 + 7⟩ for each 1 ≤  𝑢 ≤  
𝐶−6

8
 ; 

⟨8, 𝐶 − 3, 𝐶, 𝐶 + 1, 𝐶 + 3, 𝐶 + 4, 𝐶 + 6, 𝐶 + 7⟩; 
⟨8, 8𝑢 + 4, 8𝑡 + 2, 8𝑡 + 6, 𝐶 + 1, 𝐶 + 3, 𝐶 +

5, 𝐶 + 7⟩ for each 1 ≤  𝑢 <  𝑡 ≤  
𝐶−6

8
 ; 

⟨8, 8𝑢 + 4, 8𝑡 − 2, 8𝑡 + 2, 𝐶 + 1, 𝐶 + 3, 𝐶 +

5, 𝐶 + 7⟩ for each 1 ≤  𝑢 <  𝑡 ≤  
𝐶+2

8
 ; 

⟨8, 8𝑢 + 6, 8𝑢 + 10, 8𝑢 + 12, 𝐶 + 1, 𝐶 + 3, 𝐶 +

5, 𝐶 + 7⟩ for each 1 ≤  𝑢 ≤  
𝐶−6

8
 . 

Proof (Necessity) Let 𝑆 be an Arf numerical 

semigroup with multiplicity eight and conductor 𝐶 

where 𝐶 > 14 and 𝐶 ≡  6 (mod 8). We get 𝑤1 =
 𝐶 + 3 and 𝑤7 = 𝐶 + 1 by using Lemma 2. The 

largest element of the set 𝐴𝑝(𝑆, 8) is 𝑤5 =  𝐶 + 7 

due to the fact that max(𝐴𝑝(𝑆, 8)) =  𝐹(𝑆) + 8. So 

the other elements of the Apéry set must be smaller 

than 𝑤5 = 𝐶 + 7, i.e. 𝑤𝑖  ≤  𝐶 + 7 for each 𝑖 ∈
 {0, 1, 2, 3, 4, 6, 7}. Therefore, the ratio of 𝑆, 𝑅, is one 

of the elements 𝑤2, 𝑤3, 𝑤4 or 𝑤6. 

(i) If 𝑅 = 𝑤2, then 𝑤2 ≤ 𝐶 − 4. Accordingly, 

𝑤2 = 8𝑢 + 2 for the interval of 𝑢 indicated by 1 ≤

 𝑢 ≤  
𝐶−6

8
. 𝑤4  ≤ 𝑤2 + 2 is given in by Remark 1 (b) 

and due to fact that 𝑤2 = 8𝑢 + 2 < 𝑤4, we get 𝑤4 =
8𝑢 + 4. By using the Arf condition, 2𝑤4 −𝑤2 =
8𝑢 + 6 ∈  𝑆 which implies 𝑤6 ≤ 8𝑢 +  6. Since 𝑤2 

= 8u + 2 ≤ 𝑤6, 𝑤6 must be equal to 8𝑢 +  6. It follows 

from Lemma 1 that 𝑤3 =  𝐶 +  5. Under these 

conditions, 𝑆 can be written as follows: 

𝑆 =  ⟨8, 8𝑢 + 2, 8𝑢 + 4, 8𝑢 + 6, 𝐶 + 1, 𝐶 +

3, 𝐶 + 5, 𝐶 + 7⟩ for each 1 ≤  𝑢 ≤  
𝐶−6

8
. 

(ii) If 𝑅 = 𝑤3, then 𝑤3 ≤  𝐶 − 3.We can 

evaluate from Lemma 1 that 𝑤4 = 𝐶 + 6 and 𝑤2 =
 𝐶 + 4. As given in Remark 1 (d), 𝐶 + 6 = 𝑤4 ≤
𝑤6  + 6. Therefore, 𝑤6   =  𝐶. On the other hand, 

𝑤6   ≤ 𝑤3 + 3 is given in Remark 1 (a). Thus,  𝑤3 =
 𝐶 − 3. So, S can be written as 
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𝑆 =  ⟨8, 𝐶 − 3, 𝐶, 𝐶 + 1, 𝐶 + 3, 𝐶 + 4, 𝐶 +
6, 𝐶 + 7⟩. 

(iii) If 𝑅 = 𝑤4, then 𝑤4 ≤  𝐶 − 2. Accordingly, 

𝑤4 = 8𝑢 + 4 for the interval of 𝑢 indicated by 1 ≤

 𝑢 ≤  
𝐶−6

8
. By using Lemma 1, we can get 𝑤3 = 𝐶 +

 5. 𝑤4 ≤ 𝑤2 +  2 is given in Remark 1 (b). By using 

the Arf condition 2(𝑤2 +  2) − 𝑤2 = 𝑤2 + 4 ∈  𝑆. 

This implies that 𝑤6  ≤  𝑤2 +  4. As a result, we get 

two cases:  𝑤4  < 𝑤2 < 𝑤6 and  𝑤4 < 𝑤6 < 𝑤2. 

If 𝑤4  < 𝑤2 < 𝑤6, then 𝑤2 = 8𝑡 + 2 and 𝑤6 =
 8𝑡 +  6 for some 𝑡 ∈ ℕ. Since 𝑤4 < 𝑤6 and 𝑤6 <

𝐶 + 7, we have 1 ≤  𝑢 <  𝑡 ≤  
𝐶−6

8
  . It follows that  

𝑆 = ⟨8, 8𝑢 + 4, 8𝑡 + 2, 8𝑡 + 6, 𝐶 + 1, 𝐶 +

3, 𝐶 + 5, 𝐶 + 7⟩ for each 1 ≤  𝑢 <  𝑡 ≤  
𝐶−6

8
 . 

If 𝑤4 < 𝑤6 < 𝑤2, then 𝑤2 = 8𝑡 + 2 and 𝑤6 =
8𝑡 − 2 for some 𝑡 ∈ ℕ. 

Since 𝑤4  < 𝑤2 and 𝑤2 < 𝐶 + 7, we have 1 ≤

 𝑢 <  𝑡 ≤  
𝐶+2

8
 . It follows that 

𝑆 =  ⟨8, 8𝑢 + 4, 8𝑡 − 2, 8𝑡 + 2, 𝐶 + 1, 𝐶 +

3, 𝐶 + 5, 𝐶 + 7⟩ for each 1 ≤  𝑢 <  𝑡 ≤  
𝐶+2

8
. 

(iv) If 𝑅 = 𝑤6, then 𝑤6 ≤  𝐶. As a result, 𝑤6 =
8𝑢 + 6 for the interval of 𝑢 indicated by 1 ≤  𝑢 ≤

 
𝐶−6

8
 . In this case, 2(8𝑢 + 8) − 𝑤6 = 8𝑢 + 10 ∈  𝑆 

by the Arf condition. Thus, 𝑤4  ≤  8𝑢 +  12. On the 

other hand, we know that 𝑤6 = 8𝑢 +  6 < 𝑤4. Thus, 

𝑤4 must be equal to 8𝑢 +  12. Furthermore, 𝑤6 < 

𝑤3⇒ 8u + 6 < 𝑤3 ⇒ 𝑤2< 𝑤3. So 𝑤3 = 𝐶 + 5 is 

obtained by using Lemma 1. Hence, 

𝑆 =  ⟨8, 8𝑢 + 6, 8𝑢 + 10, 8𝑢 + 12, 𝐶 + 1, 𝐶 +

3, 𝐶 + 5, 𝐶 + 7⟩ for each  1 ≤  𝑢 ≤  
𝐶−6

8
. 

(Sufficiency) The definition of Arf numerical 

semigroup given in the Section 2 shows that each 

semigroup given in Theorem 9 satisfies 

the Arf property. 

 

Theorem 10 Let 𝑆 be a numerical semigroup 

with multiplicity eight and conductor 𝐶 where 𝐶 >
15 and 𝐶 ≡ 7(mod 8). Then 𝑆 is an Arf numerical 

semigroup if and only if 𝑆 is one of the followings: 

⟨8, 8𝑢 + 4, 𝐶, 𝐶 + 2, 𝐶 + 3, 𝐶 + 4, 𝐶 + 6, 𝐶 +

7⟩ for each 1 ≤  𝑢 ≤  
𝐶−7

8
; 

⟨8, 𝐶 −  2, 𝐶, 𝐶 +  2, 𝐶 + 3, 𝐶 + 4, 𝐶 + 5, 𝐶 +
7⟩; 

⟨8, 𝐶, 𝐶 + 2, 𝐶 + 3, 𝐶 + 4, 𝐶 + 5, 𝐶 + 6, 𝐶 + 7⟩. 
Proof (Necessity) Let 𝑆 be an Arf numerical 

semigroup with multiplicity eight and conductor 𝐶 

where 𝐶 > 15 and 𝐶 ≡ 7 (mod 8). Under these 

conditions, we can calculate 𝑤1 = 𝐶 + 2 and 𝑤7 =  𝐶 

by using Lemma 2. The largest element of the set 

𝐴𝑝(𝑆, 8) is 𝑤6 = 𝐶 + 7 due to the fact tha 

max(𝐴𝑝(𝑆, 8))  = 𝐹(𝑆) + 8. So the other elements 

of the Apéry set must be smaller than 𝑤6 = 𝐶 + 7, 

i.e. 𝑤𝑖 <  𝐶 + 7 for each 𝑖 ∈ {0, 1, 2, 3, 4, 5, 7}. Using 

Remark 1 (a), we get 𝑤3 =  𝐶 + 4. Note that 𝑤2 > 𝐶. 

Otherwise, if 𝑤2 < 𝐶, then 𝑤2 ≤  𝐶 − 5 ∈ 𝑆. Thus, 

by the Arf condition we get 2(𝐶 − 5) − (𝐶 − 7) =
𝐶 − 3 ∈ 𝑆, and 2(𝐶 − 3) − (𝐶 − 5) = 𝐶 − 1 ∈ 𝑆. 

This is a contradiction. Therefore, 𝑤2 = 𝐶 + 3. 

Besides, 𝐶 + 3 =  𝑤2 ≤ 𝑤5 + 5 is given in Remark 

1 (c). This implies that 𝑤5 ≥ 𝐶 − 2. Therefore, the 

ratio of 𝑆, 𝑅, is one of the elements 𝑤4, 𝑤5 = 𝐶 − 2 

or 𝑤7 = 𝐶. 

(i) If 𝑅 = 𝑤4, then 𝑤4 ≤ 𝐶 − 3. Accordingly, 

𝑤4 = 8𝑢 + 4 for the interval of 𝑢 indicated by 1 ≤

 𝑢 ≤  
𝐶−7

8
 . We can write 𝑤5 = 𝐶 + 6 by using 

Lemma 1. Hence, 

𝑆 = ⟨8, 8𝑢 +  4, 𝐶, 𝐶 + 2, 𝐶 + 3, 𝐶 + 4, 𝐶 +

 6, 𝐶 + 7⟩ for each 1 ≤  𝑢 ≤  
𝐶−7

8
. 

(ii) If 𝑅 = 𝑤5 = 𝐶 − 2, then 

𝑆 =  ⟨8, 𝐶 −  2, 𝐶, 𝐶 + 2, 𝐶 + 3, 𝐶 + 4, 𝐶 +
5, 𝐶 + 7⟩. 

(iii) If 𝑅 = 𝑤7 = 𝐶, then 

𝑆 = ⟨8, 𝐶, 𝐶 + 2, 𝐶 + 3, 𝐶 + 4, 𝐶 + 5, 𝐶 +
6, 𝐶 + 7⟩. 

(Sufficiency) The definition of Arf numerical 

semigroup given in the Section 2 shows that each 

semigroup given in Theorem 10 satisfies 

the Arf property. 

For any rational number 𝑥, the greatest integer 

less than or equal to 𝑥 is denoted by ⌊𝑥⌋. We denote 

the set of Arf numerical semigroups and the number 

of Arf numerical semigroups with multiplicity eight 

and conductor 𝐶, where ⌊
𝐶

8
 ⌋ > 1, by 𝑆𝐴𝑅𝐹  (8, 𝐶) and 

𝑁𝐴𝑅𝐹  (8, 𝐶), respectively. The above theorems can be 

used to calculate the number of Arf numerical 

semigroups with multiplicity eight and given 

conductor. 

Corollary 11 Let 𝐶 be a positive integer such 

that ⌊
𝐶

8
 ⌋ > 1. The number of Arf numerical 

semigroups with multiplicity eight and conductor 𝐶 is 



  
Int. J. Pure Appl. Sci. 9(2);393-401 (2023) 

 

  

Research article/Araştırma makalesi 

DOI: 10.29132/ijpas.1324404 
 

 

400 

 

𝑁𝐴𝑅𝐹  (8, 𝐶) =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 (

𝐶

8
)
2

+ (
𝐶

8
) + 1 𝑖𝑓 𝐶 ≡  0 (mod 8),

(
𝐶 − 2

8
)
2

+ (
𝐶 − 2

8
) 𝑖𝑓 𝐶 ≡  2 (mod 8),

𝐶 − 3

8
 𝑖𝑓 𝐶 ≡  3 (mod 8),

(
𝐶 − 4

8
)(
𝐶 + 4

8
) + (

𝐶 − 4

8
) − 1  𝑖𝑓 𝐶 ≡  4 (mod 8),

2  𝑖𝑓 𝐶 ≡  5 (mod 8),

(
𝐶 − 6

8
+ 1)

2

 𝑖𝑓 𝐶 ≡  6 (mod 8),

𝐶 − 7

8
+ 2  𝑖𝑓 𝐶 ≡  7 (mod 8).

 

Proof We give the proof for the case 𝐶 ≡

 0 (mod 8) where ⌊
𝐶

8
 ⌋ > 1. The proofs of the 

remaining cases are similar. By Theorem 4, there are 

seven types of semigroups in 𝑆𝐴𝑅𝐹 (8, 𝐶) Following 

the order in Theorem 4, there is exactly one single 

semigroup of the first type, while there are precisely 
𝐶−8

8
 semigroups of the second type. Similarly, there is 

one single semigroup of the third type, one single 

semigroup of the sixth type; there are precisely 
1

2
(
𝐶

8
− 1) (

𝐶

8
) semigroups of the fourth type, precisely 

1

2
(
𝐶

8
− 1) (

𝐶

8
) semigroups of the fifth type, and 

precisely  
𝐶−8

8
 semigroups of the seventh type. Thus 

the number of elements in 𝑆𝐴𝑅𝐹 (8, 𝐶) is 

𝑁𝐴𝑅𝐹  (8, 𝐶) = 1 + (
𝐶−8

8
 ) + 1 +

1

2
(
𝐶

8
− 1) (

𝐶

8
) +

1

2
(
𝐶

8
− 1) (

𝐶

8
) + 1 + (

𝐶−8

8
 ) = (

𝐶

8
)
2
+ (

𝐶

8
) + 1.                                                                  

 

Example 1 There are two Arf numerical 

semigroups with multiplicity eight and conductor 53: 

⟨8, 51, 53, 54, 55, 57, 58, 60⟩  =
 {0, 8, 16, 24, 32, 40, 48, 51, 53,→}, 

⟨8, 53, 54, 55, 57, 58, 59, 60⟩  =
 {0, 8, 16, 24, 32, 40, 48, 53,→}. 

There are two Arf numerical semigroups with 

multiplicity eight and conductor 853, too: 

⟨8, 851, 853, 854, 855, 857, 858, 860⟩  =
 {0, 8, 16, 24, 32, 40, 48, . . . , 840, 848, 851, 853,→}, 

⟨8, 853, 854, 855, 857, 858, 859, 860⟩  =
 {0, 8, 16, 24, 32, 40, 48, . . . , 840, 848, 853,→}. 

Example 2 Let's find all Arf numerical 

semigroups with eight and conductor 47. 

 For 𝑢 = 1,2,3,3,5 and  𝐶 = 47 ≡ 7(mod 8) we 

write five different semigroups as follows: 

 

⟨8, 12, 47, 49,50,51, 53, 54⟩  =
 {0, 8, 12,16,20,24,28,32,36,40,44,47,→}, 

⟨8, 20, 47, 49,50,51, 53, 54⟩  =
 {0, 8,16,20,24,28,32,36, 40, 44, 47,→}, 

⟨8, 28, 47, 49,50,51, 53, 54⟩  =
 {0, 8, 16, 24, 28, 32, 36, 40, 44, 47,→}, 

⟨8, 36, 47, 49,50,51, 53, 54⟩  =
 { 0, 8, 16, 24, 32, 36, 40, 44, 47,→}, 

⟨8, 44, 47, 49,50,51, 53, 54⟩  =
 { 0, 8, 16, 24, 32, 40, 44, 47,→}. 

In addition, two different Arf numerical 

semigroups with eight and conductor 47 can be 

written, these are as follows: 

⟨8, 45, 47, 49,50,51, 52, 54⟩ =
{ 0, 8, 16, 24, 32, 40, 45, 47 ,→}, 

⟨8,47,49,50,51,52,53,54⟩={ 0, 8, 16, 24, 32, 40, 

47,→}. 

 

CONCLUSION 

In this study, all Arf numerical semigroups with 

multiplicity 8 were characterized when given a 

specific conductor. In addition, the number of all Arf 

numerical semigroups with conductor C and 

multiplicity 8 were formulated. In the continuation of 

this study, Arf numerical semigroups with certain 

multiplicities will be obtained, and it will be an 

important resource for those working in the field of 

numerical semigroup applications. 
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