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ABSTRACT 

Long-read sequencing technologies such as Oxford Nanopore Technologies (ONT) 

enabled researchers to sequence long reads fast and cost-effectively. ONT sequencing 

uses nanopores integrated into semiconductor surfaces and sequences the genomic 

materials using changes in current across the surface as each nucleotide passes through 

the nanopore. The default output of ONT sequencers is in FAST5 format. The first and 

one of the most important steps of ONT data analysis is the conversion of FAST5 files 

to FASTQ files using “base caller” tools. Generally, base caller tools pre-trained deep 

learning models to transform electrical signals into reads. Guppy, the most commonly 

used base caller, uses 2 main model types, fast and high accuracy. Since the computation 

duration is significantly different between these two models, the effect of models on the 

variant calling process has not been fully understood. This study aims to evaluate the 

effect of different models on performance on variant calling. In this study, 15 low-

coverage long-read sequencing results coming from different flow cells of NA12878 

(gold standard data) were used to compare the variant calling results of Guppy. Obtained 

results indicated that the number of output FASTQ files, read counts and average read 

lengths between fast and high accuracy models are not statistically significant while 

pass/fail ratios of the base called datasets are significantly higher in high accuracy 

models. Results also indicated that the difference in pass/fail ratios arises in a significant 

difference in the number of called Single Nucleotide Polymorphisms (SNPs), insertions 

and deletions (InDels). Interestingly the true positive rates of SNPs are not significantly 

different. These results show that using fast models for SNP calling does not affect the 

true positive rates statistically. The primary observation in this study, using fast models 

does not decrease the true positive rate but decreases the called variants that arise due 

to altered pass/fail ratios. Also, it is not advised to use fast models for InDel calling 

while both the number of InDels and true positive rates are significantly lower in fast 

models. This study, to the best of our knowledge, is the first study that evaluates the 

effect of different base calling models of Guppy, one of the most common and ONT-

supported base callers, on variant calling. 
 

 
1 Idea Technology Solutions R&D Center, Maslak, Istanbul, Turkiye 
2 Department of Bioengineering, Faculty of Engineering, Gebze Technical University, Kocaeli, Turkiye 
3 John P. Hussman Institute for Human Genetics, University of Miami Miller School of Medicine, Miami, 

FL, USA 
4 Gene2Info A.Ş., Istanbul, Turkiye 
5 Idea Technology Solutions LLC, MA, USA 

*Correspondence: hamza.karakurt@ideateknoloji.com.tr  

ARTICLE HISTORY  

Received 

01 June 2023 

Accepted 

09 July 2023 

KEYWORDS 

Oxford nanopore 

sequencing,  

variant calling,  

long-read sequencing, 

base-calling 

mailto:hamza.karakurt@ideateknoloji.com.tr
https://orcid.org/0000-0002-4072-3065
https://orcid.org/0000-0001-2345-6785
https://orcid.org/0009-0006-9507-9760
https://orcid.org/0000-0001-6697-3401
https://orcid.org/0000-0002-5220-5652
https://orcid.org/0009-0001-4458-6774
https://orcid.org/0009-0004-9560-9341


277 
 

Introduction 

Since its development, long-read, single-molecule DNA sequencing Technologies 

emerged as powerful players in genomics and have proven their ability to resolve some 

of the most challenging regions of the human genome [1]. Oxford Nanopore 

Technologies (ONT), especially, provided fast and portable solutions for sequencing. The 

use of the Oxford Nanopore Sequencing platform has been increasing exponentially for 

variant calling due to its mobility, easy-to-use structure, accuracy and price. ONT uses 

electrical signal changes of nucleotides passing through nanopores that are integrated into 

a semi-conductive surface. Signals are stored as FAST5 files and can be converted to 

FASTQ files with a procedure called base calling [2]. Guppy, the most common and 

ONT-approved variant caller which is also used by the MinKNOW operating software of 

ONT, uses a Hidden Markov Model to generate FASTQ files from FAST5 files [3]. 

Guppy involves two different built-in models, High Accuracy and Fast models. The fast 

models are optimized for speed and are designed for applications where quick turn-around 

times are important, such as in real-time sequencing analysis or rapid diagnostic testing. 

The high-accuracy models use a more advanced algorithm that provides higher accuracy 

base-calling but at the expense of longer processing times [4]. These models differ in 

computation time and computing power requirements. Even though fast models provide 

significantly faster results, especially when the need for fast result generation, there is not 

any study that shows the direct effect of different models on variant calling. These kinds 

of critical cases require clinicians and experimental biologists to know which information 

on sequencing material they sacrifice to obtain faster results. As a consequence of that, 

researchers need a guide to have information about the differences between these models. 

Here, a benchmark study is provided that uses 15 low-coverage human sequencing data 

sets to provide insight into the model effect on variant calling. In this study, we aimed to 

investigate the effect of different base-calling models of Guppy on Single Nucleotide 

Polymorphism and Insertion/Deletion calling by comparing different parameters 

statistically. 

Material and Methods 

The study focuses on the “High Accuracy” and “Fast” models of Guppy base caller. Using 

15 low-coverage long-read sequencing files (Table 1) from NA12878 Gold Standard Data 



278 
 

[5]; pass/fail ratio, FASTQ quality, true variant discovery and variant quality metrics are 

compared. FAST5 files were downloaded from Nanopore WGS Consortium [5] using 

Amazon Web Services (AWS) CLI terminal software [6]. Data sets from different sizes 

and different laboratories were selected to have a uniform distribution. Data sets are 

downloaded using AWS S3 Client in Ubuntu 20.04. 

Bioinformatic and computational analyses 

Base-calling is applied to FAST5 files using Guppy with Fast and High Accuracy built-

in models (dna_r9.4.1_450bps_fast and dna_r9.4.1_450bps_hac are used as config files). 

The base calling process produces 2 different outputs, Pass and Fail. We used FASTQ 

files in the Pass folder for further steps and then calculated the Pass/Fail Ratios 

(Supplementary File 2) for each run using R.  16 CPUs are used for base calling processes. 

In the second step, the number of reads in merged FASTQ files is calculated 

(Supplementary File 2 / Supplementary Fig 3).   

Table 1 Flow Cell Data Used in Guppy Model Analysis 

Flowcell ID Reads Bases 

FAB39075 477495 3014355946 

FAB42395 38335 200553219 

FAB42260 269507 1583530766 

FAB41174 11714 739850920 

FAB42476 435934 2655496773 

FAB42706 431694 2434471643 

FAB43577 427215 2776702333 

FAB46664 491945 2335386447 

FAB39088 668016 3929822468 

FAB39043 442132 2574202451 

FAB42316 573736 4047383848 

FAB42473 646945 3794243146 

FAB42810 322286 2433213020 

FAB44989 558539 3962530064 

FAB45332 531764 3267600.534 

 

FASTQ files merged using cat command and aligned to the human genome (hg19) using 

minimap2 [7]. Output SAM files are sorted and indexed using Samtools [8]. Variants are 

called using Clair3 [9] with default parameters. Called SNPs and InDels are split to 

separate VCF files using VCFTools [10] (Supplementary File 1). VCF files obtained from 

Clair3 and filtered using VCFTools are processed using an in-house R function. NA12878 

(HG001) truth VCF file [11] is used to compare true and false variants using 
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Chromosome, Position, Reference Base and Alternative Base (Table 2). For the analysis 

of InDels, the same procedure as the analysis of SNPs was applied to VCF files (Table 

3).   For the analysis of false negative rate differences (Supplementary Excel File) 

between models, the HG001 Truth VCF file is filtered using a BED file, constructed using 

the regions of VCF files for each dataset. Common variants of each dataset (Table 4 / 

Supplementary Fig 4-5) are identified and true positive rates for common, “only in fast 

model output” and “only in high accuracy model output” are calculated.   

Results and Discussion 

Pass and Fail Ratios 

Results indicate that the number of FASTQ files is not significantly changed while 

Pass/Fail ratios are significantly changed between models (Fig 1 / Supplementary Fig 1). 

The average of Fold Changes of Pass/Fail Ratios is 0.918 while the P-Value is 0.011 

(Effect size is 0.38). The number of generated FASTQ files is not significantly different 

with a p-value of 0.445 (Effect size is 0.0035). The number of Pass and Fail FASTQ files 

are also not significantly changed with p-values of 0.078 and 0.077, respectively (With 

effect sizes of 0.021 and 0.033 respectively). 

 

Fig 1 Pass/Fail Ratios of Each Dataset 
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Comparison of Average Read Lengths of Base Called FASTQ Files 

Boxplot of read lengths indicates the average read length between fast and high accuracy 

models have similar distributions (Supplementary File 2 /Supplementary Fig 2). Paired t-

test was applied to the average read lengths and the difference is not significant between 

models with a p-value of 0.68 (with an effect size of 0.012). 

Read Counts in FASTQ Files  

The average Fold Change (FC) of read counts is 0.916 while the P-value is 0.24 (effect 

size is 0.143). Here, it is observed that different models do not have different read counts 

in FASTQ Files. 

Comparison of Single Nucleotide Polymorphisms 

The number of called SNPs (Fig 2) is significantly different with 0.475 as Fold Change 

and 0 as P-value (effect size is 0.44). This result indicated that the number of called SNPs 

is significantly different between models.  

 

 

Fig 2 Number of Single Nucleotide Polymorphisms 

The same test was applied to true positive rates (Fig 3 / Supplementary Excel File) to test 

the significance. Even though the number of variants is different, true positive SNP rates 

are not statistically different between models with 0.97 as Fold Change and 0.22 as P-

value (effect size is 0.26). 
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Due to the high number of variants in the truth VCF file and the dataset's low coverage, 

the number of false negatives is very high. Even though, different models can be 

compared since the same methods are applied. Test results indicated that false negative 

rates are significantly changed with a P-value of 0.013 (effect size = 0.59).  

Table 2 Comparison of Variants Obtained with Fast and High Accuracy Models with 

Truth VCF File (TP: True Positive, FP: False Positive) 

 
Dataset Model Number 

of 

Variants 

Number 

of TP 

Variants 

Number of 

FP 

Variants 

TP 

Ratios 

FAB39043 Fast 254 226 28 88.97638 

FAB39043 High Accuracy 533 470 63 88.18011 

FAB39075 Fast 35192 31144 4048 88.49739 

FAB39075 High Accuracy 67430 60538 6892 89.77903 

FAB39088 Fast 6 6 0 100 

FAB39088 High Accuracy 21 20 1 95.2381 

FAB41174 Fast 4989 4210 779 84.38565 

FAB41174 High Accuracy 9813 8360 1453 85.19311 

FAB42260 Fast 6 3 3 50 

FAB42260 High Accuracy 18 12 6 66.66667 

FAB42316 Fast 19 17 2 89.47368 

FAB42316 High Accuracy 34 34 0 100 

FAB42395 Fast 234 205 29 87.60684 

FAB42395 High Accuracy 536 466 70 86.9403 

FAB42473 Fast 54 43 11 79.62963 

FAB42473 High Accuracy 116 103 13 88.7931 

FAB42476 Fast 35568 30017 5551 84.39327 

FAB42476 High Accuracy 71996 62081 9915 86.2284 

FAB42706 Fast 28010 23616 4394 84.31275 

FAB42706 High Accuracy 59103 50908 8195 86.13438 

FAB42810 Fast 68 62 6 91.17647 

FAB42810 High_Accuracy 119 100 19 84.03361 

FAB43577 Fast 39673 33783 5890 85.15363 

FAB43577 High_Accuracy 76573 65821 10752 85.9585 

FAB44989 Fast 84 75 9 89.28571 

FAB44989 High_Accuracy 144 122 22 84.72222 

FAB45332 Fast 41 33 8 80.4878 

FAB45332 High_Accuracy 100 89 11 89 

FAB46664 Fast 21621 17779 3842 82.23024 

FAB46664 High_Accuracy 44794 37614 7180 83.97107 
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Comparison of Insertion and Deletions 

The number of InDels and true positive rates are significantly different (Figure 4-5) in the 

context of insertion and deletion calling with p-values as 0, 0.046, respectively (effect 

sizes are 0.48, 1.16). This result indicates that different models highly affect the results 

in the context of the number of insertions and deletions more than SNPs and using fast 

models for InDel calling has more risk to lose variant information.  

 

Fig 3 True Positive Ratios of Single Nucleotide Polymorphisms 

 

Table 3 Comparison Results of Called InDels with Truth VCF File (TP: True Positive, FP: 

False Positive) 
Dataset Model Number of 

Variants 

Number of 

TP Variants 

Number of 

FP Variants 

TP Ratios 

FAB39075 Fast 269 187 82 69.51673 

FAB39075 High_Accuracy 493 408 85 82.75862 

FAB41174 Fast 17 13 4 76.47059 

FAB41174 High_Accuracy 60 46 14 76.66667 

FAB42476 Fast 204 154 50 75.4902 

FAB42476 High_Accuracy 489 402 87 82.20859 

FAB42706 Fast 133 111 22 83.45865 

FAB42706 High_Accuracy 361 297 64 82.27147 

FAB43577 Fast 248 160 88 64.51613 

FAB43577 High_Accuracy 566 406 160 71.73145 

FAB46664 Fast 96 69 27 71.875 

FAB46664 High_Accuracy 220 180 40 81.81818 
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Analysis of Common Variants Between Models 

Among 21 comparisons (15 SNP and 6 InDel comparisons), it is observed that variants 

only called in high-accuracy model results have higher true positive rates. True positive 

rates of variants are only called with fast models and only called with high accuracy 

models tested using paired t-test and the difference is significant with a p-value of 0.0002 

(effect size is 0.98).  

 

Fig 4 Number of Insertions and Deletions 

 

 

Fig 5 True Positive Ratios of Deletions and Insertions 
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Table 4 Common Variants Between Models (TP: True Positive, FP: False Positive) 

Dataset Number 

of 

Commo

n 

Variants 

TP Rate of 

Common 

Variants 

Only in 

Fast 

Model 

Only in 

High 

Accuracy 

Model 

TP Rate 

of Only 

in Fast 

Model 

TP Rate 

of Only in 

High 

Accuracy 

Model 

Varian

t Type 

FAB39043 150 93.33333 104 383 82.69 86.16 SNP 

FAB39075 23725 92.29083 11467 43705 80.65 88.41 SNP 

FAB39088 4 100 2 17 100 94.12 SNP 

FAB41174 3343 89.41071 1646 6470 74.18 83.01 SNP 

FAB42260 3 66.66667 3 15 33.33 66.66 SNP 

FAB42316 14 100 5 20 60 100 SNP 

FAB42395 155 90.96774 79 381 81.01 85.30 SNP 

FAB42473 38 89.47368 16 78 56.25 88.46 SNP 

FAB42476 23837 89.7764 11731 48159 73.45 84.47 SNP 

FAB42706 18702 90.15079 9308 40401 72.58 84.27 SNP 

FAB42810 37 94.59459 31 82 87.1 79.27 SNP 

FAB43577 25535 90.75387 14138 51038 75.03 83.56 SNP 

FAB44989 41 92.68293 43 103 86.06 81.55 SNP 

FAB45332 26 92.30769 15 74 60 87.84 SNP 

FAB46664 13816 88.60741 7805 30978 70.94 81.9 SNP 

FAB39075 107 89.71963 162 386 56.17 80.83 InDel 

FAB41174 14 78.57143 3 46 66.66 76.09 InDel 

FAB42476 93 83.87097 111 396 68.47 81.82 InDel 

FAB42706 57 96.49123 76 304 73.68 79.60 InDel 

FAB43577 98 74.4898 150 468 58 71.15 InDel 

FAB46664 40 85 56 180 62.5 81.11 InDel 

 

 Analysis of Qualities Common Variants Between Models 

The analysis of the qualities of common variants in fast and high-accuracy models 

indicated that the qualities are not significantly different. (Table 5) and results indicated 

that the qualities of variants are not significantly different between models.  

Conclusion 

In this study, 15 different low-coverage data sets from different sequencing experiments 

(each of them coming from a single flow cell) are used to compare the effects of different 

built-in base calling models on variant calling. Guppy, the tool that has the best overall 

performance in benchmark tests [16] and is supported by Oxford Nanopore, is a widely 

used base caller and to the best of our knowledge, there are not any comparison studies 

on different base calling models of Guppy. To the best of our knowledge, this study is the 

first one that analyses the effects of models on variant calling.  
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This study indicated that the chosen model does not affect true positive and false negative 

SNP rates significantly while the number of Single Nucleotide Polymorphisms (SNPs), 

number of Insertions and Deletions (InDels), and true positive and false negative InDel 

rates are significantly lower in fast models. Also, results indicated that these alterations 

occur due to significant pass/fail ratio differences, Total read counts and average read 

lengths of the base called FASTQ files do not significantly change between models. 

 

Table 5 Statistical Analysis Results of Qualities of Common Variants Between Models 

Dataset P-Value Variant 

Class 

FAB39043 0.845 SNP 

FAB39075 0.962 SNP 

FAB39088 0.474 SNP 

FAB41174 0.95 SNP 

FAB42260 0.752 SNP 

FAB42316 0.748 SNP 

FAB42395 0.72 SNP 

FAB42473 0.559 SNP 

FAB42476 0.999 SNP 

FAB42706 0.169 SNP 

FAB42810 0.662 SNP 

FAB43577 0.215 SNP 

FAB44989 0.818 SNP 

FAB45332 0.27 SNP 

FAB46664 0.599 SNP 

FAB39043 0.389 INDEL 

FAB39075 0.555 INDEL 

FAB41174 0.065 INDEL 

FAB42395 0.232 INDEL 

FAB42476 0.288 INDEL 

FAB42706 0.832 INDEL 

FAB42810 0.935 INDEL 

FAB43577 0.3 INDEL 

FAB46664 0.512 INDEL 

 

Analyses indicated that High Accuracy and Fast models cause the calling of different 

numbers of variants but in the context of true positive variants, the difference is not 

significant for SNPs while it is significant for insertions and deletions. Since there is not 

a significant difference between read counts and average read lengths, Pass/Fail ratios 

may be the main reason for this difference. For both models, the differences between false 
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negative SNPs, true positive SNPs and qualities of common variants between models are 

not significant. It can be concluded, for SNP calling, the usage of fast models in case of 

lack of computational power and time limitation, does not create a statistical 

disadvantage. This study can guide researchers about the applications and differences of 

built-in models of Guppy. As mentioned, Guppy comes with MinKNOW pre-installed 

and is the most common choice for clinical and scientific research centres without 

bioinformatics expertise. 

This study has limitations on the number of tested samples. Due to the low number of 

samples, statistical test results may not be generalized but the properties of tested data are 

held as uniform. Even though the statistical analyses of the study lack generalizability, 

the differences are clear for the datasets. For further research, the same analyses can be 

planned and applied to multiple ONT-based Whole Genome Sequencing and Whole 

Exome Sequencing experiment results.    

It should be also noted that the quality of variant calling is directly associated with 

experimental procedures and properties of genomic locations (high GC content, CpG 

Islands etc.). Due to this, it is possible to investigate the effects of models based on these 

parameters and an application procedure based on experimental steps or genomic 

locations can be developed. 
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